
ICCK Transactions on Advanced Computing and Systems
http://dx.doi.org/10.62762/TACS.2025.318429

RESEARCH ARTICLE

Pairwise Frank-Wolfe for Maximum Inscribed Balls:
Enabling Real-Time Geometric Optimization

Yuqi Lin 1,*

1The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana 61801, United States

Abstract
As a classical convex optimization problem in
geometry, computing the maximum inscribed ball
(MaxIB) in ultra-high-dimensional polytopes is
critical for enabling real-time IoT applications, such
as optimal deployment of sensor networks, where
polytopes model physical constraints arising from
obstacles or coverage boundaries. However, existing
methods suffer from the curse of dimensionality,
leading to prohibitive computational costs. This
paper develops a more efficient approach for
computing the (1-ε)-approximate MaxIB in
high-dimensional polytopes. To address these
challenges, the problem is reformulated with
adaptive penalty parameters to enforce strong
convexity, enabling linear convergence under
the Pairwise Frank–Wolfe (PFW) algorithm.
Furthermore, expensive exact line searches are
replaced with a backtracking strategy, significantly
reducing the per-iteration computational cost.
Simulation results demonstrate more than a 12-fold
acceleration over existing approximate MaxIB
methods without sacrificing accuracy.

Submitted: 15 July 2025
Accepted: 22 December 2025
Published: 14 January 2026

Vol. 2, No. 1, 2026.
10.62762/TACS.2025.318429

*Corresponding author:
� Yuqi Lin
yuqilin2@illinois.edu

Keywords: convex optimization, maximum inscribed ball,
gradient optimization, Frank-Wolfe’s Method.

1 Introduction
The problemof computing themaximum inscribed ball
(MaxIB, or Chebyshev ball) within high-dimensional
polytopes is a fundamental challenge in convex
optimization. It provides substantial computational
advantages, such as facilitating warm starts in
interior-point methods, and supports real-time
applications in the Internet of Things (IoT), like
navigation for warehouse robots and optimization
of sensor networks, where polytopes represent
spatial constraints such as obstacle avoidance
or coverage limits [1]. Additionally, the MaxIB
problem has widespread applicability, ranging from
analyzing system durability and advancements in
control theory [2] to geometric optimization for
brain-computer interfaces [3], a rapidly evolving field.

The MaxIB problem further serves as a canonical case
study bridging optimization and machine learning [4].
This connection is exemplified by Norris et al. [5],
who applied machine learning to solve optimal
self-calibration and fringe tracking in photonic nulling
interferometry. Recent work by Baena et al. [6]
additionally demonstrates the utility of MaxIB in
enhancing the feasibility pump, a key technique for

Citation
Lin, Y. (2026). Pairwise Frank-Wolfe for Maximum Inscribed Balls:
Enabling Real-Time Geometric Optimization. ICCK Transactions on
Advanced Computing and Systems, 2(1), 61–73.

© 2026 by the Author. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

61

http://dx.doi.org/10.62762/TACS.2025.318429
http://crossmark.crossref.org/dialog/?doi=10.62762/TACS.2025.318429&domain=pdf
https://orcid.org/0009-0003-9543-5495
http://dx.doi.org/10.62762/TACS.2025.318429
mailto:yuqilin2@illinois.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Transactions on Advanced Computing and Systems

integer programming. However, given the various
uses of MaxIB, efficiently computing the MaxIB in
high-dimensional polytopes is a challenging problem.
The existing methods for solving the MaxIB problem
can be broadly categorized into two classes: exact and
approximate solutions.

Exact methods, such as formulating and solving a
linear program (LP) using the simplex method or
interior point methods, were the initial solutions[7–
9]. Their primary advantage lies in providing
solutions with extremely high accuracy, however,
as the number of dimensions increases, these
exact methods face significant challenges due to
their high computational complexity and memory
requirements, often becoming intractable or even
failing to produce a result for very high-dimensional
polytopes. Consequently, approximate methods have
gained prominence as the mainstream approach for
tackling very high-dimensional MaxIB problems in
recent years. Thesemethods primarily focus on finding
the center of an approximate MaxIB efficiently, trading
off some accuracy for significant computational gains.
Common ideas include dual projection and leveraging
first-order optimization techniques [10, 11]. While
offering faster computation, they typically require
careful tuning to control the approximation error. The
existing alternative method of finding an approximate
MaxIB relies heavily on this parameter, which causes
the runtime to increase dramatically.

The goal of this paper is to provide a faster algorithm
for calculating the approximate center of the MaxIB in
high dimensions, while maintaining the error within
the desired range. Frank–Wolfe (FW) methods and
their variants, which are widely used for solving
convex optimization problems, are adopted due to
their low per-iteration computational cost, making
them well suited for improving overall runtime
efficiency. However, the classical FW algorithm
exhibits a low convergence rate when applied to
high-dimensional polytopes, leaving significant room
for further improvement in solution speed. To
address this limitation, the Lagrangian multi-operator
approach combined with a quadratic penalty is
employed to reformulate the original MaxIB problem
into a dual quadratic convex optimization problem
that can be efficiently solved using FW-based methods.
The innovation of this paper is the following:

1. The original MaxIB problem was converted into
a smooth, strongly-convex dual problem over
the simplex through application of a Lagrangian

multi-operator transform and a quadratic penalty;

2. The Pairwise Frank-Wolfe (PFW) method was
employed, where strong convexity is exploited
to achieve linear convergence;

3. An adaptive backtracking line search was integrated
to estimate local curvature (Lf), replacing
computationally expensive exact line searches.

Section 2 reviews existing MaxIB computation
methods, classifying them into exact and approximate
approaches with an analysis of their high-dimensional
performance. Section 3 presents our proposed
algorithm and its runtime optimization strategy.
Section 4 demonstrates the method’s advantages
through comparative simulations across different
dimensions. Finally, Section 5 concludes the paper
with a summary of key findings.

