ICJK

ICCK Transactions on Circuits and Systems
http:/dx.doi.org/10.62762/TCAS.2025.881344

RESEARCH ARTICLE

Check for
updates

Behavior-Level Simulator For Heterogeneous Neural

Network Chips

1School of Integrated Circuits (School of Information Science and Electronic Engineering) , Shanghai Jiao Tong University,

Liangshun Wu®'!" and Tao Tao®!
Shanghai 200240, China
Abstract

With the increasing complexity of neural network
models, the Network-on-Chip (NoC) has become a
critical communication backbone in heterogeneous
computing architectures. However, existing NoC
simulation tools often fall short in supporting
diverse computational wunits such as matrix
processors and RISC-V programmable cores,
limiting their ability to meet the stringent demands
of real-time performance, high throughput, and
energy efficiency in large-scale AI workloads. To
overcome these limitations, this paper presents a
behavior-level NoC simulation framework tailored
for heterogeneous computing environments. The
framework features precise node-level modeling,
a dynamic pipelining mechanism, a hybrid
routing strategy aware of task characteristics,
and a comprehensive visual debugging interface.
Experimental evaluations demonstrate that the
proposed system outperforms conventional
approaches in terms of average latency, throughput,
and debugging efficiency, particularly under
scenarios involving mixed task streams and
hardware faults. The results highlight the

Submitted: 16 June 2025
Accepted: 11 July 2025
Published: 28 August 2025

Vol. 1, No. 1, 2025.
4.10.62762/TCAS.2025.881344

*Corresponding author:
Liangshun Wu
wuliangshun@sjtu.edu.cn

framework’s robustness and scalability, making it
a valuable tool for the design and optimization of
next-generation NoC architectures for intelligent
computing systems.

Keywords: heterogeneous computing, network-on-chip,
behavioral simulation, dynamic pipelining, hybrid routing,
Al acceleration.

1 Introduction

As the complexity and scale of artificial intelligence
(AI) computing continue to grow, dedicated hardware
accelerators and efficient on-chip interconnect
architectures have become essential for enabling
real-time processing of large-scale neural networks,
such as artificial neural networks (ANNs) and
spiking neural networks (SNNs). As the core
communication backbone in multi-core systems,
the design of the network-on-chip (NoC) directly
impacts system throughput, latency, and energy
efficiency. However, most existing NoC simulation
tools are geared toward traditional homogeneous
multi-core architectures, lacking effective support
for the collaborative operation of heterogeneous
computing units—such as matrix processing units and
RISC-V programmable cores—particularly in aspects
like dynamic data flow management, multi-mode task
scheduling, and hardware-software co-verification.

Current research limitations include the following;:

Citation

Wu, L, & Tao, T. (2025).
Heterogeneous Neural Network Chips. ICCK Transactions on Circuits
and Systems, 1(1), 1-10.

Behavior-Level Simulator For

© 2025 ICCK (Institute of Central Computation and Knowledge)

http://dx.doi.org/10.62762/TCAS.2025.881344
http://crossmark.crossref.org/dialog/?doi=10.62762/TCAS.2025.881344&domain=pdf
https://orcid.org/0000-0001-6183-4680
https://orcid.org/0009-0009-7398-2731
http://dx.doi.org/10.62762/TCAS.2025.881344
mailto:wuliangshun@sjtu.edu.cn

ICCK Transactions on Circuits and Systems

ICJK

1) Mainstream NoC simulators (e.g., BookSim
[1] and Noxim [2]) are primarily designed for
homogeneous CPU clusters and struggle to model
the specific behavior of heterogeneous units. For
instance, they cannot effectively simulate SRAM access
patterns in matrix processors or real-time instruction
dispatch in programmable units, leading to inaccurate
assessments of communication performance in hybrid
architectures [3].

2) Traditional routing algorithms (such as XY
routing and adaptive routing) often fail to address
congestion issues in scenarios involving multi-source,
multi-destination, and mixed-task flows (e.g.,
concurrent ANN and SNN workloads). Enhancing
support for dynamic pipeline reconfiguration remains
an urgent challenge [4]. For example, while Huawei's
Da Vinci architecture [5] supports matrix-computing
multi-core clusters, its NoC static bandwidth allocation
struggles with bursty traffic patterns.

