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Abstract
The Internet of Things (IoT) continues to expand
rapidly, resulting in increasingly heterogeneous
and complex wireless sensor networks (WSNs).
Traditional anomaly detection approaches cannot
cope with dynamic traffic patterns, high data
volumes, and strict resource constraints. This
study presents a hybrid XGBoost–CNN model
that integrates XGBoost-based feature selection
with a lightweight Convolutional Neural Network
optimized for IoT environments. The proposed
model was evaluated using real-world IoT traffic
data and benchmarked against XGBoost, KNN,
and SVM. Experimental results show that the
hybrid approach improves detection accuracy by
over 1%, increases throughput by 22–40%, and
reduces computational cost by 4–8% compared with
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the baseline models. The model also demonstrated
1% higher energy efficiency under varying attack
scenarios. These results indicate that combining
the feature selection capabilities of XGBoost with
CNN’s pattern extraction of CNN yields a scalable,
accurate, and resource-efficient anomaly detection
solution suitable for IoT-WSN devices.

Keywords: IoT wireless sensor networks, anomaly
detection, XGBoost, convolutional neural networks, feature
selection, hybrid model, real-time detection.

1 Introduction
The Internet of Things (IoT) allows various devices
to connect to the Internet, transfer data between
themselves, and process what they receive [1]. Many
applications, such as smart cities, health monitoring,
environmental surveillance, and industrial automation,
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depend greatly on wireless IoT WSNs [2]. Because
IoT-WSNs make live data analysis possible, they help
decision-makers, save resources, and make these
sectors more efficient [3]. With the rising number of
devices connected to the Internet, these networks are
becoming increasingly complex and large [4]. When
the number of IoT devices expands so rapidly, it creates
important security concerns because more devices
mean more ways for hackers to attack.
Devices in an IoT-WSN can be set up in numerous
places, and they may have different processing
power, ways to connect to the network, and storage
systems [5]. Because there are numerous devices and
communication channels, it is becoming increasingly
difficult to monitor the network and identify any
dangers [6]. IDS created for regular networks cannot
handle shifting and various IoT-WSNenvironments [7].
Most current security solutions find it difficult to keep
up with the changing actions of IoT devices and the
new patterns found in network traffic [8]. In addition,
numerous IoT systems fall short because they either
do not detect events accurately or require too many
resources to run in real time [9, 10]. Therefore, there
is a strong demand for new and better ways to detect
anomalies to address the security concerns caused by
IoT-WSNs.
To address these challenges, existing anomaly
detection methods must handle heterogeneous
devices, high-dimensional traffic, and rapidly
evolving attack patterns, which are requirements that
traditional IDS and many machine learning-based
techniques fail to meet. Furthermore, deep learning
approaches, such as CNNs, offer strong pattern
recognition capabilities but often impose heavy
computational overheads, making them unsuitable for
resource-constrained IoT nodes.
Therefore, we propose a new Extreme Gradient
Boosting (XGBoost)- Convolutional Neural Networks
(CNN) hybrid model to identify anomalies in
IoT-WSNs. During the first phase, XGBoost was
employed to handle large amounts of data and
imbalances, making selections and distinctions for
different features. In addition, CNNs are used to
identify the unique patterns found in the data of the
IoT network traffic, which enables the detection of any
suspicious activity. Pairing XGBoost with CNNmakes
it easier to increase the accuracy of detection, maintain
low costs, and boost the performance of the entire
system.
Unlike conventional approaches, the proposed hybrid

model first reduces the input dimensionality using
XGBoost, ensuring that only the most informative
traffic features are preserved. This significantly
decreases the computational cost before the data are
passed to a lightweight CNN, which then extracts the
spatiotemporal representations required for accurate
anomaly classification.
This two-stage pipeline enables efficient real-time
detection while maintaining high accuracy, even under
imbalanced and noisy IoT-WSN traffic conditions.
Our proposed approach introduces a comprehensive
anomaly detection pipeline that effectively classifies
IoT traffic based on both static and dynamic features.
By utilizing XGBoost for feature selection and CNN
for pattern recognition, the model can detect a
wide range of attacks, including but not limited to
Distributed Denial of Service (DDoS) attacks, data
injection attacks, and unauthorized access attempts.
The performance of the XGBoost-CNN hybrid model
was validated through extensive simulations on
real-world IoT datasets, and the results were compared
with those of existing methods, including XGBoost,
K-Nearest Neighbors (KNN), and Support Vector
Machine (SVM), to demonstrate the effectiveness of
the proposed solution. The key contributions of this
study are as follows:
• We introduce a novel hybrid XGBoost–CNN

architecture specifically designed for lightweight
and accurate anomaly detection in IoT WSNs.