2 Related Work
The problem of finding the maximum inscribed
ball (MaxIB) has been investigated for over a
century. The problem is addressed by adding one
more dimension(radius) to the constraints of the
original polytope given in order to create a linear
programming(LP) problem. The simplex method
[7] is the first commonly used approach to resolve
this problem. Starting from a feasible base point
(vertex), the simplexmethod employs pivot operations
to transition between feasible vertices, adjusting one
base variable at a time in and out of the basis at
each step until the objective value can no longer
be improved. Though being feasible, the simplex
method has a runtime ofO(2n) in theworst case(iterate
through all vertices) [12].

Another method to solve LP, the interior point method
[8, 9] was introduced by Karmarkar in 1984. It
internalizes the constraints into the objective function,
adds a dynamically adjusted penalty coefficient, and
iteratively approaches the optimum along the "central
path" within the feasible region through the Newton
method. Attracted by the design of the interior
point method, researchers devoted themselves deeply
to it and developed many variants that fit different
conditions. For instance, the primal-dual interior point
method [13] can achieve higher accuracy and faster
convergence rates for convex optimizing problems
with small and medium scales. Though the interior
point method spends higher runtime in each step (
O(n3) compared to O(md) of the simplex method),
it converges at a much faster rate, approaching the
approximate total runtime of O(n3.5). To sum up,

62



ICCK Transactions on Advanced Computing and Systems

the interior point method significantly improved the
efficiency of solving the LP problem, enhancing the
feasibility of LP in engineering applications.

Through later investigation and development, the
simplex method and the interior point method became
the main way of solving LP problems. However, due
to their relatively high runtime depending on the
number of dimensions, solving the MaxIB problem
in high dimensions becomes very expensive. At d >
100, many current solvers using these methods fail.
While industrial-grade solvers that employ advanced
optimization strategies can generate solutions, they
are relatively expensive and challenging to access. To
address this problem, solving an approximate MaxIB
becomes a prevalent topic. By introducing an error
parameter ε, solving an approximate MaxIB with a
radius r within ε error to optimal r usually has a
runtime that is almost linear to the input size. It also
allows adjusting the complexity of the algorithm based
on the accuracy(size of ε to approach). Furthermore,
having an approximate MaxIB also provides a good
start point (warm start) for the interior method. Since
approximate MaxIB usually has a center close to the
optimal value, the interior point method can solve the
problem in fewer steps, significantly improving the
calculation efficiency.

Xie et al. [10] first introduce a glance to approximate
the MaxIB problem and approach it from geometric
and optimization perspectives. They found the
connection between MaxIB and the minimum
enclosing ball (MinEB) and developed a purely
geometric core-set method. Their algorithm involves
dualizing MaxIB to a sequence of MinEB instances
and then computing a small Θ(1/ε)-sized core-set
for each using a combinatorial geometry method.
With this approach, they yield a runtime of MaxIB to:
O
(
mdα3/ε3 +mdα logα

)
,where α is the polytope’s

aspect ratio. While this achieves optimal linear
dependence on the input size md and excels in
moderate dimensions, its cubic dependence on α
and 1/ε limits scalability when the polytope is very
ill-conditioned or high precision is required.

Later, Allen-Zhu et al. [11] recast MaxIB as smooth,
strongly convex optimization problems by introducing
an entropy penalty on the primal space of the
problem. By doing so, they discover that the
target function is strongly concave as well, so they
then solve the constructed problem by applying
Nesterov’s accelerated gradient algorithm, where
each iteration incurs only matrix–vector products and

simple projections onto the simplex. As a result, for
MaxIB, their method runs in O

(
md
√

logmα (lnα +
1/ε)

)
.

They also use a similar method in calculating the
MinEB, and apply it to the method of Xie’s team,
reducing the total runtime to Õ

(
mdα2.5/ε2.5), and

then conducted an experiment to compare the
performances of two algorithms. Compared to the
first method, their method reaches the target with
fewer iterations, especially when the polytope is
narrow. This represents an improvement over core-set
methods, reducing the dependence on the aspect
ratio from cubic to linear and on accuracy from
ε−3 to ε−1. Moreover, by avoiding combinatorial
geometry subroutines and relying exclusively on
linear-algebra operations, their approach is simpler
to implement and better suited to very large-scale
or high-precision settings. Nevertheless, the method
involves a significant factor in the iteration time to
ensure convergence, which increases the overall time
consumption substantially. Under low ε, the overall
time consumption is evenmuchworse than themethod
of Xie’s team.

Our work involves the use of the Pairwise
Frank-Wolfe(PFW) method, an improved version
of the classic Frank-Wolfe method. The classical
Frank–Wolfe (FW) algorithm [14] is a projection-free
first-order method for minimizing/maximizing a
smooth convex function over a compact convex
domain. At each iteration, it solves a cheap linear
subproblem to update, thereby avoiding the expensive
Euclidean projection process and efficiently reducing
the cost. Due to its simplicity, it is widely used in
current convex optimizing problems. However, the
convergence rate of classic FW can be slow due to the
zig-zag phenomenon that occurs when the optimal
solution lies on the boundary.[15] Based on classic FW,
multiple variants have been investigated to address
these issues and improve the performance.

The Away-step Frank Wolfe (AFW) method [16]
improves the classic FW by using a different approach
to determine the step direction in each iteration.
By doing so, it resolves the zig-zag phenomenon
that occurred in classical FW, and thus gains a
higher convergence rate, reducing the total number
of iterations required. PFW [17] combines classic
FW and AFW, reaching an even higher convergence
rate(linear under strong convexity). By applying
PFW to the problem and adding multiple advanced
techniques, our method is able to achieve a runtime of

63



ICCK Transactions on Advanced Computing and Systems

Figure 1. Flowchart of the proposed method.