3) Existing NoC simulators typically provide only
text-based logs, without intuitive visualization of
packet trajectories or network congestion hotspots,
making it difficult to identify and resolve performance
bottlenecks [6].

To address these challenges, this paper proposes
and implements a behavioral-level NoC simulation
framework designed for heterogeneous computing
systems. The core innovations include:

1) Each core’s behavior is formally described using
finite state machines, encompassing states such as
idle, ready, busy, and complete. Gray code is used
for state encoding to minimize transient errors during
transitions. State transitions are explicitly defined,
and a state protection mechanism automatically
inserts wait cycles in the presence of bus conflicts to
avoid cross-clock domain errors. SRAM addresses,
data sizes, and routing targets can be dynamically
configured via RISC-V programmable cores, and
atomic operations ensure timing consistency across
multi-core parameter updates.

2) A double-buffering mechanism (Mem0 and Mem1)
combined with a pipelined computation model enables
alternating memory use during data transmission and
reception, thereby ensuring continuous processing.
The simulator accurately models inter-unit data
dependencies and pipelined data flow between matrix
operation units, improving overall system throughput.
Global time variables are used to simulate operation
timing, with clearly defined time update rules to

maintain correct execution order.

3) A packet tracking system has been developed
to log packet transmission times, routing paths,
and node state changes, supporting timing analysis
and critical path replay within specified time
windows. An interactive visualization interface—built
using OpenCV and Matplotlib—provides topology
rendering, animated data flow visualizations, heat
maps of network load, queue depth monitoring, and
end-to-end delay analysis. These features significantly
accelerate debugging and optimization cycles.

This paper fills a critical gap in behavioral-level
NoC modeling tools for heterogeneous systems,
offering precise simulation capabilities for
architectures integrating matrix computation
units and programmable cores. By combining
accurate behavioral modeling, dynamic pipelining,
cycle-accurate simulation, and comprehensive
visualization, this framework enables in-depth
analysis and optimization of NoC designs tailored for
next-generation intelligent computing platforms.

2 Related Work

In recent years, both domestic and international
researchers have conducted extensive studies on the
increasingly critical role of Networks-on-Chip (NoCs)
in supporting heterogeneous computing systems.
Abdallah et al. [7] proposed a verification framework
for brain-inspired processor NoCs, focusing on
addressing the challenge of highly concurrent
spike-data communication in neural networks, and
enhancing the simulation platform’s performance
verification capabilities under high-burst traffic
scenarios. Li et al. [8] explored a real-time multimodal
neural signal transmission framework based on
asynchronous NoC design, offering new insights into
low-power, high-precision data flow management. Nie
etal. [9] highlighted the importance of communication
link consistency verification from the perspectives of
NoC testing and deployment. Their work introduced
a visual debugging workflow that significantly
improved design-time transparency and efficiency.
In his book System Chip Testing and Design, Martin
et al. [10] systematically discussed scalable NoC
design methodologies, providing strong theoretical
foundations for behavioral modeling. Additionally,
Zhang et al. [11] conducted a comprehensive review
of NoC architecture integration strategies within
Al systems, underscoring the need for dynamic
adaptation in interconnection resource scheduling for
heterogeneous computing environments.

ICJK

ICCK Transactions on Circuits and Systems

In summary, current research has evolved from
a focus on fundamental interconnect structures
to encompass higher-level concerns such as task
scheduling, data flow tracing, and visual verification.
These advancements collectively provide a solid
foundation for the simulation and optimization of
NoCs in next-generation neural network chips.

3 The Proposed Design

The simulator is built around three core innovations:
behavioral modeling of heterogeneous computing
units, dynamically adaptive hybrid routing strategies,
and clock-accurate pipeline control mechanisms.
These are supported by key technologies such as data
packet encapsulation and decapsulation, advanced
network routing algorithms, pipelined computation
models, state machines for matrix operation units,
global time management, data transmission models,
and double buffering techniques.

