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Abstract
The Coulomb counting method is simple and
effective in terms of state of charge (SOC)
estimation of lithium-ion batteries. However,
if the current measurement is not accurate, it
will cause a cumulative calculation error, which
will gradually increase with the time. And if the
ambient temperature changes, the available capacity
and initial SOC of the battery will also change. In
order to solve the shortcomings of the traditional
Coulomb counting method of SOC estimation,
an improved method was proposed in this paper
by taking into account the influence of battery
temperature and aging on SOC. It can correct the
initial value of SOC and the maximum available
capacity of the battery more accurately, thus it
solves the cumulative error problem, and improves
the SOC estimation accuracy. A simple, accurate,
and easy-to-implement method of battery SOC
estimation is provided for the battery management
system, which has practical application value.
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Nomenclature Meaning
SOC(t) the SOC value at time t
Qrem the battery remaining capacity
Qmax the maximum available capacity

SOC(t0) the initial value of SOC

∆Q
the change in charge/discharge
capacity from the initial state to the
current state

i(t)
the battery charging and
discharging current

η the Coulomb efficiency,
SOCk the SOC in the present time step
SOCk−1 the SOC in the previous time step

ik
the battery current in the present
time step

∆t the duration of each time step
u

the correction coefficient that Qmax
is affected by temperature and aging

γ
the correction coefficient that the
SOC initial value is affected by the
self-discharge and battery aging
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Abbreviations Full Term
EV electric vehicle
BMS battery management system
SOC state of charge
OCV open circuit voltage
EKF extended Kalman filter
AI artificial intelligence
NN neural network
GA genetic algorithm,

CCCV constant current constant voltage
CC constant current
CV constant voltage

HPPC hybrid pulse power characteristic

1 Introduction
Different from traditional fuel vehicles, the energy of
electric vehicles (EVs) comes from power batteries.
Lithium-ion batteries have become one of the most
attractive rechargeable batteries for EVs due to their
high energy density, low self-discharge rate, no
memory effect, and high cell voltage [1, 2]. Power
battery and battery management system (BMS) are
very important to the power, safe operation and
economic performance of the vehicle, which are
currently a key factor restricting the scale development
of EVs [3, 4].

The state of charge (SOC) is a very important
parameter in the operation of batteries and EVs,
because it is an important index for judging the
remaining capacity of battery, preventing the battery
from overcharging and over-discharging, and whether
it needs to be balanced, etc. Similar to the fuel
gauge of a fuel vehicle, the battery SOC reflects
the remaining power of the battery [5]. However,
the difference between them is that the SOC cannot
be directly measured by a sensor, which must be
obtained indirectly with corresponding estimation
algorithms through some other measurable physical
quantities, such as battery terminal voltage, charging
and discharging current, and battery temperature,
etc. [6].

The research content and arrangement of this paper
are as follows. The Section 2 analyzes and compares
the advantages and disadvantages of existing SOC
estimation methods, points out the position and
problems of Coulomb counting method in SOC
estimation, and introduces the research content and
significance. The Section 3 provides the basic
definition of Coulomb counting. Subsequently,
it provides a refined method and process for

implementing Coulomb countingmethod. The Section
4 describes how the method has been improved,
and the Section 5 is experimental simulation and
comparison. Finally, the summary and conclusion of
this study are presented.