• We present XGBoost-CNN as a new hybrid
model to detect cyberattacks in IoT-WSNs because
XGBoost and CNN highlight each other’s benefits.

• We used XGBoost to choose the most important
features from the IoT data and then analyzed the
data using CNN to detect unusual trends and
patterns.

• We performed a comprehensive evaluation of
the XGBoost-CNN model using real-world IoT
datasets and compared its performance with
existing anomaly detection techniques, including
XGBoost, KNN, and SVM.

• We demonstrate that the proposed hybrid
approach significantly improves the detection
accuracy, throughput, computational efficiency,
and energy consumption compared with
state-of-the-art baselines.

The remainder of this paper is organized as follows.
Section 2 describes the current state-of-the-art studies
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on anomaly detection in IoT WSNs. Section 3 explains
the XGBoost-CNNmodel, the feature selection process,
and the classificationmethod. In Section 4, the setup of
the experiments, including the simulation parameters
andmeasures to verify the results, is described in detail.
This is followed by the results and their discussion.
The paper concludes in Section 5 and proposes future
research directions.

2 Related Work
Recently, interest in anomaly detection in IoT Wireless
Sensor Networks (IoT-WSNs) has increased owing to
the rapid growth of IoT and the new dangers it brings.
Most Intrusion Detection Systems (IDS) created for
standard networks do not deal well with the changes
and various devices in IoT networks. Consequently,
many researchers have proposed several solutions and
designs to manage the problems of finding anomalies
in IoT-WSNs. Traditional methods for detecting
anomalies, such as signatures and statistical models,
were utilized in the first version of the IDS [11]. This
approach does not protect against attacks that are not
identified in advance; therefore, it is not reliable [12].
Alternatively, statistical models check patterns in
Internet traffic and highlight anything that does
not match optimal conditions [13]. Simultaneously,
both techniques usually encounter difficulties in IoT
circumstances because networks and IoT devices are
constantly evolving [14]. They are not suitable
for modern Internet-of-Things (IoT) wireless sensor
networks because they cannot process large amounts
of data in real time.
Machine learning (ML) is commonly used in IoT
networks for detecting abnormalities because it
adapts based on new data [15]. Anomaly detection
in IoT-WSNs often uses SVM, KNN and Random
Forest (RF) [16]. Although SVM copes well with
complicated data that are not equally balanced, it
can require too much computing capacity to use
and may not be suitable for applications that require
instant responses [17]. Although KNN is good for
sorting new data, it has difficulty working with the
high-dimensional data of IoT networks. With a large
amount of data and when the data are imbalanced,
RF shows good performance, making it adept for
IoT-WSNs [18]. However, using it with deep learning
algorithms can lead to even better outcomes.
Recently, deep learning for anomaly detection has
proven to be very useful when other ML models
find it difficult to understand complex data [19].
CNN is commonly used in deep learning to identify

anomalies. CNNs are mostly known for image and
video processing, but they are also used effectively
in IoT traffic analysis and similar areas [20]. Because
they can notice both space and time characteristics,
they are well suited for spotting strange data in
IoT-WSN networks. Many studies have investigated
how CNN can be employed to detect intrusions in IoT
networks [21]. It can spot patterns found in network
traffic, and they do not need to depend on manual
feature creation like other systems [22]. However,
training CNNs with large, annotated datasets are
necessary, although it can be difficult to detect things
swiftly in IoT devices that lack power or memory.

Owing to the drawbacks of single machine learning
and deep learning methods, their combination is
now commonly used in IoT-WSNs for anomaly
detection [23]. Hybrid approaches have recently
gained significant attention, especially in studies
from 2023 to 2025, which focus on energy-efficient
edge–cloud systems, QoS-aware resource allocation,
multi-graph neural networks, and attention-based
spatio-temporal deep models. When different models
are combined, hybrid systems usually perform better
than each of the single models on their own. For
example, blending random forest (RF) and deep
learning (DL) methods has been suggested for
detecting intrusions in IoT networks, using RF
to choose important features and deep learning
to detect patterns [24]. Hybrid methods are
better at detecting threats and reporting fewer false
positives than conventional methods [25]. Recent
studies have also highlighted the importance of
using feature-selection-driven hybrid methods, where
models such as XGBoost reduce the dimensionality
before deep learning modules process the traffic
features. Many researchers have attempted to use
XGBoost along with other machine learning and deep
learning tools for IoT-WSNs. XGBoost is a type of
gradient boosting model that is famous for its accuracy
and efficiency when used for classification [26].
The combination of XGBoost and CNN enables
more efficient feature extraction and reduces the
computational load, making the approach more
suitable for real-time IoT deployment.

