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Abstract
Perovskite solar cells (PSCs) have appeared as an
encouraging photovoltaic technology due to their
high efficacy and low fabrication cost. However,
their stability and scalability are hampered by
charge recombination and intricate multilayer
architectures. Using HTL-free design, this work
explores reduced PSCs designs with the goal of
reducing recombination losses and enhancing the
overall device performance. Optimized ETL-only
and HTL-free topologies may substantially decline
the interfacial recombination and progress
in charge extraction, according to numerical
simulations conducted with SCAPS-1D. The
FTO/α-Fe2O3/CH3NH3PbI3/Au device achieves
a high power conversion efficiency (PCE) of
20.99 % with an open-circuit voltage (Voc) of
1.066 V, a short-circuit current density (Jsc) of
25.05 mA/cm2, and a fill factor (FF) of 78.59
%. The essential of preserving thermal stability
into account in HTL-free topologies is shown by
temperature-dependent analysis, which reveals
a tolerant decrease in PCE with increasing
temperature. These effects show how enhanced
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1 Introduction
Due to ongoing advances in solar device performance,
environmentally friendly operation, high manufacture
scalability, and lower developed costs when compared
to traditional fossil fuel-based sources, solar cell
technology has become a major competitor in the
global shift toward sustainable energy systems.
Due to their PCEs and long-term operating
stability, silicon-based solar cells - including both
mono-crystalline and polycrystalline variants - have
dominated the commercial market among other
photovoltaic technologies. However, complicated and
expensive fabrication processes like high-temperature
diffusion, photolithography, and vacuum deposition
techniques continue to impede the large-scale
production of these cells, limiting their scalability
and cost-effectiveness, particularly for emerging
cost-cutting looking for affordable energy solutions [1].
As next-generation photovoltaic absorbers, hybrid
inorganic and organic perovskite materials have
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Figure 1. Illustrates the energy band alignment and schematic architecture of the simulated perovskite solar cell (PSC),
highlighting the layered configuration of the device and the corresponding electronic energy levels across the thickness

of the structure.

drawn a lot of attention and are quickly becoming
competitive alternatives to traditional silicon-based
solar cells. Since their initial incorporation into solar
energy systems in 2009, using a methylammonium
lead halide (MAPbI3) absorber to achieve a low PCE
of 3.8% [2–5] PSCs have experienced an extraordinary
rise in performance due to breakthroughs in material
composition, defect passivation, and interface
engineering [2–6]. With recent advancements
pushing verified PCEs to 25.73% and reported values
as high as 26.08% [6], This remarkable development
demonstrates PSCs’ potential to provide scalable
solar systems with low-cost, high-efficiency, and
solution-processable alternatives [7].

Recent advances in photovoltaic technologies
have been driven by innovations in both device
architectures and material systems. In thin-film
solar cells, optimized material combinations and
interfacial engineering approaches have demonstrated
significant efficiency improvements [8, 9]. Similarly,
breakthroughs in silicon heterojunction technologies
through novel device designs have achieved
remarkable performance enhancements [10, 13, 14].
Among these developments, perovskite solar cells
(PSCs) have emerged as particularly promising, with
their rapid development attributable to several unique
advantages.

The exceptional rise of PSCs stems from their
remarkable performance metrics, including certified
power conversion efficiencies now exceeding
25% [20], combined with their tunable optoelectronic
properties. The ability to adjust bandgaps through

compositional engineering enables optimal light
harvesting across the solar spectrum [22, 23], while
solution-processable fabrication methods offer
cost advantages over conventional photovoltaic
technologies [24]. These characteristics, along with
their inexpensive production potential, have propelled
PSCs to the forefront of emerging PV research [25].

The excellent photovoltaic performance of PSCs,
particularly those based on CH3NH3PbI3, arises
from several fundamental material properties. A
direct bandgap ( 1.5 eV) enables efficient light
absorption [26], while a high absorption coefficient
(>104 cm−1) allows for thin active layers. Furthermore,
long carrier diffusion lengths (>1 µm) contribute to
outstanding charge collection efficiencies [27]. These
intrinsic advantages havemotivated extensive research
focused on optimizing material quality, interface
engineering, and device architectures to further
improve PSC performance.

In conventional PSC designs, inorganic electron
transport layers (IETLs) and hole transport layers
(HTLs) play critical roles as energy-selective contacts.
Recent studies on charge transport mechanisms
have demonstrated how these layers function as
energy barriers to prevent charge backflow while
enabling directional charge extraction [11, 12, 15].
However, manufacturing challenges persist in
achieving high-quality multilayered structures with
sufficiently low defect densities. As stability analyses
have shown [21], interfacial mismatches at both
IETL/perovskite and HTL/perovskite junctions often
lead to increased recombination rates over time,
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ultimately compromising device stability.

