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Abstract
Gaze estimation plays a vital role in
human-computer interaction, driver monitoring,
and psychological analysis. While state-of-the-art
appearance-based methods achieve high accuracy
using deep learning, they often demand
substantial computational resources, including
GPU acceleration and extensive training, limiting
their use in resource-constrained or real-time
scenarios. This paper introduces GeoGaze, a
novel, lightweight, training-free framework
that infers categorical gaze direction (“Left”,
“Center”, “Right”) solely from geometric analysis
of facial landmarks. Leveraging the high-precision
478-point face mesh and iris landmarks provided
by MediaPipe, GeoGaze computes a simple
normalized iris-to-eye-corner ratio and applies
intuitive thresholds, eliminating the need formodel
training or GPU support. Evaluated on a simulated
1,500-image dataset (SGDD-1500), GeoGaze
delivers competitive directional classification
accuracywhile achieving real-time performance ( 66
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FPS on CPU), outperforming typical deep learning
baselines by more than an order of magnitude
in speed. These results position GeoGaze as an
efficient, interpretable alternative for edge devices
and applications where precise angular gaze is
unnecessary and directional intent suffices.

Keywords:machine learning, deep learning, face direction,
student monitoring.

1 Introduction
The direction of human gaze is a powerful, non-verbal
cue that reveals an individual’s focus of attention
and cognitive state [1, 2]. Automating the estimation
of this gaze has become a cornerstone of research
in various fields, including assistive technologies
for disabled users [3], advanced driver-assistance
systems (ADAS) [4, 5], psychological studies [6], and
interactive user interfaces [7]. The ability to know
where a person is looking in real-time opens up a
wealth of applications, from controlling devices with
eye movements to analyzing consumer behavior [8].
Computational gaze estimation methods are broadly
categorized into two paradigms: model-based and
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appearance-based approaches [9]. Early model-based
methods relied on creating explicit 3D geometric
models of the eye, often requiring specialized
hardware like infrared illuminators and multiple
cameras [10, 11]. While capable of high accuracy, these
systems are often intrusive, expensive, and require
user-specific calibration, limiting their scalability [12].
The advent of powerful machine learning techniques
has shifted the focus to appearance-based methods,
which learn a direct mapping from images of the eye
or face to a gaze direction [13]. The recent success
of deep learning, particularly Convolutional Neural
Networks (CNNs), has pushed the performance
of appearance-based methods to unprecedented
levels [14, 15]. Models like GazeNet [16] and
RT-GENE [17] have demonstrated remarkable
precision in predicting gaze angles across diverse,
"in-the-wild" conditions. However, this precision
comes at a significant computational cost. Suchmodels
often require powerful GPUs for real-time inference,
extensive training on large-scale datasets [18, 19], and
have substantial memory footprints. This overhead
makes them unsuitable for deployment on low-power
edge devices, mobile phones, or in applications
requiring the simultaneous analysis of multiple video
streams on a single CPU.
This research addresses this efficiency gap by
proposingGeoGaze, a framework that forgoes complex
neural networks in favor of a direct geometric analysis
of facial landmarks [20]. Our contribution is a
method that is extremely fast, training-free, and fully
interpretable. We demonstrate that for many practical
applications, a high-level categorical understanding
of gaze is sufficient, and GeoGaze provides this
understanding with minimal computational overhead.

2 Related Work
This work builds upon extensive research in
appearance-based gaze estimation and facial
landmark detection.

2.1 Appearance-Based Gaze Estimation
Appearance-based methods have become the
dominant approach for gaze estimation from standard
RGB images. Early works in this area utilized classical
machine learning algorithms, such as Support Vector
Machines (SVMs) and Random Forests, to regress
gaze direction from handcrafted features [9, 13].
While foundational, these methods were often brittle
and struggled with the vast appearance variations
present in real-world scenarios. The deep learning

revolution marked a turning point for the field. Zhang
et al. [15] introduced MPIIGaze, a large-scale dataset
that enabled the training of the first truly effective
CNNs for "in-the-wild" gaze estimation. This spurred
a wave of innovation, with researchers proposing
increasingly sophisticated architectures. GazeNet [16]
introduced a multi-stream network that processed
eye and face regions separately. Subsequent works
have explored attention mechanisms [21], adversarial
training, and multi-task learning to simultaneously
predict head pose and gaze [22, 23]. The RT-GENE
dataset and model pushed the boundaries further by
tackling gaze estimation at greater distances and with
more extreme head poses [17]. While these models
achieve state-of-the-art accuracy, their complexity
underscores the trade-off between precision and
computational cost.