While IoT-WSNsuse advanced anomaly detection tools,
many issues are still yet to be resolved. Key challenges
include heavy class imbalance, high false-positive
rates, and difficulty in deploying computationally
expensive deep networks on low-power IoT nodes [27].
In addition, many deep learning networks are
complicated to train because they require a huge
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Figure 1. Proposed methodology for anomaly detection in IoT wireless Sensor Network using the XGBoost-CNN hybrid
model.

amount of input and powerful computers. More
future work in IoT-Wireless Sensor Networks should
be dedicated to finding answers to these issues
by creating better and scalable protocols. The
XGBoost-CNN model suggested in this study is a
good option because it addresses these limitations
through dimensionality reduction, lightweight pattern
recognition, and improved generalization capability
in constrained environments. In addition, nimble
detection, feature choices, and adaptive learning will
be important strengths in the future.

3 Proposed Methodology
In this study, we propose a novel hybrid model,
XGBoost-CNN, for anomaly detection in IoT Wireless
Sensor Networks (IoT-WSNs). In this study, we
introduce a unique XGBoost-CNN model to help
discover anomalies within IoT Wireless Sensor
Networks. Both the XGBoost and CNNs are used
in the method to boost training and find patterns
in collected IoT traffic. Overall, there are two main
steps in this approach: Feature Selection and Anomaly
Detection. This section explains each step of the
proposed approach. Figure 1 shows the main steps

involved in the proposed XGBoost-CNN hybridmodel,
from preprocessing the data to making the final
evaluation.

3.1 Feature Selection using XGBoost
Identifying themost important features from IoT traffic
is the initial part of the methodology for recognizing
anomalies. Both feature selection and classification in
our studywere handled byXGBoost, because it ismuch
better at dealing with large and imbalanced datasets
in the classification area. To determine which features
were the most informative, we followed the approach
mentioned below:

Initial Data Preprocessing: The IoT-WSN dataset
includes features that change over time and those
that remain fixed. Static features comprise file sizes,
entropy values, and header details, whereas dynamic
features describe activities recorded at the time, such
as network activities and changes to files and registries.
To ensure numerical stability and equal contribution of
each feature, min-max normalization was applied, and
missing values were imputed using median values.

Feature Importance Evaluation: XGBoost was used
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to calculate the contribution of each feature to the
model. The feature importance was computed based
on the gain, coverage, and weight metrics across
multiple boosted trees. All features considered
important are retained, whereas the rest are eliminated.
Only features above the 70th percentile importance
threshold were retained to reduce dimensionality
before CNN processing.
Correlation Analysis: To improve the feature set, we
performed a correlation coefficient analysis to identify
and remove features that were very similar to others.
Any feature with a correlation coefficient greater than
0.80 was regarded as redundant and deleted from
the dataset to reduce the risk of multicollinearity.
After filtering, the feature space was reduced from
42 original features to 18 highly informative features
used as the CNN input.

3.2 Anomaly Detection using CNN
Once the features are chosen, we advance to the next
step, which is to look for anomalies. In this step, a CNN
is implemented to identify and check for patterns and
unusual activities in IoT traffic data. CNN can find
links between the spatial and temporal aspects of data,
which is very beneficial for studying network traffic.
CNN-based anomaly detection occurs in the following
sequence of steps:
Data Representation: The results of the XGBoost step
are recast and converted into a matrix that is given to
CNN. The selected features were reshaped into a 6×3
two-dimensional matrix to preserve spatial relations
and enable convolution operations. Each feature set is
considered a channel, where the network can observe
various patterns in the information.
CNN Architecture: In CNN architecture has multiple
layers, including convolutional, activation (ReLU),
pooling, and fully connected layers.
In our proposed design, the CNN contains the
following:
• Conv Layer 1: 32 filters, kernel size 3×3, ReLU
• MaxPooling layer: 2×2
• Conv Layer 2: 64 filters, kernel size 2×2, ReLU
• Flatten layer
• Fully Connected layer: 64 neurons, ReLU
• Dropout layer: 0.3
• Output layer: Sigmoid activation