To address these limitations, the photovoltaic
community has increasingly explored HTL-free
device architectures as an alternative approach.
This design strategy, supported by computational
studies [16, 17] and experimental validations [18, 19],
offers multiple benefits: (1) reduced interfacial
recombination through simplified device structures;
(2) lower manufacturing costs by eliminating the HTL
deposition step; and (3) improved scalability through
more straightforward fabrication processes. These
advantages make HTL-free configurations particularly
attractive for developing stable and cost-effective
PSCs.

In this context, hematite (α-Fe2O3) emerges as a
promising IETL candidate for HTL-free PSC designs.
Its optical properties are especially noteworthy,
with high visible-range transparency (70-85%) in
the 600-1000 nm spectral region [21] - crucial
for perovskite light absorption. Combined with
its optimal bandgap ( 2.1 eV) [26], this ensures
minimal parasitic absorption while maintaining
effective charge transport capabilities. Material
availability studies have further confirmed hematite’s
potential for large-scale PV deployment due to its
earth abundance, cost-effectiveness, and exceptional
chemical stability [27].

The charge transport properties of hematite make
it particularly suitable for PSC applications. As
a charge-selective contact, it effectively extracts
photogenerated electrons from the perovskite
absorber while blocking hole recombination, thereby
enhancing current collection and reducing losses.
Numerical simulation has proven invaluable in
evaluating such novel material systems, with
computational tools enabling detailed analysis of
charge dynamics, recombination processes, and energy
band alignment prior to device fabrication [21, 26].
These simulation approaches, particularly when
combined with experimental data [27], significantly
reduce development time and costs by minimizing
trial-and-error in the optimization of new device
architectures.

2 Simulation Methods
SCAPS-1D, a one-dimensional solar cell simulation
program, was used to simulate and analyze the
performance of the suggested solar cell configuration.
A popular tool for simulating heterojunction and
multilayer thin-film photovoltaic systems, SCAPS-1D

was created by the Department of Electronics and
Information Systems (ELIS) at Ghent University
in Belgium. To ascertain important electrical
properties of the device under illumination, the
program numerically solves a collection of equations,
such as Poisson’s equation and the continuity
equations for electrons and holes. By taking
into consideration the spatial distribution of charge
carrier densities and electrostatic potential, these
equations allow for precise predictions of how
material characteristics, interface features, and layer
thicknesses will affect device behavior. Therefore,
SCAPS-1D offers a dependable platform for solar cell
design optimization prior to experimental execution.
Figure 1 shows the architecture of the suggested
perovskite solar cell (PSC), which is made up of
FTO/α-Fe2O3/CH3NH3PbI3/Au and has a simplified
HTL-free design. In order to minimize interfacial
recombination losses and manufacturing complexity,
this arrangement purposefully removes the hole
transport layer.

3 Results and Discussion
The energy band gap and device structure for the
simulated device without HTL are shown in Figure 1.
The energy band diagram of a perovskite solar cell
construction with α-Fe2O3 (hematite) as the IETL and
CH3NH3PbI3 as the absorber is shown in Figure 1(a).
The valence band (Ev), conduction band (Ec), and
Fermi level (Ef) are plotted throughout the device
thickness in the diagram. The comparatively flat band
edges within the perovskite area suggest dominating
carrier diffusion and good material quality due to the
low internal electric fields. While a significant valence
band offset substantially reduces recombination losses
by creating a barrier to hole injection, a favorable
conduction band offset at the interface with α-Fe2O3

enables efficient electron transmission from the
perovskite to the IETL. A high Voc is maintained and
electron extraction is improved by this selective charge
transfer. With a broad bandgap ( 2.1 eV), apparent
transparency, and compatibility with perovskite layers
that support both optical and electrical performance in
HTL-free perovskite solar cells, the energy alignment
validates α-Fe2O3’s promise as a stable and affordable
ETL.

In order to begin the simulation, a planar PSCs
architecture was constructed without the use of a
HTL. FTO is the transparent conducting front contact,
α-Fe2O3 is the IETL, CH3NH3PbI3 is the perovskite
absorber, and gold (Au), which has a work function
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Figure 2. (a) Depicts the current density–voltage (J-V) characteristics of the simulated device, and (b) illustrates its
quantum efficiency curve.

Table 1. Material and simulation parameters used for the HTL-free perovskite solar cell with device structure
FTO/α-Fe2O3/CH3NH3PbI3/Au.

Parametrs α-Fe2O3 CH3NH3PbI3
Thickness (m) 0.200 0.600
Band gap (eV) 2.1 1.53
Electron affinity (eV) 3.90 3.60
Dielectric Permittivity 10.00 30
CB effective density of states (1/cm3) 2.200E+18 1.000E+18
VB effective density of states (1/cm3) 1.800E+19 1.000E+18
Electron thermal velocity (cm/s)
Hole thermal velocity (cm/s)
Electron mobility (cm2/Vs)

1.000E+7
1.000E+7

1.000E+7
1.000E+7

of 5.3 eV, is used as the rear electrode in the suggested
device structure.