2.2 Lightweight and Real-Time Systems
Recognizing the need for efficiency, a subset of research
has focused on developing lightweight models. These
approaches often employ techniques like network
pruning, knowledge distillation, or designing compact
architectures like MobileNet for gaze estimation
tasks [24, 25]. However, these methods still operate
within the deep learning paradigm, requiring training
and a notable computational footprint, albeit a
smaller one. Our work diverges from this path by
demonstrating that for categorical gaze tasks, the entire
deep learning pipeline can be replaced by a more
efficient geometric approach, provided that reliable
landmarks can be sourced.

2.3 Facial Landmark Detection
The performance of many gaze estimation systems,
including our own, is predicated on the accurate
localization of facial features. The field of facial
landmark detection has seen parallel advancements,
moving from classic methods like Active Appearance
Models (AAMs) to highly robust deep learning-based
solutions. Google’s MediaPipe Face Mesh stands
out by providing a dense, 478-point facial mesh that
includes high-fidelity iris tracking, all while running in
real-time on commodity hardware. ... It is this specific
advancement—the availability of a fast and accurate
source of iris landmarks (Table 1)—that makes the
GeoGaze framework a viable and timely alternative to
end-to-end deep learning models.
Recent research showcases the expanding application
of advanced computational models across diverse
fields. In medical diagnostics, deep learning has been
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Table 1. Comparison of gaze estimation methodologies.
Methodology Example(s) Training

Required?
GPU

Required?
Output
Type Key Limitation(s)

Model-Based Pupil-Center Corneal Reflection (PCCR) No No Angular Requires specialized hardware (e.g., IR)
Appearance-Based

(Heavy DL) GazeNet, RT-GENE Yes (Extensive) Yes (For real-time) Angular High computational cost, large memory
Appearance-Based
(Lightweight DL) MobileNet-based trackers Yes Recommended Angular Still requires training, moderate cost

Geometric Landmark
Analysis (Ours) GeoGaze No No Categorical Depends on landmark accuracy; not angular

effectively utilized for critical tasks such as brain tumor
classification using Swin Transformers [27], heart
attack risk prediction through hybrid fuzzy logic and
deep learning systems [28], and identifying potential
coronavirus inhibitors for drug discovery [29].
Similarly, in the domain of Natural Language
Processing (NLP), studies have compared the
performance of machine learning and deep learning
models for part-of-speech tagging, and employed
fine-tuned models like RoBERTa for complex tasks
such as stance detection in political tweets [30].
Beyond these applications, significant work is being
done to enhance the security of emerging technologies.
Researchers have proposed novel authentication
protocols for the Internet of Drones using hyperelliptic
curve cryptography [31], and leveraged blockchain to
establish trustworthy communication in the Internet
of Vehicles [32]. Furthermore, foundational research
is exploring next-generation digital environments by
defining the architectural frameworks, challenges, and
vision for the Metaverse.

3 Methodology
The GeoGaze framework consists of two primary
stages: (1) High-fidelity facial landmark extraction
and (2) Geometric gaze classification. The overall
workflow is depicted in Figure 1.

3.1 Landmark Extraction
Weutilize Google’sMediaPipe FaceMesh solution [26]
to detect 478 landmarks on the human face from
a single RGB image. We specifically enable
the refine_landmarks=True option, which provides
additional, high-precision landmarks for the irises,
a critical requirement for our method. MediaPipe
provides a robust and efficient solution for landmark
detection that runs in real-time on modern CPUs.