O(mdα2 ln(1/ε)) in the worst case. In practice, due to
the low iteration time and early breaking method, our
method is able to complete the calculation in a much
shorter time.

3 Methodology
Figure 1 illustrates the flowchart for computation
procedure of our approach, which consists of three key
steps: (1) transforming MaxIB into an optimization
function and introducing a penalty term to ensure
smoothness(Section 3.1 and 3.2), (2) implementing the
Projected Frank-Wolfe (PFW) algorithm, and (3)local

estimation techniques with backtracking line search
to enhance efficiency, where Section 3.3 provides the
theoretical global convergence guarantee for PFW
and Section 3.4 presents a practical local estimation
method.

3.1 Problem Reconstruction
Consider a convex polytope with dimension of d and
constraint number ofm:

P = {x ∈ Rd : Aix+ bi ≥ 0, i = 1, . . . ,m},

64



ICCK Transactions on Advanced Computing and Systems

where Ai ∈ Rd is the vector of the ith hyperplane, bi ∈
R is the translation term.

The MaxIB problem can be written as follows:

max
x,r

r, s.t.Aix+ bi ≥ r, ∀i.

where A ∈ Rm×d contains the normalized
inward-pointing facet normals (‖Ai,:‖2 = 1 for
all i), bi ≥ 0 is the offset of the i-th hyperplane, d is
the dimension, and m is the number of constraints
(typicallym = 4d in our experiments).

For generality, each row of A is assumed to be
normalized, i.e., ‖Ai,;‖2 = 1 . In order to apply PFW,
the problem needs to be transferred to its dual problem
by introducing Lagrange multipliers y ∈ Rm ≥ 0

L(x, r, y) = r +

m∑
i=1

yi
(
Aix+ bi − r

)
.

The left-hand program jointly maximizes the radius r
and the center xwhile requiring x to lie at least distance
r inside every facet. The right-hand Lagrangian
introduces non-negative dual weights yi ≥ 0 (one per
facet) to relax the inequalities.

After being transferred, the dual problem is shown as
follows:

min
y∈Rm

m∑
i=1

bi yi,

s.t.
m∑
i=1

yi = 1, yi ≥ 0, AT y = 0.

(1)

The dual problem is equivalent to optimizing the linear
object bT y in the probability simplex ∆m = {y ≥
0,
∑

i yi = 1}with the linear equivalent AT y = 0.

3.2 Smoothing and Choice of the Quadratic Penalty
Weight η = 1/ε

To smooth the dual formulation (1), the hard
constraint AT y = 0 is replaced by a quadratic penalty.
The target function Φ becomes the following.

Φη(y) = bT y +
η

2
‖AT y‖22, (2)

Intuitively, this is the original linear dual objective
b>y plus a soft quadratic penalty of strength η
that discourages violation of the centering constraint
A>y = 0.

To ensure that the resulting violation of AT y = 0 is
O(ε), the penalty parameter η is chosen as follows:

Taking y∗η to minimize Φη over ∆m, and letting y∗

be any exact solution of the constrained dual(1), the
following equation holds.

‖AT y∗η‖22 ≤
2

η

[
Φη(y

∗)− Φη(y
∗
η)
]
.

Our objective is to maintain the penalty in violation
of the original restriction while limiting the influence
of the penalty function on the optimization target.
To balance out, set the optimization error Φη(y

∗
η) −

Φη(y
∗) ≤ O(ε). Therefore, it follows that

‖AT y∗η‖2 = O
(√

ε
η

)
.

To avoid feasibility violation ‖AT y∗η‖ ≤ O(ε), it suffices
to choose

η =
1

ε
.

Setting η = 1
ε simultaneously keeps both the

sub-optimality of the objective and the violation
of A>y = 0 within O(ε), giving a provably (1 −
ε)-approximate MaxIB.

This scaling ensures that both the optimization error
and the violation of the constraint are O(ε), as in the
classical quadratic penalty theory [18].

3.3 Pairwise Frank–Wolfe Method
After applying the quadratic penalty eqref penalty,
PFW can be used to solve the resulting optimization
problem. PFW is a projection-free method for
minimizing a smooth convex function over a polytope
P . Applied to our smoothed dual, it maintains
feasibility yk ∈ ∆m by convex combinations of atoms
ei. At each iteration, it will be:

1. Computes the gradient

gk = ∇Φη(y
k) = b+ η A

(
AT yk

)
.

2. Finds the ascent atom with highest gradient(FW
atom) jFW = arg maxi g

k
i and descends the atom

with the lowest gradient (Away FW atom) jAW =
arg mini:yki >0 g

k
i .

3. Forms the pairwise direction based on FW atom and
Away FW(AFW) Atom.

dk = ejFW − ejAW .

The direction calculated is illustrated by Figure 2.

4. Apply the early breaking techniques of duality gap.
The duality gap is calculated as the following:

gapk = gkjAW
− gkjFW

,

65



ICCK Transactions on Advanced Computing and Systems

Figure 2. Illustration of direction calculation[19].

Given that Φη(y
k)−Φη(y

∗) ≤ gapk[20], Early stopping
is triggered when gapk ≤ ε rk, where rk = b>yk, since
this ensures that the solution found satisfies the target
accuracy.

5. Performs an exact line search along dk to determine
the step size:

αk = min
{ gapk

η ‖ATdk‖22
, ykjAW

}
,

and updates
yk+1 = yk + αk dk.

In summary, at each iteration, the smoothed gradient
is computed, the facet that most wants to increase
(the FW atom) and the active facet that most wants
to decrease (the Away atom) are selected, a pairwise
move is taken along their difference with a safe step
size, and early stopping is applied once the estimated
error falls below ε times the current radius.