Table 1 provides a summary of the material and
structural characteristics utilized in the simulation.
Figure 2 (a) displays the external quantum efficiency
(EQE) spectrum and JV characteristics. These show
promising photovoltaic performance with an Voc of
1.066 V, Jsc of 25.05 mA/cm2, FF of 78.59%, and a
PCE or η of 20.99%. JMPP = 22.55 mA/cm2 and
VMPP = 0.931 V were the maximum power point
(MPP) values, respectively. A high fill factor is
a result of effective charge extraction and minimal
internal resistance, as seen by the curve’s noticeable
knee close to the maximum power point. These
findings imply that incoming photons are efficiently
transformed into useful electrical energy by the
device. Additionally, Figure 2 (b) displays the EQE
spectrum, which illustrates the device’s photoresponse
throughout the visible spectrum. The absorber-IETL
configuration’s effective light absorption and carrier
collecting capabilities are highlighted by a peak EQE

reaching 90% between 400 and 700 nm. This confirms
the feasibility of HTL-free device operation employing
α-Fe2O3 as an economical and effective electron
transport material [28, 29].

Figure 3. Demonstrates the temperature-dependent
behavior of the simulated device.
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Table 2. Variation of Photovoltaic Parameters with Temperature in the Range of 200 K to 600.

Temperature Voc (V) Jsc (mA/cm2) FF (%) PCE (%)
200 K 1.116560 25.01427648 78.8626 22.0263
300 K 1.066405 25.04552896 78.5909 20.9906
400 K 0.896305 25.09678551 78.2767 17.6079
500 K 0.710368 25.13616693 71.8232 12.8211
600 K 0.507770 25.16558807 59.6956 7.6281

The bandgap of CH3NH3PbI3, which restricts
absorption of longer-wavelength photons, is shown by
the drop-off beyond 750 nm. Strong light-harvesting
and carrier-collecting capabilities are confirmed by
this broad and effective spectrum response, suggesting
that α-Fe2O3 is a suitable and affordable IETL for
high-performance, HTL-free perovskite solar cells.
This study used numerical modeling to examine how
operational temperature affects a PSCs performance.
In order to evaluate the impact of the temperature
on important photovoltaic parameters, such as PCEs,
Voc, Jsc, and FF, the device was first simulated at
a standard temperature of 300 K. The temperature
was then gradually increased from 200 K to 600 K. In
order to isolate the thermal effects, these simulations
were run with a set buffer layer thickness and
perfect absorber conditions. The Jsc is comparatively
constant across the temperature range, as shown
in Figure 3, indicating that temperature changes
do not substantially impair the photogeneration of
charge carriers. However, when temperature rises,
Voc and PCE noticeably decrease, mostly as a result of
increased recombination losses and decreased built-in
potential as shown in Table 2. Additionally, the fill
factor is trending negative, which suggests a rise in
resistive and non-radiative losses. These findings
highlight how crucial thermal stability is for solar cell
materials and device design, especially for situations
where ambient temperatures are high or fluctuate.

Over a temperature range of 200 K to 600 K, the
graph illustrates how temperature change affects a
perovskite solar cell’s J–V properties. Voc decreases
noticeably with increasing operational temperature,
mainly because of increased thermally induced carrier
recombination and reduced quasi-Fermi level splitting
in the absorber material. However, there is little
variation in the Jsc, suggesting that photon absorption
and exciton synthesis are mostly unaffected by
temperature changes. Significantly, the device shows
improved curve shape and greater Voc at lower
temperatures (200 K and 300 K), suggesting better
charge extraction and fewer recombination losses. On
the other hand, the J-V curve flattens and shifts toward

lower voltages at higher temperatures (500 K and 600
K), which is indicative of shortened carrier lifetimes
and greater series resistance. The FF and PCEs are
impacted by this thermal deterioration, highlighting
how important temperature is in determining the
durability and dependability of perovskite solar cells.

4 Conclusion
Using SCAPS-1D for numerical modeling, we have
successfully constructed and simulated HTL-free
PSCs in this work using the device architecture
FTO/α-Fe2O3/CH3NH3PbI3/Au. With an open-circuit
voltage (Voc) of 1.066 V, short-circuit current density
(Jsc) of 25.05 mA/cm2, fill factor (FF) of 78.59%,
and power conversion efficiency (PCE) of 20.99%,
the simulated findings demonstrate encouraging
photovoltaic performance. Furthermore, JMPP
= 22.55 mA/cm2 and VMPP = 0.931 V were
found to be the maximum power point (MPP)
characteristics. The absorber-IETL configuration’s
outstanding light-harvesting and carrier-collecting
capabilities are highlighted by its high external
quantum efficiency (EQE), which peaks at 90% in the
400–700 nm spectral region. These results confirm
that α-Fe2O3 is a low-cost, effective electron transport
layer that can be used to create HTL-free PSCs
without sacrificing device performance. Additionally,
temperature-dependent simulations showed that
PCE gradually decreased as the temperature rose,
emphasizing the need to optimize devices for thermal
sensitivity. All things considered, our findings validate
that α-Fe2O3-based HTL-free PSCs are a feasible
and alluring route for scalable, reasonably priced
photovoltaic applications.
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