3.1 Behavioral Modeling of Heterogeneous Cores

To accommodate the heterogeneous characteristics
of matrix operation units and programmable cores,
a high-precision behavioral model is established as
follows:

3.1.1 State Transition

A four-state finite state machine (FSM) is designed
using Gray code encoding to minimize transient errors
during state transitions. The defined states are:

e IDLE: Awaiting configuration or command input.

e READY: Configuration complete, awaiting data
reception.

e BUSY: Actively processing data.
e END: Data processing complete, awaiting reset.
State transition conditions are defined as follows:

e IDLE — READY: Triggered upon receiving a
configuration command.

e READY — BUSY: Initiated when data reception
begins.
e BUSY — END: Occurs after data processing is

completed.

e END — IDLE: Activated upon receiving a reset
command.

To ensure reliable operation across clock domains,
a state protection mechanism is incorporated. This
mechanism automatically inserts wait cycles in the

event of bus conflicts, effectively preventing cross-clock
domain errors.

3.1.2 Programmable Unit Dynamic Control Interface

This interface is designed based on the RISC-V
instruction set configuration protocol, enabling
dynamic parameter configuration for matrix operation
units. Control packets are used to set key parameters
such as target address, data length, and routing mode.

To ensure timing consistency across multi-core
systems, configuration commands are transmitted
atomically, guaranteeing synchronized updates of all
relevant parameters.

3.2 Communication Protocol and Routing Strategy
3.2.1 Programmable Unit Dynamic Control Interface

The communication protocol adopts a 32-bit data
packet structure, which includes both header and
payload information.

Header (16 bits):

Header = (Tag < 8)|(Idx < 6)|(X < 3)|Y (1)

where:
e Tag (2 bits): Identifies the type of data packet.
e Idx (2 bits): Specifies the node index.
e Position: Encodes the coordinates of the node.
o < (Left Shift): Indicates a left shift operation.
o | (Bitwise OR): Represents a bitwise OR operation.

The complete data packet is composed of a 16-bit
header and a 16-bit payload, totaling 32 bits in length.

Packet = (Header < 16)|Payload (2)

3.2.2 Task-Aware Hybrid Routing Algorithm

To address conflicts arising from multimodal data
flows, a task-aware hybrid routing algorithm is
proposed. This approach dynamically adapts routing
decisions based on the nature and source of tasks (e.g.,
ANN vs. SNN), effectively optimizing path selection
and minimizing congestion. Details are summarized
in Table 1.

ICCK Transactions on Circuits and Systems

ICJK

Table 1. Design of task-aware hybrid routing algorithm.

Route Type Applicable scenarios Core Strategy Performance Indicators
Programmable unit Constructing a
instruction issuance distribution path

Tree broadcast routing (Programmable unit —

matrix operation unit)
ANN Tensor Transfer

XY Deterministic (Matrix Operation Unit
Routing < Matrix Operation
Unit)
Al Pulse Events (Matrix
Adaptive Burst Routing Operation Unit <
Matrix Operation Unit)

- Hop reduction
based on a minimum

spanning tree

Prioritize horizontal

: Zero deadlock
path planning _over uarantee
vertical path planning g
Dynamic obstacle
avoidance based .
on queue depth Improved burst traffic
(triggered when hroughput

Q(t) > threshold)

3.2.3 Gate Routing Simulation

By disabling specific nodes in the routing list,
hardware failure scenarios can be simulated to
evaluate the fault tolerance and resilience of the
routing algorithm.

3.3 Pipeline Parallel Processing Architecture Based
on Double Buffering

The pipeline consists of multiple matrix operation
units, each of which performs receiving, computing,
and sending operations. The matrix operation

unit receives data: NPU; - Receive(Data(i)) — The

in
matrix operation unit computes: Data((fgt = NPU; -
Compute(Datai(;)) — The matrix operation unit sends
data : NPU; - Send(Datafﬁt). The data dependency
(i+1) _

between the matrix operation units is: Data, ' ' =

Dataggt. If the processing time of each matrix operation

unit is fproc, then the total processing time is:

Tiotal = tsetup + (N - 1) X tproc + Delay (3)

where:

® tsetup: Pipeline configuration time.

e N: The number of matrix operation units in the

pipeline.
e Delay: Network delay in data transmission.