Combining the PFW algorithmic framework with the
constructed problem yields the following procedure:

Due to multiple external factors(such as round-offs),
in actual practice, the duality gap’s stopping criterion
maynot be fulfilled, causing an infinite loop. Therefore,
setting up a max iteration numberKmax is necessary.
Under the assumptions that Φη is µ-strongly convex
and Lf -smooth on ∆m, and that the pyramidal width
of ∆m is δ, the rate of convergence of PFW is as
following[17]:

Φη(y
k)− Φη(y

∗) ≤
(

1− µ δ2

L

)k[
Φη(y

0)− Φη(y
∗)
]
.

This implies the upper bound for iteration time:

Algorithm 1: basic PFW
Data: Matrix A ∈ Rm×d, vector b ∈ Rm, smoothing

η > 0, tolerance ε > 0, maximum stepsK
Result: Approximate MaxIB with center c and

radius r
Initialize y0 = ei∗ with i∗ = arg mini bi;
for k = 0 toK do

g ← b+ η A(A>yk);
jFW ← arg mini gi;
jAW ← arg maxi:yki >0 gi;
gap← gjAW − gjFW ;
r ← b>yk;
if gap ≤ εr then

break;
; // early stop when gap small

end
d← ejFW − ejAW ;
α← min

{
gap

η‖A>d‖2 , y
k
jAW

}
;

yk+1 ← yk + αd;
r ← b>yk+1;

end
c← A>y;
r ← min1≤i≤m(bi −A>i x);
return (c, r);

Kmax =

⌈
L

µ δ2
ln
(gap0

ε r0

)⌉
.

The pyramidal width can be estimated by the ratio
between the length and the width of the polytope.
Since the smoothed dual objective under consideration
is both µ-strongly convex and L-smooth in the

66



ICCK Transactions on Advanced Computing and Systems

Euclidean norm, the constants µ and L can be
computed as follows:

µ = η λmin(AA>), L = η λmax(AA>).

3.4 Backtracking Line Search for L and Local
Estimation of µ

However, the calculation of µ and L requires
the extraction of the eigenvalues, which can be
costly(O(m3) if using classic QR full eigenvalue
decomposition [21]). This section presents a simpler
method for estimating µ and L, introduced in the next
section, which avoids the expensive calculation.

The backtracking line search technique [22] is employed
to estimate the local smoothness constant Lf , and a
secant-style estimate for the strong-convexity constantµ.
Though the locally estimated value may not represent
the entire field, in actual calculation, the ratio Lf/µ
converges, and under the upper bound of iteration
calculated from it, the result converges to a feasible
value as well. The following backtracking procedure
is used to compute Lf :

Algorithm 2: Estimate L
Data: Current iterate y, initial guess L0 > 0,

expansion factor τ > 1
Result: Estimate L̂f ≥ Lf
L̂← L0;
g ← ∇Φη(y), F ← Φη(y);
while Φη

(
y − 1

L̂
g
)
> F − 1

2L̂
‖g‖2 do

L̂← τ L̂;
end
return L̂;

After this loop terminates, L̂ satisfies the Armijo-type
condition and so is a valid local Lipschitz constant.

Given two successive iterates yk−1, yk and their
gradients gk−1, gk, a local estimate of µ is

µ̂ =

〈
gk − gk−1, yk − yk−1

〉
‖yk − yk−1‖22

.

By strong convexity, 〈∇Φη(y
k) − ∇Φη(y

k−1), yk −
yk−1〉 ≥ µ‖yk − yk−1‖2, so µ̂ is a conservative lower
bound on the true µ.

These two simple procedures give cheap, conservative
local estimates of the smoothness constant Lf and
strong-convexity constant µ without any eigenvalue
computation, yet they are sufficient for safe step sizes
and reliable convergence in practice.

Furthermore, after calculating the estimated L by using
backtracking line search, the method of Pedregosa et
al. [23] can be used to replace the expensive exact line
search and to select the step size based on Lf : Instead
of

α← min
{ gap
η‖AT d‖2 , yjAW

}
do:

α← min
{ gap

L̂f‖d‖2
, yjAW

}
To incorporate the above methods into the main loop,
the PFWalgorithm ismodified by adding the following
steps. At iteration k, after computing the new point yk,
the following actions are performed:

1. Update L̂f by running the above Backtracking
Line Search with the current gradient.

2. Compute µ̂ using the two most recent iterates.

3. Use L̂f and µ̂ to adjust step-sizes, stopping criteria,
or theoretical iteration budgets.

This adaptive strategy avoids expensive eigenvalue
computations while still tracking the local curvature
of Φη. After integrating into the main PFW method,
the algorithm is as follows:

Algorithm 3: PFW with Backtracking
Data: Normalized A ∈ Rm×d, b ∈ Rm, tolerance

ε > 0, initial L > 0, factor τ > 1, max iters
Kmax

Result: Dual solution y ∈ ∆m, radius r
η ← 1/ε;
y ← ei∗ , i

∗ = arg mini bi;
for k ← 0 toKmax do

gk ← b+ η A (A>y);
L← EstimateL(yk, gk, τ);
µ← Estimateµ(yk−1, yk, gk−1, gk);
jFW ← arg mini gi, jAW ← arg maxi:yi>0 gi;
gap← gjAW − gjFW ;
if gap ≤ ε r then

break;
end
d← ejFW − ejAW ;
α← min

{ gap
L‖d‖2 , yjAW

}
;

y ← y + αd;
r = bT y;

end
c = AT y;
r = min1≤i≤m

(
bi −ATi x

)
;

return (c, r)

67



ICCK Transactions on Advanced Computing and Systems

By converting MaxIB into its dual form and
incorporating penalty terms, the resulting problem
becomes amenable to PFW. Moreover, backtracking
line search for estimating Lf and local estimation
of µ provide a reliable upper bound on the number
of iterations, helping to avoid infinite loops. The
estimated Lf is used to replace some expensive steps
in PFW, which further reduces the runtime in high
dimensions.