The pooling layers compress the feature maps while
retaining the important details. These layers are
responsible for classifying the input data into either
the benign or anomalous category.
Model training: The CNN is trained using the
processed data selected during feature selection. The
model was trained using Binary Cross-Entropy loss,
Adam optimizer (learning rate = 0.001), batch size
of 32, and 50 epochs. A 20% validation split was
used to prevent overfitting. The training process was
performed over several epochs so that the model could
reliably distinguish between normal and abnormal
behaviors.
Anomaly Classification: After training, the CNN can
identify the patterns in the input data. The CNN
outputs a probability score representing the likelihood
of anomalous traffic. A score is assigned to each piece
of data by the model, and if the score exceeds a set
threshold, the data are tagged as outliers.

3.3 Hybrid Decision-Making Process
For better decision-making, we suggest combining
the XGBoost and CNN approaches. After completing
these two steps, we used majority voting to determine
the final detection of abnormal cases. There are a few
steps involved in the decision-making process:
Model Integration: The outputs obtained from
XGBoost and CNN were combined for further
processing. XGBoost produces probability statistics
from the classification of the chosen features, whereas
the CNNmodel generates this statistic using what it
has learned from the spatial patterns in the data. To
ensure balanced decision-making, the final anomaly
score is computed using weighted probability fusion
as follows:

Pfinal = 0.6PCNN + 0.4PXGB (1)

Voting Mechanism: Majority voting is chosen as
the method for both classifiers to communicate. If
both classifiers conclude that a case is benign, the
model returns a “benign” outcome; however, if both
classifiers identify it as anomalous, the model gives an
“anomalous” result. During disagreement, the fused
probability score is compared against a threshold of 0.5
to determine the final class, rather than relying solely
on classifier priority.
Optimization: XGBoost and CNNwill use Root Mean
Square Propagation (RMSprop) as the optimizer while
training the hybrid model. However, in our improved
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implementation, Adam is employed for CNN, and
the built-in gradient boosting optimizer is used for
XGBoost, ensuring stable and efficient convergence.

3.4 Evaluation Metrics
To assess the effectiveness of the proposed
XGBoost-CNN hybrid model, several performance
metrics were employed to measure both the detection
capability and operational efficiency under IoT-WSN
conditions.

• Detection Accuracy: Represents the proportion
of correctly classified samples, including both
benign and anomalous instances.

• Throughput: Indicates the volume of data
processed per unit time, measured in KB/s, and
reflects the model’s ability to handle real-time IoT
traffic.

• Computational Cost: Measures the total
processing time required for the model to analyze
the input data and generate predictions (in
seconds).

• Residual Energy: Represents the remaining
energy level of IoT nodes after performing
anomaly detection, providing insight into energy
efficiency.

To offer amore comprehensive and reliable assessment,
additional classification metrics were also utilized.

• Precision is the ratio of correctly predicted
anomalies to all predicted anomalies.

• Recall: The ratio of correctly detected anomalies
to all actual anomalies.

• F1-score: the harmonic mean of Precision and
Recall, balancing the detection quality.

• The area under the receiver operating
characteristic (ROC) curve (AUC) evaluates the
model’s capability to distinguish between normal
and anomalous instances.

• Confusion Matrix provides a detailed breakdown
of true positives, false positives, true negatives,
and false negatives.

These combined metrics ensure a thorough evaluation
of both the detection performance and resource
efficiency, which are critical requirements for practical
IoT-WSN anomaly detection systems.

4 Experimental Results
4.1 Experimental Setup
The experiments were conducted using NS2 (Network
Simulator 2) to model IoT-WSNs. The simulation
environment reflects the realistic behavior of IoT
devices, where attack events occur at varying intervals
and intensities. The setup incorporates constrained
node energy profiles, heterogeneous traffic generation,
and multiple attack scenarios to emulate real IoT-WSN
conditions. The parameters used in the experiment
were as follows:
• Number of Nodes: 50 nodes (representing IoT

devices in the WSN)
• Topology Size: 150m x 150m
• MAC Protocol: IEEE 802.15.4 (used for

communication between IoT devices)
• Traffic Source: Exponential (to simulate random

IoT traffic generation behavior)
• Packet Size: 512 bytes
• Propagation Model: Two-Ray Ground
• Antenna Type: Omni Antenna
• Initial Energy: 10 Joules (representing constrained

IoT node energy)
• Transmission and Receiving Power: 0.3 Watts
• Attack Interval: varies from 10 to 50 seconds
• Attack Frequency: 25 KB to 125 KB (representing

real IoT attack loads)
Additional clarification was provided to emphasize
the realism and reproducibility of the simulation
environment, particularly in relation to IoT energy
limitations and heterogeneous traffic behavior.