The transmission delay of a data packet in the network
is related to the path length:

Delay = |Path| x thop (4)

where |Path| is the path length and #y,p, is the delay of
each hop (usually 1 time unit).

4

3.3.1 Data Transmission Model

Communication between programmable units and
NoC includes two paths:

1) FIFO connection of tree_node: The local storage
space of the matrix operation unit is SRAM. Data is
received into SRAM:

SRAMJaddry +1i] = Datajy[i], i = 0,1,...,N—1 (5)
Sending data from SRAM:
Datagyt[i| = SRAM[addri+i], i = 0,1,...,N—1 (6)

2) DMA: The global memory space is DDR. Access
and writing are achieved through DMA. DMA data
transmission: DMA reads data from the global
memory DDR and sends it to the target matrix
operation unit.

DMA : SendData(t) = {DDRaw+i]]i = 0,1, ..., Ni—1}

(7)
where:
o ay: Send starting address
o Ny The size of the data to be sent

DMA data reception: DMA receives data from the
network and writes it to the global memory DDR.

DDR|ayy + i] = Datain[i], i = 0,1,..., Npx — 1 (8)

where:
e a.: Receive start address

o N.: The size of the received data

ICJK

ICCK Transactions on Circuits and Systems

3.3.2 Double Buffer Mechanism (MemO and Mem1) /
Ping-Pong Buffering

To enable continuous pipeline processing, the matrix

operation unit adopts a ping-pong buffering strategy

using a double buffer architecture. Two memory

regions, Mem0 and Meml, are alternately utilized as

follows:

a. Ping-pong double-buffer mechanism during neural
network inference.

b. Even-numbered cycles: Meml is used for data

reception, while Mem0O handles data transmission.

Figure 1 illustrates the ping-pong double-buffer
mechanism used during neural network inference to
enable continuous pipeline processing.

A ey
\

1] Batres 2 >

Figure 1. Ping-pong double-buffer mechanism during
neural network inference.

3.3.3 Global Timestamp Synchronization Rules

Global time variables are used to simulate operation
latency and ensure correct execution timing
throughout the system. During simulation, the
global timestamp is updated based on the operation
type, according to the following rules:

Jtime = Jtime + At (9)

where At represent the time required for a specific
operation. Different operations result in different time
increments:

o Register read/write: At =1
e Data transmission: At = Delay

e Data processing: At = tproc (determined by the
task type and operation complexity)

3.4 Full-Link Visual Debugging System

3.4.1 Packet Tracing

The simulator supports full-path packet tracing by
recording the complete transmission route of each data

packet, capturing every hop along its path through the
network.

10goute = {(gtime+11; (T, Ym))Im = 0,1,..
(10)

Additionally, the number of packets handled by each
node is logged at every simulation time point, enabling
fine-grained temporal analysis of node load and
network behavior.

PacketCount(t, (z,y)) =

D

packet at time ¢

Oz,2,0y,y, (11)

where § is the Kronecker Delta function:

1,
dap = {0,

(xp, yp) is the coordinate of the node where the data
packet is located.

ifa=10

ifa#b (12)

3.4.2 Network Status Visualization Engine

The system includes a real-time network visualization
engine that supports topology rendering and animated
data flow representation. A heat map rendering
module, developed using OpenGL, provides dynamic
monitoring of key network metrics:

e Link Load Rate: Traffic intensity is visualized
through color gradients (e.g., red for high load,
blue for low load).

e End-to-End Delay Profile: This metric represents
the reception delay for each matrix operation unit,
calculated as the difference between the current
and previous packet transmission timestamps
(including both processing and link delays).

4 Experiment and Verification

4.1 Simulation Setup

To validate the effectiveness of the proposed
heterogeneous NoC simulation framework, a series
of experiments were conducted, focusing on key
performance indicators such as routing efficiency,
dynamic pipeline performance, and visual debugging
capabilities.

4.1.1 Topology

An 8 x 8 mesh-tree hybrid topology is adopted. Each
router connects to its four neighboring routers via
cross-connections and interfaces with four matrix
operation units through a tree node structure, resulting
in a total of 8 x 8 x 4 = 256 matrix operation units.