With the quadratic penalty weight η = 1
ε fixed

analytically, the Pairwise Frank-Wolfe method
with adaptive backtracking therefore enjoys
linear convergence O(α2 ln(1/ε)). At termination,
‖A>y∗‖2 ≤ O(ε) and b>y∗ ≥ (1 − O(ε)) · opt. Using
the standard primal recovery c = A>y∗

‖A>y∗‖2
and

r = b>y∗

‖A>y∗‖2
− ‖A

>y∗‖2
2 directly yields a strictly feasible

inscribed ball with radius ratio ρ ≥ 1 − O(ε). Thus
the single analytical choice η = 1

ε is both necessary
and sufficient for the claimed (1 − ε)-approximation
guarantee.

In summary, the MaxIB problem is transformed into
the dual space and a quadratic penalty is introduced
to smooth the objective. This yields a strongly convex
function that can be efficiently solved by PFW with a
linear convergence rate. To ensure a safe termination
and further improve runtime, backtracking line search
is used to estimate Lf , a maximum iteration limit
is imposed, and the step size is selected using the
resulting smoothness estimate.

4 Experiment and Analysis
This section presents two sets of experiments
comparing the proposed method with existing
approaches. Case 1 examines the running time of
exact and approximate methods in high-dimensional
settings. Case 2 compares the proposed method with
existing approximate MaxIB methods studied by Xie
et al. [10] and Allen-Zhu et al. [11] in terms of both
accuracy and efficiency. All random polytopes are
generated using a random seed drawn uniformly from
the integers 1 to 100 across the entire experimental
suite.

The experiment is conducted on a server with the
following parameters: Intel Core i7-13620H processor,
2.4 GHz CPU, and NVIDIA GTX 1080 Ti 11 GB.
The C++ package of volesti is used for aiding the
generation of random high-dimensional polytopes.
The time spent entering and exiting the function will
be recorded to measure the algorithm’s running time.

4.1 Case 1:Runtime Comparison: Exact vs.
Approximate Methods in High Dimensions

This case is conducted to measure the
performance of algorithms under different
dimensions d ∈ {20, 50, 75, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000}. For each dimension, 10
trials are conducted. For each trial, a d-dimensional
polytope with 4d constraints will be generated to
ensure that the polytope generated is bounded [24].
The generated polytopes will have the aspect ratio
α = 2. The simplex method and interior point method
implementations are adopted from three different
C++ packages (Lpsolve [25], GLPK [26], and
MOSEK [27]) to ensure comprehensive evaluation.
Each algorithm will calculate the center of MaxIB
for the same polytope. The result running times are
recorded in the Table 1. Time consumption will be
marked as "-" if the method fails to solve all 10 trials in
the corresponding dimension.

As the dimension increases, our method maintains
consistent capability in solving the MaxIB problem
while exhibiting significantly lower computational
overhead. From Table 1, it can be seen that our
method has the least time consumption beginning
from dimension 100. This efficiency advantage stems
from the simplicity of per-iteration computations
in our algorithm. In contrast, exact methods
require substantially more complex operations at
each computational step. Consequently, in higher
dimensions where the size of the constraint matrix
A ∈ Rm×d grows quadratically(with m = 4d),
less optimized implementations frequently encounter
computational failures.

Crucially, as demonstrated in Figure 3, our method
demonstrates superior scaling characteristics,
with its runtime growing linearly with input
size (O(md) = O(n2)). This represents a
polynomial-order reduction in time complexity
compared to exact methods, which show significantly
higher-order growth rates. This represents at least
a polynomial-order reduction in time complexity
relative to exact methods. At dimension d = 1000,
our algorithm achieves computation times below
10% of all benchmarked methods except for the
interior point implementation in the MOSEK package.
It is noteworthy that MOSEK represents a highly
optimized industrial-grade solver incorporating
decades of algorithmic refinements, whereas our
approach maintains competitive performance while
relying on fundamentally simpler computational
primitives.

68



ICCK Transactions on Advanced Computing and Systems

Table 1. Time consumption(ms) of different methods under high dimension.

Methods 20 50 75 100 200 300 400 500 600 700 800 900 1000

LPsolve-simplex 6 54 - - - - - - - - - - -
GLPK-simplex 3 27 26 28 279 1018 2842 6947 14375 28903 42635 66187 103132

GLPK-interior point 231 17678 135296 605521 - - - - - - - - -
MOSEK-primal simplex 31 37 79 104 991 3587 8734 19340 37636 80944 116508 224443 327740
MOSEK-dual simplex 36 45 65 59 294 772 2150 7206 21136 42492 74304 111240 220634
MOSEK-interior point 35 38 60 59 191 378 653 1041 1631 2429 3521 4239 5669

Xie et al. [10] 36 151 296 501 1816 3888 6740 10462 14655 19866 25687 32571 40144
Allen-Zhu et al. [11] 59 262 550 943 3743 8355 14924 23461 34231 46986 61668 78915 108139
The Proposed Method 8 10 22 42 143 290 527 804 1173 1565 2033 2598 3353

Figure 3. Trend of time consumption of different methods.