2 Analysis and Comparison of SOC Estimation
Methods for Batteries

The SOC estimation methods mainly include
direct estimation methods and indirect estimation
methods. Direct estimation methods include
the discharge method, the open circuit voltage
(OCV) method, the Coulomb counting method,
the electrochemical impedance method, etc., while
indirect estimation methods mainly include the
model-based filtering/observer methods, such as
extended Kalman filter (EKF), particle filter,H∞filter,
etc. [7, 8], and the artificial intelligence (AI) method,
such as neural network (NN), genetic algorithm
(GA), etc. [9, 10]. The discharge method is simple,
but it needs a lot of experimental data, so it is
difficult to be applied in practice without meeting
the requirements of online estimation in the driving
of EVs. The OCV method is simple, and only need
a small amount of calculation by using the look-up
table method. However, the error is large during
charging and discharging, and the battery must
be left for a long time for OCV prediction, which
contradicts the application of EVs. It is usually
used in conjunction with the Coulomb counting
method [11]. The Coulomb counting method,
also known as ampere hour integration method or
current integration method, is simple and effective.
However, if the current measurement is not accurate,
it will cause a SOC cumulative calculation error,
which will gradually increase with the time. Once
the ambient temperature changes, the available
capacity and initial SOC of the battery will also
change [12]. The electrochemical impedance method
has a clear physical meaning, and it can give relevant
electrochemical explanations [13]. However, it is
inaccurate due to the small change in AC impedance
when the capacity is in the middle section, and
the impedance is difficult to be estimated due to
greatly affected by the initial power, temperature,
aging, etc. Thus, it is difficult to implement on the
controller chip, and rarely used in practice. The
model-based filter/observer method has a strong
correction effect on the initial estimation error with
various optimization algorithms [14], but the amount
of calculation is large. Drift of internal working
point and interference noise have a great influence
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Table 1. Advantages and disadvantages of various SOC estimation methods.
Methods Advantages Precision
Discharge Simple Relatively high
OCV Simple High at the beginning/end of charging

and discharging
Coulomb counting Simple, effective Medium
Electrochemical
impedance Clear physical meaning Relatively high

Model-basedfilter/observer Strong correction of the initial
estimation error High

AI algorithm Data driven-based High

on estimation accuracy. If there are uncertainties in
the system model and noise statistics, its application
will be limited. The AI method is mainly based on
data driven without battery model, and it is good
at handling nonlinearity [15]. However, a large
amount of data is required for training, the process is
complicated and easily affected by training data and
training methods. When it is applied in BMS, it is
difficult to set up the system, so the cost is high. The
main advantages and precision of various methods
are summarized in Table 1.

The Coulomb counting method calculates the SOC
of the battery by integrating the current over time.
The method is accurate for calculating the power
discharged by the battery, and it is the most commonly
used for EVs However, the internal chemical reaction
process of batteries is very complicated when charging
and discharging, and battery SOC is easily affected
by many factors such as temperature, ageing [16],
current, self-discharge, etc., which makes it difficult
to accurately achieve thermal modeling and estimate
the SOC [17]. Its traditional form suffers from
cumulative errors, dependence on initial SOC, and
inability to cope with dynamic operating conditions.
By optimizing algorithms, compensating for multiple
parameters, and integrating other technologies,
the Coulomb counting method can be improved,
significantly enhancing the accuracy and robustness
of SOC estimation, which is of great significance for
BMS. Nowadays, electric vehicle manufacturers have
increasingly high requirements for SOC estimation
accuracy, which is very challenging. The traditional
Coulomb counting method does not consider the
influence of temperature and ageing, so the estimation
accuracy is limited. To solve the above problems, this
paper proposes an improved SOC estimation method
based on Coulomb counting considering temperature
and battery ageing.

3 Definition of SOC and Coulomb Counting
Method

The battery SOC refers to the percentage of the battery
remaining capacity to the maximum available capacity,
generally, the rated capacity is directly used, which
can be expressed as [18, 19]:

SOC(t) =
Qrem(t)

Qmax(t)
× 100% (1)

where SOC(t) is the SOC value at time t; Qrem is
the battery remaining capacity, which refers to the
total electricity released from the current state to the
fully discharged state; Qmax is the maximum available
capacity, which refers to the total electricity released
from the fully charged state to the discharged state
with a sufficiently small current. Qmax is affected by
the battery design capacity, temperature, and aging.
The Coulomb counting method is to calculate the SOC
of the battery by integrating the battery current over
time. The basic principle is shown as follows [20, 21]:
SOC(t) = SOC(t0)− ∆Q

Qmax = SOC(t0)− η
Qmax

∫ t
t0
i(t) dt

(2)
where SOC(t0) represents the initial value of SOC
when the battery starts to charge and discharge; ∆Q
is the change in charge/discharge capacity from the
initial state to the current state; i(t) represents the
battery charging and discharging current, with a
positive value when discharging. η is the Coulomb
efficiency, which is utilized only during charge when
η < 1, and η = 1 during discharge.
In order to simplify the expression, the initial time
t0 = 0.