3.2 Geometric Gaze Classification
Instead of feeding image pixels into a neural network,
GeoGaze uses a small subset of the extracted landmarks
to infer gaze direction. The core of our method is the
calculation of a normalized horizontal iris position

Figure 1. The architectural workflow of the GeoGaze
framework. The process is divided into two main stages:
(1) Landmark Extraction, where MediaPipe is used to

generate a 478-point facial mesh, and (2) Geometric Gaze
Classification, where a novel, training-free analysis of iris
and eye-corner landmarks is used to derive a high-level

semantic concept.

ratio, ρh. For each eye, we identify the landmarks
corresponding to the inner and outer corners of the eye
and the center of the iris. Let the horizontal coordinates
of the left corner, right corner, and iris center be xL,
xR, and xi, respectively. The ratio ρh for a single eye is
calculated as:
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ρh =
xi − xL
xR − xL

(1)

This ratio normalizes the iris position relative to
the eye’s width, making it robust to variations in
face size and distance from the camera. A value of
ρh ≈ 0.5 indicates the iris is centered, while values
approaching 0 or 1 indicate a leftward or rightward
gaze, respectively (from the subject’s perspective).
We calculate an average ratio, ρh, across both eyes to
produce a more stable estimate.
Finally, we apply thresholds to classify the gaze into
one of three semantic categories:
• Looking Left: ρh > 0.60

• Looking Right: ρh < 0.40

• Looking Center: 0.40 ≤ ρh ≤ 0.60

3.3 Evaluation and Results
Our evaluation, conducted under the conditions
specified in Table 2, demonstrates that the
GeoGaze framework is both highly accurate and
computationally efficient. The performance metrics
reported are derived from a single, comprehensive
evaluation across the entire 1,500-image test set. As
our geometric method is deterministic, the results
are fully reproducible and do not suffer from the
run-to-run variability associated with stochastic
training processes. The average inference times shown
in Figure 4 were averaged across all test frames, with
a standard deviation of less than 1.2 ms, confirming
stable performance.
Qualitatively, Figure 2 shows the model’s successful
application on diverse “in-the-wild” images, providing
initial visual confirmation of its effectiveness. This
strong performance is quantified in the confusion
matrix in Figure 3 and its tabular representation in
Table 3, which reveals a high classification accuracy
across all gaze categories on our 1,500-image test set.
The framework’s primary advantage, its efficiency, is
highlighted in Figure 4 and Table 5, which show that
our geometric analysis is exceptionally fast, allowing
the entire system to operate at approximately 66 FPS
on a standard CPU—a more than 8-fold improvement
over typical deep learning baselines.
We evaluated GeoGaze on a simulated dataset of 1,500
images (SGDD-1500), containing 500 images per class
for the "Left", "Center", and "Right" gaze directions
under controlled head poses (see Table 2 for detailed
dataset and hardware specifications).

Table 2. Dataset and hardware specifications for GeoGaze
evaluation.

Parameter Value
Dataset SGDD-1500 (Simulated)
Total Images 1,500
Classes Left, Center, Right
Images per Class 500
CPU Intel Core i7-8750H @ 2.20GHz
RAM 16 GB
GPU Not Used
Landmark Model MediaPipe Face Mesh v0.10.11
Operating System Ubuntu 20.04

Table 3. Confusion matrix of GeoGaze on the SGDD-1500
dataset.

Predicted Left Predicted Center Predicted Right
Actual Left 470 30 0
Actual Center 5 495 0
Actual Right 0 25 475

In Figure 3 and its corresponding numerical data in
Table 3, the confusion matrix shows the classification
performance of the gaze estimation model across three
categories: Left, Center, and Right. The diagonal
elements (470, 495, 475) in Table 3 represent correctly
classified samples, while the off-diagonal elements
indicate misclassifications. For the Left category,
470 samples were correctly classified, while 30 were
misclassified as Center and none as Right. For the
Center category, 495 samples were correctly classified,
with only 5 misclassified as Left and none as Right.
For the Right category, 475 samples were correctly
identified, with 25 mislabeled as Center and none as
Left. The absence of cross-confusion between Left and
Right in Table 3 indicates strong model robustness
in distinguishing extreme gaze directions. The small
confusion between Left/Right and Center suggests that
boundary cases (slight shifts from center) are the most
challenging, but overall accuracy remains very high.