4.2 Case 2: Comparative Evaluation: Accuracy
vs. Efficiency Against Approximate MaxIB
Baselines

This experiment measures algorithmic performance
under different aspect ratios and accuracy
requirements. Random polytopes are generated
with d = 500, m = 4d = 2000, α ∈ {1, 2, 3, 4, 5}. For
each algorithm, the error-tolerance parameter is set
to ε ∈ {0.1, 0.05, 0.02, 0.01, 0.005}. The interior-point
method in the mosek package is used as a reference,

since it enables exact MaxIB computation. Accuracy is
evaluated using the root-mean-square error (RMSE)
and the radius ratio ρ between the computed radius
and the optimal radius, defined as follows:

RMSE =

√√√√1

d

d∑
i=1

(
ĉi − c∗i

)2
=

1√
d

∥∥ĉ− c∗∥∥
2
.

ρ =
r̂

r∗
,

69



ICCK Transactions on Advanced Computing and Systems

Table 2. Time consumption (ms) comparison.

ε
Proposed Xie et al. [10] Zhu et al. [11]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.1 525 588 647 644 713 5074 5221 5509 5622 5583 11507 12148 12377 12919 12764
0.05 714 788 756 868 844 9637 10062 10466 10609 10748 22392 23390 23490 24690 25108
0.02 1049 1229 1239 1349 1378 23444 24405 25619 25851 26155 54767 56758 58637 60134 61372
0.01 1811 1515 1574 1621 1689 46323 48297 49590 50611 52803 108600 113717 116318 121364 128131
0.005 3283 3648 3789 4138 4461 92237 96175 99275 100696 113079 217802 229536 271564 325844 357031

Table 3. ρ accuracy comparison.

ε
Proposed Xie et al. [10] Zhu et al. [11]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.1 0.981 0.977 0.964 0.951 0.953 0.930 0.935 0.920 0.920 0.910 0.999 0.984 0.971 0.959 0.961
0.05 0.991 0.976 0.974 0.964 0.958 0.934 0.944 0.940 0.929 0.925 0.999 0.984 0.977 0.966 0.962
0.02 0.993 0.982 0.975 0.966 0.961 0.950 0.947 0.959 0.931 0.946 0.999 0.985 0.979 0.966 0.962
0.01 0.997 0.986 0.979 0.967 0.960 0.959 0.964 0.949 0.932 0.935 1.000 0.987 0.980 0.967 0.962
0.005 0.999 0.987 0.980 0.969 0.961 0.969 0.966 0.952 0.927 0.943 1.000 0.987 0.981 0.970 0.962

Table 4. RMSE error comparison.

ε
Proposed Xie et al. [10] Zhu et al. [11]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.1 0.017 0.104 0.184 0.289 0.340 0.013 0.108 0.179 0.254 0.339 0.008 0.102 0.182 0.287 0.337
0.05 0.012 0.095 0.182 0.271 0.307 0.013 0.098 0.204 0.246 0.335 0.004 0.093 0.181 0.270 0.305
0.02 0.009 0.093 0.178 0.260 0.342 0.009 0.109 0.195 0.261 0.331 0.001 0.092 0.177 0.260 0.341
0.01 0.005 0.093 0.175 0.243 0.332 0.007 0.092 0.198 0.268 0.362 0.000 0.092 0.175 0.243 0.332
0.005 0.003 0.093 0.168 0.240 0.348 0.007 0.097 0.180 0.268 0.364 0.000 0.092 0.168 0.239 0.347

where d denotes the number of dimension, ĉ and c∗
denotes the center of MaxIB calculated by the tested
algorithm and the interior point method. r̂ and r∗ are
the corresponding radius with ĉ and c∗, calculated in
the following way:

r̂ = min
1≤i≤m

dist
(
c, {x : Aix+ bi = 0}

)
= min

1≤i≤m

∣∣Aic+ bi
∣∣

‖Ai‖2
= min

1≤i≤m

bi −ATi c
‖Ai‖2

wherem is the number of faces of each polytope.The
result is recorded in Tables 2, 3, and 4.

From Table 2, our method demonstrates superior
time efficiency across all aspect ratios and error
tolerance. At the highest aspect ratio, α = 5, and
with the highest accuracy, ε = 0.005, our algorithm
completes calculations in 4461 ms, representing a
25-fold speedup compared to Xie’s 113,079 ms and
an 80-fold improvement over Zhu’s 357,031 ms.

From the RMSE analysis in Table 3, it can be observed
that Zhu’smethod achieves the lowest absolute error at
α = 1, confirming its precision advantage in controlled

scenarios. Our method provides comparable accuracy
to Zhu et al. [11] (difference ≤ 0.5%) while being two
orders of magnitude faster. In other aspect ratios α =
1, our method shows no significant disadvantage to
Zhu’s method in terms of accuracy while retaining a
much shorter running time.

The radius ratio ρ analysis in Table 4 reveals distinct
characteristics of each method. Allen-Zhu et al.’s [11]
method achieves near-perfect accuracy (ρ = 1) for low
aspect ratios (α = 1 ), demonstrating its theoretical
optimality in ideal conditions. However, reducing
the tolerable error ε improves its performance in
limited amount. Our proposed method shows better
flexibility, with greater accuracy improvement as ε
deceases. Furthermore, the proposed method shows
better robustness, with only 3.8% degradation from
α = 1 to α = 5. In contrast, Xie et al.’s [10] solution
exhibits the highest sensitivity to shape variations,
resulting in a 2.6% accuracy drop under the same
conditions. This suggests that our method is more
adaptable to complex polytopes. Nevertheless, all
methods fail to fulfill high accuracy(r = (1 − ε)ropt),
marked as black dotted lines in Figure 4 under high

70



ICCK Transactions on Advanced Computing and Systems

Figure 4. Time consumption, ρ, RMSE of methods in different α and ε.

aspect ratios. This is due to the narrow feasible region,
which is still a challenge in all methods of convex
optimization.