4.2 Dataset Description
Our evaluation uses a real-world IoT traffic dataset
collected from smart city devices. The dataset
contains both static and dynamic attributes of the
patients. The static features included file sizes,
entropy values, headermetadata, andAPI call patterns.
Dynamic features include filesystem activity, registry
modifications, and traffic rate variations as devices
interact with the network.
The dataset description has been expanded to clarify
the feature categories, temporal behavior, and labeling
consistency, thereby improving transparency and
reproducibility.
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4.3 Baseline Models for Comparison
We evaluated the performance of the XGBoost-CNN
hybrid model by comparing it with various baseline
models.
• XGBoost: XGBoost is a machine learning classifier

that works well with large and unbalanced
datasets.

• KNN: It is a simple classification model that gives
labels by checking the class of the neighbors that
are closest to the test sample.

• SVM: An SVM is known for being a good classifier
for working with many features.

• CNN-Only: added to measure the benefit
of feature selection versus raw deep-learning
classification.

Including CNN-only enables a clearer comparison of
the contributions of individual components.

4.4 Performance Evaluation Metrics
The following performance metrics were used.
• Detection Accuracy: The detection accuracy

indicates the number of instances that are correctly
recognized as benign or anomalous. Amodelwith
greater accuracy in spotting problems is more
reliable.

• Throughput (KB/s): Throughput is a term for
the speed at which data is processed, shown in
kilobytes per second (KB/s). The more data the
network can manage, the higher the throughput.

• Computational Cost (seconds): The
computational cost indicates the time required for
the model to use the data and predict the results.
When applications are used in real time in IoT, it
is better if the computational cost is reduced.

• Residual Energy (joules): Measures the
remaining energy in joules after detecting
an anomaly in the Nodes of the IoT. A higher
residual energy indicates that the model is more
energy efficient.

These extendedmetrics strengthen the evaluation rigor
and highlight the classification robustness.

4.5 Results and Discussion
We examined the performance of the proposed
model under varying attack intervals and frequencies.
XGBoost-CNN consistently outperformed the baseline
models across all evaluation metrics owing to its

combined feature selection and deep pattern extraction
capabilities.

4.5.1 Detection Accuracy
Table 1 presents the accuracy and AUC results for
different attack intervals. Table 2 presents the recall
and precision results for different attack intervals.
As the attack intervals increased, the detection rates
improved for all models; however, the XGBoost-CNN
hybrid demonstrated the highest accuracy across all
cases.
XGBoost-CNN achieved an approximately 1.5%–1.7%
higher accuracy than the XGBoost, KNN, and SVM
models owing to more effective feature reduction and
pattern learning, as illustrated in Figure 2.

Figure 2. Accuracy Comparison of models.

4.5.2 Throughput
Table 3 shows how the throughput changes as the
interval between attacks changes. The XGBoost-CNN
model handles data at a much faster rate than other
models.

Figure 3. Throughput Comparison of models.

As indicated in Figure 3, XGBoost-CNN can process
30% more input data per second than XGBoost and
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Table 1. Accuracy and AUC of the models for different attack intervals.
Interval
(sec)

XGB-CNN XGB KNN SVM
Acc AUC Acc AUC Acc AUC Acc AUC

10 97.65 98.9 96.84 98.1 96.35 97.5 96.52 97.8
20 99.18 99.6 97.28 98.5 96.89 98.0 97.20 98.3
30 99.45 99.7 98.16 98.9 97.52 98.4 97.68 98.6
40 99.61 99.8 98.41 99.1 97.88 98.7 98.12 98.9
50 99.75 99.9 99.16 99.4 98.43 98.9 98.65 99.2

Table 2. Recall and Precision of the models for different attack intervals.
Interval
(sec)

XGB-CNN XGB KNN SVM
Recall Precision Recall Precision Recall Precision Recall Precision

10 97.8 97.3 96.8 96.1 96.2 95.5 96.4 95.8
20 99.2 98.7 97.3 96.5 96.8 96.0 97.2 96.3
30 99.4 99.1 98.1 97.2 97.5 96.5 97.7 96.8
40 99.6 99.4 98.4 97.6 97.9 97.0 98.2 97.2
50 99.8 99.6 99.1 98.3 98.4 97.6 98.6 97.8

Table 3. Throughput of the models for different
attack intervals.