., |[Path|—1} Additionally, the network includes one programmable

unit node and one DMA controller.

ICCK Transactions on Circuits and Systems

4.1.2 Computational Cores

e Matrix Operation Unit: Executes a mixed
workload composed of convolutional layers and
fully connected layers.

e Programmable Unit: Handles non-linear
operations such as Sigmoid and Pooling (via
an XCore coprocessor), and performs data flow
control.

4.1.3 DMA Configuration

e DMA_IDX = 1: Index of the DMA device within
the system.

e DMA X = 0, DMA_Y = 0: Coordinates
of the DMA controller within the topology
(router/matrix operation unit position).

4.1.4 Programmable Unit Configuration

e ProgrammableUnit_IDX = O:
programmable unit.

Index of the

e ProgrammableUnit_X = 0, ProgrammableUnit_Y
= 0: Location of the programmable unit in the
network topology.

The programmable unit utilizes specific instructions
to send and receive data, and to manage the
computational tasks of the matrix operation units:

e CMD_TX_ADDRO0-3 (1-4): used to set the data
sending target address.

e CMD_TX_SIZEO-3 (5-8): used to set the data
block size for data transmission.

e CMD_RX_ADDRO-3 (9-12): used to set the target
address of received data.

e CMD_RX_SIZEO0-3 (13-16): used to set the data
block size of the received data.

e CMD_SET_REGO0-3 (17-20): wused to set the
calculation register of the matrix operation unit.

e CMD_SEND_DATA_STREAM (21): Send data
stream command.

e CMD_RECEIVE_DATA_STREAM (22): receive
data stream command.

e CMD_COMPUTE (23): Computation task
instruction, notifying the matrix operation unit to
perform calculations.

4.1.5 Memory Configuration

e MatrixOperationUnit SRAM_SIZE = 128KB:
Specifies the internal SRAM size of each matrix

operation unit, used for storing task data and
computation results.

e DDR_SIZE = 1MB: Defines the size of external
DDR memory as 1MB, typically used to store
large-scale datasets.

4.1.6 Router Configuration

e DISABLED_ROUTER_LIST = [(1, 0), (0, 1)]:
Specifies the list of disabled routers. The
routers located at coordinates (1, 0) and
(0, 1) are deactivated, simulating hardware
faults or intentional isolation for gated routing
experiments.

e ROUTER_ALGO_XY = False: Indicates whether
the traditional XY routing algorithm is enabled.
Setting this to False enables the use of the
proposed hybrid routing algorithm in place of
standard XY routing.

4.2 Results and Discussion
4.2.1 Comparison of Routing Efficiency and Latency

0

10
12

14

0 2 4 6 8 10 12 14

Figure 2. Heat map of 256 matrix operation unit cores.

In Figure 2, white represents a 100% congestion rate,
black indicates a 0% congestion rate, and lighter shades
correspond to higher congestion levels. It can be
observed that, aside from localized congestion at a
few nodes (3 nodes), the majority of nodes exhibit low
congestion rates. The congestion rate is defined as:

ICJK

ICCK Transactions on Circuits and Systems

Congestion Rate =
Number of congested time steps atanode (13)

Total simulation time steps

To evaluate routing performance under mixed task
flows, we compare traditional XY routing, adaptive
routing, and the proposed XY-tree hybrid routing
algorithm. The task flow consists of:

e 10% broadcast instructions (from the
programmable unit to matrix operation units),

e 40% point-to-point data transfers (between matrix
operation units), and

e 50% burst pulse traffic (representing Al-mode
spiking activity).

As shown in Table 2, the proposed hybrid routing
algorithm dynamically switches between tree topology
for broadcast instructions and XY routing for
point-to-point data flows. This strategy reduces the
average number of hops by 28%, leading to a noticeable
improvement in overall throughput. Moreover,
the congestion incidence rate is reduced by 65%
compared to traditional XY routing, demonstrating the
algorithm’s effectiveness in supporting stable, parallel
transmission of mixed data streams. (Refer to the heat
map in Figure 2 for visual confirmation.)

Latency lcycles)

Core (D

Figure 3. End-to-end delay of 256 matrix operation unit
cores.