To sum up, the main advantage of our method is
a significant lower running time compared to other
approximate methods. Furthermore, our method
exhibits higher robustness to changes in the polytopes’
aspect ratios than Xie’s method. Our method also
achieves an accuracy close to Zhu’s method in all trials

within 20-fold of its running time. In high α and ε, our
running time is 80-fold faster. This result demonstrates
the distinct improvement of our method in efficiency.

5 Discussion
5.1 Interpretation of Results and Method

Advantages
The proposed approach demonstrates substantial
computational efficiency in solving the

71



ICCK Transactions on Advanced Computing and Systems

(1 − ε)-approximate MaxIB problem for
high-dimensional polytopes. By transforming
the primal MaxIB into a quadratic-penalized dual
problem and applying Pairwise Frank–Wolfe (PFW)
with adaptive backtracking, the algorithm reduces
per-iteration computational overhead while leveraging
strong convexity for improved convergence. This
combination enables a runtime that scales linearly
with the input complexity O(md) up to a logarithmic
factor, which is significantly more favorable than
both LP-based exact solvers and prior approximate
methods. Empirical evaluations confirm that the
proposed method consistently achieves faster runtime
across a wide range of dimensions and aspect ratios,
with measured speedups of an order of magnitude
relative to recent approximate methods.

Compared with classical FW variants, the pairwise
update mechanism and early stopping based on
duality gap contribute to improved iteration efficiency,
while the backtracking line search removes the need
for exact line searches and global curvature estimation.
These characteristics make the approach particularly
well-suited for large-scale and real-time optimization
settings in geometric and control applications.

5.2 Limitations
Despite its favorable computational profile, the
method exhibits sensitivity to the geometric
conditioning of the polytope. In particular, achieving
high accuracy becomes challenging when the aspect
ratio α is large, as narrow feasible regions tend
to amplify curvature and degrade dual feasibility,
leading to reduced radius accuracy. This phenomenon
also appears in prior approximate MaxIB algorithms,
suggesting that conditioning-aware strategies remain
underdeveloped in the current literature. Additionally,
although backtracking greatly improves practical
performance, it does not remove the worst-case
dependence on α, and theoretical iteration bounds
still scale with α2 ln(1/ε).

5.3 Future Work
Several directions may further enhance the proposed
framework. First, adaptive penalty scheduling
strategies may dynamically adjust the quadratic
penalty along directions of high curvature to reduce
feasibility violation without slowing convergence.
Second, hybrid solvers that combine the fast
initial progress of PFW with the high-accuracy
refinement of interior-point or active-set methods
could achieve both computational efficiency and

precision on ill-conditioned instances. Third,
incorporating selective second-order information
or curvature-aware updates may help mitigate
performance degradation on high aspect-ratio
polytopes. Finally, since the computational bottleneck
lies primarily in matrix–vector products involving A,
GPU or multi-core parallelization could significantly
accelerate the method in ultra-high-dimensional
settings.

6 Conclusion
This work addressed the challenge of efficiently
computing a (1− ε)-approximate maximum inscribed
ball in high-dimensional polytopes, a problem
with applications in warm-starting interior-point
methods, robotic navigation, sensor deployment, and
integer programming. By converting the primal
MaxIB problem into a smooth, strongly convex dual
formulation via quadratic penalization and solving
it with a Pairwise Frank–Wolfe method equipped
with adaptive backtracking, the resulting procedure
avoids expensive projections and exhibits improved
convergence behavior.

The resulting algorithm attains a runtime of

O(mdα2 ln(1/ε)),

which is linear in input size up to logarithmic factors.
Experiments on synthetic polytopes demonstrate
up to order-of-magnitude speedups over existing
approximate MaxIB solvers while maintaining
competitive accuracy. Overall, the combination of
dual smoothing, projection-free optimization, and
adaptive curvature estimation provides an efficient
and scalable methodology for geometric optimization
tasks in high dimensions.

Data Availability Statement
The program used to test the methods is available at
Github: https://github.com/Linyuqi2/MaxIB-Calculation-Me
thods-Evaluation.
Funding
This work was supported without any funding.

Conflicts of Interest
The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

72

https://github.com/Linyuqi2/MaxIB-Calculation-Methods-Evaluation
https://github.com/Linyuqi2/MaxIB-Calculation-Methods-Evaluation
https://github.com/Linyuqi2/MaxIB-Calculation-Methods-Evaluation


ICCK Transactions on Advanced Computing and Systems

References
[1] Yildirim, E. A., & Wright, S. J. (2002). Warm-start

strategies in interior-point methods for linear
programming. SIAM Journal on Optimization, 12(3),
782–810. [CrossRef]

[2] Belykh, T. I., Bulatov, V. P., & Yaskova, E. N. (2008).
Methods of Chebyshev points of convex sets and
their applications. Computational Mathematics and
Mathematical Physics, 48(1), 16–29. [CrossRef]

[3] Oxley, T. J., Opie, N. L., John, S. E., Rind, G. S., Ronayne,
S. M., Wheeler, T. L., . . . & O’Brien, T. J. (2016).
Minimally invasive endovascular stent-electrode array
for high-fidelity, chronic recordings of cortical
neural activity. Nature Biotechnology, 34(3), 320–327.
[CrossRef]

[4] Sra, S., Nowozin, S., & Wright, S. J. (Eds.).
(2012). Optimization for machine learning. MIT Press.
[CrossRef]

[5] Norris, B. R., Martinod, M. A., Tuthill, P., Gross,
S., Cvetojevic, N., Jovanovic, N., ... & Withford, M.
J. (2023). Machine-learning approach for optimal
self-calibration and fringe tracking in photonic nulling
interferometry. Journal of Astronomical Telescopes,
Instruments, and Systems, 9(4), 048005-048005.
[CrossRef]