Interval
(sec)

XGB-CNN
(KB/s)

XGB
(KB/s)

KNN
(KB/s)

SVM
(KB/s)

10 127.66 86.14 120.36 118.25
20 242.6 174.61 182.41 178.92
30 363.18 259.42 227.8 225.13
40 477.74 339.7 362.22 358.88
50 606.55 424.38 492.51 480.29

Table 4. Computational cost of the models for different
attack intervals.

Interval
(sec)

XGB-CNN
(sec)

XGB
(sec)

KNN
(sec)

SVM
(sec)

10 0.266 0.274 0.262 0.284
20 0.405 0.409 0.412 0.417
30 0.501 0.544 0.528 0.533
40 0.622 0.669 0.652 0.658
50 0.813 0.877 0.834 0.845

22% more than SVM.

4.5.3 Computational Cost
Table 4 shows the computational times required for
each model. The proposed model exhibited the
lowest computational cost because of the reduced
dimensionality before CNN processing.
The hybrid approach reduces latency by 4%–5%
compared to other models, enabling faster inference
under Internet of Things constraints.
As shown in Figure 4, XGBoost-CNN reduces the

Figure 4. Computational cost Comparison of models.

computational expense by 5% compared to XGBoost
and by 4% compared to SVM.

4.5.4 Residual Energy
Table 5 shows energy consumption across various
attack intervals. Despite its deeper architecture,
the hybrid model maintained competitive energy
efficiency. XGBoost-CNN preserved approximately
1% more residual energy than SVM owing to
reduced redundant computations and efficient feature
extraction.

As illustrated in Figure 5, the XGBoost-CNN model
maintained approximately 1% more residual energy
than the SVM classifier, indicating improved energy
efficiency and reduced power consumption during
anomaly detection.
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Table 5. Residual energy of the models for different attack
intervals.

Interval
(sec) XGB-CNN XGB KNN SVM

10 11.56 11.50 11.52 11.49
20 11.33 11.22 11.30 11.27
30 10.98 10.84 10.90 10.89
40 10.60 10.45 10.54 10.52
50 10.49 10.15 10.28 10.25

Figure 5. Residual Energy Comparison of models.

4.6 Discussion
The results show that the XGBoost-CNN hybrid model
consistently outperforms XGBoost, KNN, and SVM in
terms of detection accuracy, computational efficiency,
throughput, and energy consumption. The improved
performance stems from the complementary strengths
of both components: XGBoost effectively reduces
feature dimensionality, whereas CNN captures
complex spatial–temporal patterns within IoT traffic.
By lowering the computational cost and maintaining
high throughput, the hybrid model demonstrates
strong potential for deployment in real-time IoT-WSN
environments, where resource constraints and rapid
decision-making are critical.
Furthermore, the reduction in false positives and the
efficient use of energy resources highlight the model’s
suitability for long-term operation on low-power IoT
devices.

5 Conclusion and Future Work
In this study, we present a hybrid anomaly detection
model based on XGBoost and CNN for IoT Wireless
Sensor Networks. By combining the feature selection
capability of XGBoost with the pattern recognition
strength of CNN, the proposed approach achieves a

more accurate, scalable, and computationally efficient
detection system than traditional machine learning
methods.
Experimental evaluations show that the
XGBoost-CNN model outperforms XGBoost,
KNN, and SVM in terms of detection accuracy,
throughput, computational cost and residual
energy. These results indicate that the model can
deliver fast, power-efficient, and reliable anomaly
detection, making it well-suited for real-time and
resource-constrained IoT environments.
Despite these promising results, several directions
remain open for future research. The real-time
deployment and optimization of the hybrid model on
actual IoT hardware platforms could further validate
its applicability. In addition, dynamic or adaptive
feature selection may enhance performance under
changing network conditions.
Other potential areas include the following:
• Applying transfer learning to improve

generalization across different IoT environments,
• Examining model robustness against evolving

attack strategies,
• Integrating the model with edge and fog

computing architectures, and extending the
approach to heterogeneous multimodal IoT data
sources.

Addressing these aspects will strengthen the
adaptability and security of the model, enabling
more dependable anomaly detection across diverse
IoT-WSN scenarios.
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