SOC(t) = SOC0 −
η

Qmax

∫ t

0
i(t) dt (3)

At the same time, according to the above definition
of SOC, in theory, if we know the value of the battery
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SOC at two moments and the total released capacity,
then the maximum available capacity of the battery
can be estimated by the following formula:

Qmax =
∆Q

SOC(t2)− SOC(t1)
=

∫ t2
t1
i(t) dt

SOC(t2)− SOC(t1)
(4)

The Coulomb counting method is described in (2).
However, a digital system works with discrete time,
therefore the discrete-time version of the equation
utilized is (4).

SOCk = SOCk−1 −
η

Qmax
ik∆t (5)

where SOCk is the SOC in the present time step, and
SOCk−1 is the SOC in the previous time step, ik is
the battery current in the present time step, ∆t is the
duration of each time step (such as 100 ms).
According to the basic definition of the Coulomb
counting method, we can obtain the basic
implementation steps of the method.
• Data collection: real time monitoring of battery

charging and discharging current through
high-precision current sensors;

• Discretization processing: divide continuous
current into sampling values with fixed time
intervals (such as 500ms);

• Integral calculation: the product of accumulated
current and time, i.e. ∆Q;

• SOC update: combining the initial SOC and total
battery capacity, output real-time SOC values.

4 Improved Coulomb Counting Method
As shown in Figure 1, the improved Coulomb counting
method mainly includes the correction of the initial
SOC and the maximum available capacity considering
the temperature and aging.
• Correction of initial SOC: Inaccurate initial value
SOC(t0) can lead to subsequent estimation biases.
Combining the OCV method, regularly use the
OCV when the battery is idle to correct the initial
SOC and reduce cumulative errors.

• Dynamic capacity calibration: Adjust the value
of Qmax dynamically based on temperature
and cycle times. The rated capacity of a battery
is affected by the ambient temperature and
the number of battery cycles. Therefore, the

Figure 1. The improved Coulomb counting method for SOC
estimation.

rated capacity of the battery can be corrected
by introducing environmental temperature
correction coefficient and cycle number correction
coefficients, thereby improving the accuracy of
SOC estimation.

According to the obtained correction coefficient, the
Coulomb counting algorithm can be implemented for
the battery SOC estimation, which can be expressed
as:

SOC(t) = γSOC0 −
η

µQmax

∫ t

0
i(t) dt (6)

where µ represents the correction coefficient thatQmax
is affected by temperature and aging, and then µQmax
is themaximum available capacity of the battery under
different temperature and aging degrees; γ is the
correction coefficient that the initial value of the battery
SOC is affected by the self-discharge and battery aging,
and then γSOC0 is the initial value of battery SOC
under different aging.
The discrete-time version of equation (6) in a digital
system is expressed as

SOCk = γSOCk−1 −
η

µQmax
ik∆t (7)

5 Simulation and Verification
Taking a lithium-iron battery pack with a rated
capacity of 31 Ah as an example, constant current
constant voltage (CCCV) charge tests and hybrid
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Table 2. Basic parameters of battery.
Battery parameter values
Rated capacity 31Ah