[6] Baena, D., & Castro, J. (2023). The Chebyshev
center as an alternative to the analytic center in
the feasibility pump. Optimization Letters, 17(8),
1757–1790. [CrossRef]

[7] Dantzig, G. (1963). Linear Programming and
Extensions. Linear Programming and Extensions
Princeton. [CrossRef]

[8] Karmarkar, N. (1984, December). A new
polynomial-time algorithm for linear programming.
In Proceedings of the sixteenth annual ACM symposium
on Theory of computing (pp. 302-311). [CrossRef]

[9] Ye, Y. (1997). Interior point algorithms: Theory and
analysis. John Wiley & Sons. [CrossRef]

[10] Xie, Y., Snoeyink, J., & Xu, J. (2006, June). Efficient
algorithm for approximating maximum inscribed
sphere in high dimensional polytope. In Proceedings of
the twenty-second annual symposium on Computational
Geometry (pp. 21-29). [CrossRef]

[11] Allen-Zhu, Z., Liao, Z., Orecchia, L., & Math, M. I. T.
(2014). Using optimization to findmaximum inscribed
balls and minimum enclosing balls. arXiv preprint
arXiv:1412.1001.

[12] Klee, V., &Minty, G. J. (1972). Howgood is the simplex
algorithm. Inequalities, 3(3), 159-175.

[13] Wright, S. J. (1997). Primal-Dual Interior-Point
Methods. Primal-Dual Interior-Point Methods. SIAM.
[CrossRef]

[14] Frank, M., & Wolfe, P. (1956). An algorithm for
quadratic programming. Naval Research Logistics
Quarterly, 3(1–2), 95–110. [CrossRef]

[15] Jaggi, M. (2013, February). Revisiting Frank-Wolfe:
Projection-free sparse convex optimization. In
International conference on machine learning (pp.
427-435). PMLR.

[16] Beck, A., & Shtern, S. (2017). Linearly convergent
away-step conditional gradient for non-strongly
convex functions.Mathematical Programming, 164(1),
1-27. [CrossRef]

[17] Lacoste-Julien, S., & Jaggi, M. (2015). On the
global linear convergence of Frank-Wolfe optimization
variants. Advances in neural information processing
systems, 28.

[18] Bertsekas, D. P. (2014). Constrained optimization and
Lagrange multiplier methods (2nd ed.). Athena Scientific.

[19] Chapaneri, S. V., & Jayaswal, D. J. (2019). Covariate
shift adaptation for structured regression with
Frank–Wolfe algorithms. IEEE Access, 7, 73804–73818.
[CrossRef]

[20] Chambolle, A., & Pock, T. (2011). A first-order
primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging
and vision, 40(1), 120-145. [CrossRef]

[21] Golub, G. H., & Van Loan, C. F. (2013). Matrix
computations (4th ed.). Johns Hopkins University
Press.

[22] Armijo, L. (1966). Minimization of functions having
Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16(1), 1–3. [CrossRef]

[23] Pedregosa, F., Negiar, G., Askari, A., & Jaggi, M.
(2020, June). Linearly convergent Frank-Wolfe with
backtracking line-search. In International conference on
artificial intelligence and statistics (pp. 1-10). PMLR.

[24] Ziegler, G. M. (2012). Lectures on polytopes. Springer
Science & Business Media.

[25] lpSolve Team. (n.d.). lpSolve: Interface to ‘lpsolve’ v5.5
for solving linear/integer programs [Computer software].
CRAN. Retrieved from https://cran.r-project.org/web/pac
kages/lpSolve/index.html

[26] Free Software Foundation. (n.d.). GNU Linear
Programming Kit (GLPK) [Computer software].
Retrieved from https://www.gnu.org/software/glpk/

[27] Mosek ApS. (n.d.). MOSEK Optimization Suite
[Computer software]. Retrieved from https://www.mose
k.com/

Yuqi Lin is currently pursuing his studies
at The Grainger College of Engineering,
University of Illinois Urbana-Champaign
(UIUC). His research interests include
deep learning architectures and time-series
forecasting, with a particular focus on bridging
theory and real-world applications. He aims to
advance the practical deployment of machine
learning techniques for complex temporal data
problems. With a solid foundation in both

theoretical analysis and system implementation, he contributes to
research that connects modern AI methodologies with practical
engineering challenges. (Email: yuqilin2@illinois.edu)

73

https://doi.org/10.1137/S1052623400369235
https://doi.org/10.1134/S0965542508010028
https://doi.org/10.1038/nbt.3428
https://doi.org/10.7551/mitpress/8996.001.0001
https://doi.org/10.1117/1.JATIS.9.4.048005
https://doi.org/10.1007/s11590-023-02018-4
https://doi.org/10.7249/r366
https://doi.org/10.1145/800057.808695
https://doi.org/10.1002/9781118032701
https://doi.org/10.1145/1137856.1137861
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/s10107-016-1069-4
https://doi.org/10.1109/ACCESS.2019.2920486
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.2140/pjm.1966.16.1
https://cran.r-project.org/web/packages/lpSolve/index.html
https://cran.r-project.org/web/packages/lpSolve/index.html
https://www.gnu.org/software/glpk/
https://www.mosek.com/
https://www.mosek.com/

	Introduction
	Related Work
	Methodology
	Problem Reconstruction
	Smoothing and Choice of the Quadratic Penalty Weight =1/
	Pairwise Frank–Wolfe Method
	Backtracking Line Search for L and Local Estimation of 

	Experiment and Analysis
	Case 1:Runtime Comparison: Exact vs. Approximate Methods in High Dimensions
	Case 2: Comparative Evaluation: Accuracy vs. Efficiency Against Approximate MaxIB Baselines

	Discussion
	Interpretation of Results and Method Advantages
	Limitations
	Future Work

	Conclusion
	Yuqi Lin