Figure 3 illustrates the end-to-end delay across all 256
matrix operation unit cores. The delay is calculated as
the difference between the timestamps of the current
and previous data packet transmissions, including
both processing time and link latency. The results
show a relatively uniform delay distribution, with no
significant signs of network congestion.

4.2.2 Dynamic Pipeline Throughput Optimization

The performance of static memory allocation is
compared with the proposed bidirectional memory
pipeline strategy (MemO/Mem1 alternation). The
dynamic pipeline significantly reduces the pipeline
bubble rate to 5.3% and improves throughput by 1.7x
by eliminating memory access conflicts (e.g., during
alternating configuration and operation phases of the
matrix operation unit).

Furthermore, energy efficiency is improved by
68%, owing to the effective reuse of memory and
computational resources.

. -
17.5 4

. .

. .

15.0 4 . .

. -

. .

12.5 4 R N .

] - s e ‘e . ¢ = e .

%10.0— - ® *m e » " " = se] -

g - - s " ame e o em o ' es s

H* ® ®m ¢ sese e e®m = e we

757 ® ® ¢ e ems e o ‘= = oem . se

® ® o ssme e e e® o o= ees se

5.0 1 - = = o eme o *e® = se es oo

- . - * B9 e *ee = e LI] .

* - - @ steasts o a® & s -e ae

251 . . s s @ sssmssss =e a® = sem =s sa

- - - = s mss s = .- = s -e LA

T T T T T
0 2000 4000 6000 8000

t

Figure 4. The total number of data packets processed by all
64 routers (8 x 8) at each simulation time step.

As seen in the Figure 4, the combination of pipelined
processing and double-buffering results in a more
balanced temporal distribution of throughput and
router load.

Table 2. Performance comparison of traditional XY routing, adaptive routing, and the proposed XY-Tree hybrid routing

under a hybrid task flow.
Routing Average latency Throughput Routing efficiency Congestion incidence
Algorithm (cycles) (Gbps) (%) rate (%)
XY Routing 82.3 12.7 68.5 19.4
Adaptive Routing 75.1 14.2 73.8 15.2
Hybrid Routing ~ 58.9 18.6 92.1 6.7

ICCK Transactions on Circuits and Systems

0.8
)

o
o
Ajsusiu peo

T
o
S

r0.2

Figure 5. Queue depth distribution across all 256 matrix
operation unit cores.

It can be observed from Figure 5 that the queue depth
closely correlates with node congestion levels and task
load intensity.

Table 3. Performance evaluation results of the proposed
Double Buffer Pipeline strategy.

Throughput Bubble rate of
Memory Mode (TOPS) pipeline (%)
Static 136 224
allocation
Dynamic 231 5.3
Pipeline

Table 4. Debugging efficiency evaluation of visualization.

Average User

. D False) .

Debugging positioning L satisfaction
. positive

Tools time rate (%) 1 -5
(minutes) ’ points)

Text log 432 31.5 2.8

This article — , 42 46

visualizer

Table 3 demonstrates that the application of the double
buffer mechanism significantly reduces the pipeline
bubble rate and enhances overall system throughput.

4.2.3 Visual Debugging Efficiency Verification

To validate the effectiveness of the proposed
visualization tools, a comparison is conducted
between traditional log-based debugging and the
visual interface introduced in this study. The results is
shown in Table 4. The visualization interface enables

o—?—o o——o|o——o|o——o|o——o

)

> -e o——o|o——o|o——o|o——o o——o|o——.

K

ISR R S R NS Y,

oe'eie'eeeleele'e0'0-000

° e o e o
726/6147

(b)

Figure 6. Screenshot of the data flow drawing.

rapid identification of throughput degradation issues
caused by routing congestion within the NoC, greatly
improving debugging efficiency and clarity.

Figure 4 demonstrates how the visualization tool
effectively highlights congested nodes—such as
overloaded routers—using heat maps and animated
data flow representations. With a delay visualization
setting (SHOW_DELAY 10, see the interface

ICJK

ICCK Transactions on Circuits and Systems

screenshot in Figure 6), the tool significantly enhances
the efficiency of congestion localization. A user
satisfaction survey (measured via a t-test) indicates
a notable improvement, further validating the tool’s
practical engineering value.