Discharge termination voltage 2.0 V
Nominal voltage 3.2 V

Charging termination voltage 3.65 V

pulse power characteristic (HPPC) discharge tests
were conducted on the battery separately. The basic
parameters of the battery are shown in Table 2.
The basic testing process is as follows: firstly, the
lithium-ion battery module is fully charged using the
CCCV charging strategy. In the CC stage, the charging
current is set to 1/3 C; in the CV stage, the charging
voltage is set to 3.65V, and the charging cut-off current
is 1/50C, or the charging is stopped when the charging
time has reached 1 hour. After charging is completed,
the lithium-ion battery module is left to stand and
then subjected to HPPC testing, applying a certain
pulse signal and measuring the battery response. The
mixed pulses in HPPC are decomposed into discharge
pulses and charge pulses, therefore, battery charging
and discharging are divided into two processes: pulse
current discharge process and pulse current charging
process. During the pulse current discharge process,
a fully charged battery is discharged at a rate of 1C,
with a discharge pulse stage of 5% SOC, until the
battery is completely discharged. Here, 1C represents
continuous discharge of the battery for 1 hour at a
current equal to the nominal capacity.
The charging and discharging current of CCCV and
HPPC is shown in Figures 2 and 3. And the tested
current data is used to verify the estimation accuracy
of battery SOC under charging and discharging
conditions using different methods.

Figure 2. Charging current of CCCV.

The parameter settings of different Coulomb counting
algorithms for SOC estimation are shown in Table 3.

Figure 3. Charging and discharging current of HPPC.

Table 3. Parameter settings of different Coulomb counting
algorithms for SOC estimation.

Methods Description Parameter Values
M1 Test value /
M2 No correction γ=1, u =1
M3 Improvement 1 γ=0.985, u=0.982
M4 Improvement 2 γ=0.998, u=0.996

M1 represents the test data, M2 represents the
Coulomb counting algorithms without correction
factors, M3 and M4 represent the Coulomb counting
algorithms method with different correction factors,
respectively.

Figure 4. SOC estimation under constant current charging.

Different comparative experiments are modeled and
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Figure 5. SOC estimation under HPPC discharging.

simulated in the MATLAB environment. The Matlab
simulation model mainly includes input modules
for charging and discharging current over time,
standard and improved Coulomb counting methods
with correction factors, battery capacity modules, and
output oscilloscope modules.
Figures 4 and 5 show the estimation of SOC under
CCCV charge and HPPC discharge, respectively. The
M4 method estimates SOC with the highest accuracy,
while the uncorrected M2 method estimates SOC with
the lowest accuracy. It can be seen that the more
accurate the identification of the correction coefficient,
the higher the accuracy of SOC estimation.
The comparison of the maximum error (ME), mean
absolute error (MAE), and root mean square error
(RMSE) indicators of the three methods is shown in
Table 4. Among them, MAE represents the average
absolute error between the predicted value and the
true value of the model, which is used to measure
the degree of closeness between the prediction and
the final result. The smaller the MAE, the better the
prediction. Its definition is as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

where n is the number of samples, yi is the actual value,

Table 4. Comparison of regression evaluation indicators.
Tests Methods ME MAE RMSE

CCCV
M2 4.42 0.63 1.46
M3 0.98 0.07 0.21
M4 0.25 0.02 0.06

HPPC
M2 4.07 2.35 2.55
M3 3.09 2.02 2.17
M4 0.57 0.34 0.37

and ŷi is the predicted value.
RMSE is used to evaluate the difference between
observed values and model predictions, and to
compare the prediction errors of different models on
specific datasets. The smaller the RMSE value, the
closer the predicted value is to the true value, and
the higher the prediction accuracy of the model. Its
definition is as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (9)

From the experimental results, it can be seen that
initial SOC and aging have a significant impact on
the accuracy of the entire SOC estimation process.
As the battery is used for a period of time, it is
necessary to correct parameters such as the initial SOC
value and maximum available capacity to eliminate
cumulative errors caused by current sensor errors and
measurement noise.

6 Conclusion
Portable devices such as mobile phones and laptops
require real-time monitoring of battery status,
and the Coulomb counting method can meet the
requirement by providing reliable SOC estimation.
However, electric vehicles, energy storage systems,
and others require higher accuracy in estimating
battery SOC. Therefore, it is necessary to improve
the Coulomb counting method to provide real-time
SOC information, help manage the charging and
discharging process of the battery, and optimize
energy efficiency.
An improved Coulomb counting method is proposed
by taking into account the influence of battery
temperature and ageing on SOC, which can correct
the initial value of SOC and the maximum available
capacity of the battery more accurately, thus it solves
the cumulative error of the Coulomb counting method,
and improves the SOC estimation accuracy.
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