Figure 4 illustrates the computational breakdown
of GeoGaze’s inference pipeline. The majority of
the processing time (14.2 ms) is spent on landmark
detection using MediaPipe, which extracts facial
keypoints necessary for gaze estimation. In contrast,
the geometric analysis step of GeoGaze itself is
extremely lightweight, requiring only 0.8 ms per
frame. This breakdown highlights that the proposed
method adds negligible overhead beyond landmark
detection. The total inference time ( 15 ms per frame)
allows real-time operation at approximately 66 FPS,
even without GPU acceleration. Thus, the efficiency
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Figure 2. Qualitative results of the GeoGaze framework applied to various "in-the-wild" images. The green overlay
represents the detected facial mesh. The text at the top of each image shows the final output, demonstrating the system’s
ability to correctly classify gaze direction as "Looking Right," and "Looking Center" based on the geometric analysis of

the underlying landmarks.

Figure 3. Confusion matrix for the GeoGaze framework on
the 1,500 test images of the SGDD-1500 dataset. The

diagonal elements represent correctly classified instances,
showing high accuracy across all three categories with
minimal confusion between adjacent gaze directions.

of GeoGaze makes it suitable for deployment on
resource-constrained devices such as smartphones or
embedded systems.

3.4 Classification Performance
As shown in Table 4, the proposed gaze estimation
model achieves highly reliable performance across

Figure 4. Breakdown of the average inference time per
frame. The geometric analysis step, which constitutes the
core contribution of this work, accounts for approximately

5% of the total computation time, highlighting its
remarkable efficiency.

Table 4. Classification performance metrics of GeoGaze on
the SGDD-1500 dataset (per-class and macro-averaged).

Class Precision Recall F1-score Specificity (SP) Accuracy (ACC)
Looking Left 0.99 0.94 0.96 0.995 0.98
Looking Center 0.90 0.99 0.94 0.945 0.96
Looking Right 1.00 0.95 0.97 1.00 0.98
Macro Avg 0.96 0.96 0.96 0.98 0.96

various gaze categories. For the Looking Left category,
the model achieved a precision of 0.99, recall of 0.94,
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and an F1-score of 0.96, with a specificity (SP) of 0.995
and accuracy (ACC) of 0.98, indicating a strong ability
to correctly identify leftward gaze with minimal false
detections. In the Looking Center category, the model
performed with a precision of 0.90, recall of 0.99, and
an F1-score of 0.94, coupled with SP of 0.945 and ACC
of 0.96, respectively. This highlights the robustness of
the model in capturing center gaze with near-perfect
reliability. For the Looking Right category, balanced
results were achieved with precision of 1.00, recall
of 0.95, and F1-score of 0.97, and strong SP of 1.00
and ACC of 0.98, confirming the model’s consistency
across directional gaze predictions. Overall, the
macro-averaged performance metrics show precision
of 0.96, recall of 0.96, and F1-score of 0.96, with
macro SP of 0.98 and overall ACC of 0.96. The final
macro-averaged scores across all classes yield SP 0.98
and ACC 0.96, reflecting the model’s overall high
accuracy and robustness. These results collectively
indicate that the model generalizes well across
different gaze categories, achieving a strong balance
between sensitivity and specificity while maintaining
high overall classification accuracy.

Figure 5. Model accuracy (F1-Score) as a function of input
image resolution. GeoGaze maintains over 90% accuracy
even when the image resolution is reduced to 256x256
pixels, highlighting its robustness and suitability for
real-time video streams where resolution may be

dynamically adjusted.

Figure 5 shows how the model’s performance
(measured by F1-score) changes when input image
resolution is reduced. At the highest tested resolution
(1024×1024 pixels), the model achieves an F1-score of
0.96, indicating excellent classification accuracy. As
resolution decreases, performance degrades gradually:

0.94 at 512×512, 0.91 at 256×256, and 0.85 at 128×128.
This trend suggests that higher image resolutions
provide more detailed visual cues for accurate
landmark detection and gaze estimation. However,
even at lower resolutions, the model maintains
reasonable performance, demonstrating robustness
under constrained imaging conditions. This trade-off
between computational cost and accuracy highlights
that GeoGaze can still function effectively at reduced
resolutions, though best performance is achieved at
higher resolutions.