Figure 6 presents a data volume animation. The
numerical indicator in the lower-left corner displays
the current simulation time step relative to the total
number of time steps. In the visualization, yellow
nodes represent matrix operation units, red nodes
denote tree nodes, and blue nodes indicate routers.
White boxes highlight the current positions of data
packets, while green circles mark areas experiencing
congestion.

5 Conclusion

This paper addresses the demands of heterogeneous
Al computing by designing and implementing a
behavioral-level Network-on-Chip (NoC) simulation
framework tailored for matrix operations and
programmable co-processing. The proposed
framework fills key gaps in existing tools by providing
robust support for heterogeneous node modeling,
dynamic task scheduling, and visual debugging.

Through the integration of techniques such as
Gray-code-based state machines, a double-buffered
pipelining mechanism, a task-aware hybrid routing
strategy, and a full-link visualization engine, the
framework achieves comprehensive performance
improvements—including reduced communication
latency, increased throughput, and accelerated
debugging efficiency.

Experimental results demonstrate the significant
advantages of the proposed heterogeneous NoC
simulation framework in routing effectiveness,
pipeline throughput, and visual debugging. The
hybrid routing algorithm effectively balances local and
global communication demands using a hierarchical
strategy, while dynamic pipeline management
addresses the memory wall limitations of traditional
architectures. The visualization tools reduce the
system debugging cycle by 78%, supporting rapid
iteration in industrial development environments.

However, the current simulator does not yet model
emerging technologies such as optical interconnects,
and its scalability under large-scale topologies (beyond
8 x 8) requires further validation. Future work
will focus on integrating power consumption models
and extending support for joint simulation of

three-dimensional NoCs and compute-in-memory
architectures.

Data Availability Statement

Data will be made available on request.

Funding

This work was supported in part by the STI 2030-Major
Projects under Grant 2022ZD0208700; in part
by the Shanghai Key Laboratory of Trustworthy
Computing (East China Normal University) under
Grant 247670103399; in part by the Key Laboratory
of Embedded System and Service Computing
(Tongji University), Ministry of Education under
Grant ESSCKF2024-10, and Key Laboratory of
Computational Neuroscience and Brain-Inspired
Intelligence (Fudan University), Ministry of Education
under Grant 257670102051 in part by the Pre-research
Fund of the School of Integrated Circuits (School
of Information Science and Electronic Engineering),
Shanghai Jiao Tong University under Grant JG0340001.

Contflicts of Interest

The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Pérez, L, Vallejo, E., Moreto, M., & Beivide, R. (2020,
August). BST: A BookSim-based toolset to simulate
NoCs with single-and multi-hop bypass. In 2020
IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS) (pp. 47-57). IEEE.
[CrossRef]

Catania, V., Mineo, A., Monteleone, S., Palesi, M., &
Patti, D. (2015, July). Noxim: An open, extensible
and cycle-accurate network on chip simulator. In 2015
IEEE 26th international conference on application-specific
systems, architectures and processors (ASAP) (pp.
162-163). IEEE. [CrossRef]

Kowkutla, V., Kothamasu, S., Shin, K., & Hu, C. (2022,
April). Pushing Low Power Limits on Multi-Core High
Performance SoC. In 2022 23rd International Symposium
on Quality Electronic Design (ISQED) (pp. 1-4). IEEE.
[CrossRef]

Liu, Y., Zhu, H,, Liu, Y., Wang, F., & Fan, B. (2011,
September). Parallel compression checkpointing for
socket-level heterogeneous systems. In 2011 IEEE
International Conference on High Performance Computing
and Communications (pp. 468-476). IEEE. [CrossRef]

https://doi.org/10.1109/ispass48437.2020.00015
https://doi.org/10.1109/asap.2015.7245728
https://doi.org/10.1109/ISQED54688.2022.9806211
https://doi.org/10.1109/HPCC.2011.68

ICCK Transactions on Circuits and Systems

ICJK

[5] Liu, X, Xu, W,, Wang, Q., & Zhang, M. (2024). [11] Zhang, Z., & Seeram, E. (2020). The use of artificial

10

Energy-efficient =~ computing acceleration of
unmanned aerial vehicles based on a cpu/fpga/npu
heterogeneous system. IEEE Internet of Things Journal,
11(16), 27126-27138. [CrossRef]

Liu, P, Jiang, W., Wang, X., Li, H., & Sun, H. (2020).
Research and application of artificial intelligence
service platform for the power field. Global Energy
Interconnection, 3(2), 175-185. [CrossRef]

Abdallah, A. B., & Dang, K. N. (2024). Comprehensive
Review of Neuromorphic Systems. Neuromorphic
Computing Principles and Organization, 275-303.
[CrossRef]

Li, L, Zhang, B., Zhao, W. Sheng, D., Yin,
L., Sheng, X., & Yao, D. (2024). Multimodal
Technologies for Closed-Loop Neural Modulation and
Sensing. Advanced Healthcare Materials, 13(24), 2303289.
[CrossRef]

Nie, Y., Ren, T, & Shi, Z. (2022, May). The
developments and applications of brain-like
computing chips. In International Conference on
Algorithms, Microchips and Network Applications (Vol.
12176, pp. 272-285). SPIE. [CrossRef]

Martin, G., & Chang, H. (2001, October).
System-on-Chip design. In ASICON 2001. 2001
4th International Conference on ASIC Proceedings (Cat.
No. 01TH8549) (pp. 12-17). IEEE. [CrossRef]

dik

Transactions on Green Communications and Networking, and
Associate Editor for IJSSN, JAIR, CST, and Blockchain. (Email:
wuliangshun@sjtu.edu.cn)

intelligence in computed tomography image
reconstruction-a literature review. Journal of Medical
Imaging and radiation sciences, 51(4), 671-677.
[CrossRef]

Liangshun Wu(Member, ICCK) received his
B.S. degree from Central South University,
Changsha, China, in 2014, and his M.S. and
Ph.D. degrees from Wuhan University, Wuhan,
China, in 2017 and 2021, respectively. He
was a Visiting Scholar at the University of
Electro-Communications, Tokyo, Japan, in
2024. He is currently a postdoctoral researcher
at Shanghai Jiao Tong University, Shanghai,
China. He serves as Editor-in-Chief of ICCK

‘ﬂ/

Tao Tao(Member, ICCK) received his B.S.
degree in Intelligence Science and Technology
from Hunan University, Changsha, China. He
then obtained his M.S. and Ph.D. degrees
in Information System Engineering from
Osaka University, Toyonaka, Japan. He

G‘; is currently a postdoctoral researcher at
Shanghai Jiao Tong University. (Email:
tao.tao@lab.ime.cmc.osaka-u.ac.jp)

https://doi.org/10.1109/JIOT.2024.3397649
https://doi.org/10.1016/j.gloei.2020.05.009
https://doi.org/10.1007/978-3-031-83089-1_10
https://doi.org/10.1002/adhm.202303289
https://doi.org/10.1117/12.2636417
https://doi.org/10.1109/ICASIC.2001.982487
https://doi.org/10.1016/j.jmir.2020.09.001

	Introduction
	Related Work
	The Proposed Design
	Behavioral Modeling of Heterogeneous Cores
	State Transition
	Programmable Unit Dynamic Control Interface

	Communication Protocol and Routing Strategy
	Programmable Unit Dynamic Control Interface
	Task-Aware Hybrid Routing Algorithm
	Gate Routing Simulation

	Pipeline Parallel Processing Architecture Based on Double Buffering
	Data Transmission Model
	Double Buffer Mechanism (Mem0 and Mem1) / Ping-Pong Buffering
	Global Timestamp Synchronization Rules

	Full-Link Visual Debugging System
	Packet Tracing
	Network Status Visualization Engine

	Experiment and Verification
	Simulation Setup
	Topology
	Computational Cores
	DMA Configuration
	Programmable Unit Configuration
	Memory Configuration
	Router Configuration

	Results and Discussion
	Comparison of Routing Efficiency and Latency
	Dynamic Pipeline Throughput Optimization
	Visual Debugging Efficiency Verification

	Conclusion
	Liangshun Wu
	Tao Tao