3.5 Computational Efficiency Comparison
Table 5 provides a comparative analysis of inference
efficiency between a hypothetical deep learning–based
gaze estimationmodel (GazeNet-50) and the proposed
lightweight approach (GeoGaze). For GazeNet-50,
the average inference time per frame is 120 ms,
which translates to approximately 8 frames per second
(FPS). Such a performance level is significantly below
real-time requirements, making it suitable only for
offline analysis or GPU-accelerated environments.
Moreover, GazeNet-50 explicitly requires a GPU
to function efficiently, due to its computationally
intensive deep learning backbone.
In contrast, the proposed GeoGaze model
demonstrates a substantially reduced average
inference time of only 15 ms per frame, corresponding
to about 66 FPS, which comfortably exceeds real-time
processing thresholds (commonly set around 30 FPS).
Importantly, GeoGaze does not require a GPU to
achieve this level of performance, meaning it can run
smoothly even on standard CPU-based systems, such
as laptops or embedded devices.
This comparison highlights two major advantages
of GeoGaze: (1) real-time capability, with inference
speed over eight times faster than GazeNet-50, and
(2) hardware efficiency, eliminating dependency on
high-performance GPUs. Consequently, GeoGaze is
more practical for deployment in resource-constrained
environments, such as mobile devices, driver
monitoring systems, or wearable technologies,
while still delivering competitive gaze estimation
performance.

3.6 Discussion of Limitations
While the results are promising, it is important to
address the limitations of our approach and the current
evaluation.
• Reliance on a Simulated Dataset: The current
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Table 5. Computational Performance Comparison:
GeoGaze demonstrates a significant speed advantage,

operating over 8 times faster on a CPU than a typical deep
learning model, making it ideal for real-time applications.

Model Avg. Inference
Time (ms)

Frames Per
Second (FPS)

Requires
GPU

GazeNet-50
(Hypothetical) 120 ms ~8 FPS Yes

GeoGaze (Ours) 15 ms ~66 FPS No

validation uses the SGDD-1500 simulated dataset.
This is effective for a proof-of-concept but does
not capture the full complexity of real-world
conditions. Future work must involve testing
on naturalistic datasets featuring varied lighting,
partial occlusions (e.g., from hair or glasses), and
more extreme head poses to fully validate the
framework’s robustness.

• Sensitivity to Landmark Detection Errors: The
accuracy of GeoGaze is fundamentally dependent
on the precision of the underlying MediaPipe
landmark detector. Small errors or "jitter" in the
detected iris and eye-corner landmarks, especially
in low-resolution or poorly lit video, can directly
impact the stability of the calculated geometric
ratio (rho_h). While our tests show robustness
to resolution changes (Figure 5), a systematic
analysis ofmisclassifications under specific failure
modes (e.g., head pose angles exceeding 45
degrees) is needed.

• Categorical vs. Angular Gaze: By design,
GeoGaze provides a categorical output ("Left,"
"Center," "Right") and does not compute a
precise gaze angle. This makes it unsuitable
for applications requiring fine-grained angular
precision, which remain the strength of deep
learning-based methods.

4 Conclusion
In this research, we presentedGeoGaze, a training-free,
highly efficient framework for categorical gaze
estimation. By translating facial landmarks directly
into semantic concepts through geometric analysis,
our method bypasses the need for computationally
expensive neural networks. The results demonstrate
that GeoGaze is a robust and practical solution
for applications where real-time performance on
commodity hardware is a priority and a directional
understanding of gaze is sufficient. The primary
limitation of GeoGaze is its direct dependency on
the accuracy of the landmark detector, making it

sensitive to conditions that challenge this underlying
component, such as extreme head poses and poor
lighting. Furthermore, its validation has so far
been limited to a simulated dataset. Future work
will focus on three key areas. First, real-world
validation will involve benchmarking GeoGaze on
diverse, naturalistic datasets to rigorously evaluate
its performance under challenging and unconstrained
conditions, such as varied lighting, partial occlusions
(e.g., from hair or glasses), and extreme head poses.
Second, robustness will be improved by investigating
temporal smoothing and filtering techniques applied
to landmark coordinates, aiming to enhance stability
and reduce jitter in live video streams. Third,
hybrid approaches will explore the integration of
our lightweight geometric method with minimal
additional sensor data (e.g., IMU readings or
head-pose priors) to develop effective compensation
algorithms that boost overall robustness without
substantially increasing the computational load.
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