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Abstract
With the increasing global focus on renewable
energy and the growing proportion of renewable
power in the energy mix, accurate forecasting of
renewable power demand has become crucial.
This study addresses this challenge by proposing
a multimodal information fusion approach that
integrates time series data and textual data
to leverage complementary information from
heterogeneous sources. We develop a hybrid
predictive model combining CNN and Bi-GRU
architectures. First, time series data (e.g., historical
power generation) and textual data (e.g., policy
documents) are preprocessed through normalization
and tokenization. Next, CNNs extract spatial
features from both data modalities, which are
fused via concatenation. The fused features
are then fed into a Bi-GRU network to capture
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temporal dependencies, ultimately forming a robust
CNN-Bi-GRU model. Comparative experiments
with ARIMA, standalone GRU, and EEMD-ARIMA
(a hybrid model combining ensemble empirical
mode decomposition with ARIMA) demonstrate
the superiority of our approach in both short- and
long-term forecasting tasks on the same dataset. This
research offers a potential framework to enhance
renewable power demand prediction, supporting
the industry’s sustainable growth and practical
applications.

Keywords: multimodal information fusion, renewable
electricity demand forecasting, CNN, Bi-GRU, predictive
performance.

1 Introduction
In recent years, there has been a growing global
emphasis on sustainable and renewable energy, driven
by concerns over climate change and the finite nature
of fossil fuels. Renewable electricity, a key component
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of the energy transition, continues to increase its
share in global power generation. As this transition
unfolds, precise forecasting of renewable energy
demand becomes essential. Accurate prediction of
electricity demand is crucial in today’s society, as
it not only supports the achievement of sustainable
energy development goals but also provides valuable
insights for the transformation of electricity markets
and the future of energy needs [1, 2]. By combining
precise forecasts of electricity demand with renewable
energy supply, new decision-making strategies can
be proposed for global system planning. Therefore,
developing an effective electricity demand forecasting
framework is imperative.

In traditional electricity consumption forecasting
methods, regression analysis and time series models
are the most commonly used techniques. Bianco
et al. [3] applied linear regression models to
predict electricity consumption in Italy, while Arisoy
et al. [4] used historical time series data to
forecast residential electricity demand. Several
other studies [5–7] employed ARIMA models and
seasonal ARIMA models to predict electricity loads.
Mitkov et al. [8] developed prediction models for
future energy demand using ARIMA models based
on the linear characteristics of historical electricity
consumption data. However, econometric models tend
to perform poorly in predicting nonlinear sequences
due to their complexity [9]. Amjady et al. [10]
proposed an enhanced ARIMA model for short-term
electric load forecasting, which incorporates both
temperature and electric load data to predict hourly
loads and daily peak electricity demand. Feinberg
et al. [11] integrated temporal factors, weather
data, and customer segmentation in their short-term
electric load forecasts. Despite these advances,
linear regression models face significant challenges
in capturing nonlinear relationships, especially when
the demand for electricity and its influencing factors
exhibit nonlinear dynamics. This makes it difficult
for linear regression models to accurately capture
nonlinear load demand patterns across different time
periods [12].

With the advancement of artificial neural networks, the
ability to address nonlinear problems has significantly
improved [13, 14]. This improvement allows solutions
to overcome the limitations of linear regression
models in handling nonlinear relationships [15, 16].
As a result, some researchers have started combining
regression models with artificial intelligence in
demand forecasting [17]. For instance, Valenzuela et

al. [18] integrated the nonlinear mapping capability
of artificial neural networks with time series models,
proposing an ARIMA-ANNmodel. In this approach,
a fuzzy logic expert system was used to determine the
differencing order of the ARIMA model, as well as the
orders of the autoregressive (AR) and moving average
(MA) components. Fan et al. [19] applied ARIMA
to filter the linear trend in time series data and used
the residuals as input to an LSTM model, developing
an ARIMA-LSTM ensemble model to predict oil well
production effectively. Nie et al. [20] introduced a
novel hybrid model combining data preprocessing,
individual forecasting algorithms, and weight
determination techniques, demonstrating higher
accuracy and improved forecasting performance.
However, renewable energy power systems are
complex and dynamic, influenced by various factors
such as weather, technological advancements, policy
changes, and social trends [21]. These models may
struggle when dealing with non-time-series electricity
demand data, suggesting the need for further research
into more advanced predictive models.

Multimodal information fusion refers to the process
of collecting and integrating information from diverse
data sources to improve decision-making, forecasting,
recognition, or classification tasks [22], [23]. Recently,
an increasing number of scholars have focused on
applying multimodal fusion to electricity demand
forecasting. For example, Xuan et al. [24] employed a
feature selection algorithm based on random forests to
identify key input features for load forecasting models.
After selecting the input features, they proposed a
hybrid neural network algorithm for short-term load
forecasting, which leveragesmultimodal fusion. Ji et al.
[25] developed an advancedmultimodal fusion model
with enhanced predictive performance by combining
the outputs of three models—Gradient Boosting
Decision Trees, Extreme Gradient Boosting, and
Light Gradient Boosting Machine—through decision
fusion. To capture more comprehensive temporal
and spatial features from the original data, Kong
et al. [26] proposed an integrated approach for
short-term load forecasting, combining Empirical
Mode Decomposition (EMD), the similar day method,
and deep neural networks. Within this framework,
a CNN-LSTM model based on EMD is used to
extract multimodal spatiotemporal features. These
multimodal fusion models not only increase the
complexity and dimensionality of the forecasting
models but also improve prediction accuracy and
reliability by capturing a broader range of influencing
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factors. However, there is currently no literature
on how to effectively select the modality that best
represents key factors influencing power demand, such
as weather conditions, economic activities, political
events, and social behavior patterns.
• Initially, we conduct an analysis of data relevant to

short and long-term electricity demand. The data
is categorized into short and long-term forecasting
data. Subsequently, CNNs are employed to
extract two types of latent features pertinent to
the research objective from numerical time series
data and textual data.

• Regarding the fusion methodology, we adopt
a concatenation fusion approach to organically
merge the temporal latent features and textual
latent features. The fused features are then
fed into a model constructed using Bi-GRU for
prediction.

• Ultimately, the constructed short-term and
long-term demand forecasting models
are validated through experimentation,
demonstrating their superior predictive
performance compared to the ARIMA model,
single GRU network, and combination model
(EEMD-ARIMA).

2 Related Works
2.1 Forecasting-related Definitions
Prediction refers to estimating future trends using
existing data or past experiences. Renewable energy
demand forecasting involves multiple influencing
factors, including energy consumption patterns,
policy changes, technological advancements, climate
conditions, and economic growth. Its primary
objective is to assist governments, energy enterprises,
and market decision-makers in making scientifically
sound plans, improving energy supply chain
management efficiency, optimizing grid dispatching,
and promoting sustainable energy development.
Based on the forecasting time horizon, renewable
energy demand forecasting can be categorized into
short-term, medium-term, and long-term predictions.
(1) Short-term renewable energy demand forecasting
typically covers a few days, weeks, or months into the
future. It primarily relies on recent weather data, grid
load conditions, and energy consumption patterns.
It is widely used in power dispatching, demand
response management, and short-term energy market
transactions. For example, given the high variability

of wind and solar energy, short-term forecasting
helps grid operators efficiently allocate energy storage
resources and optimize the balance between electricity
supply and demand.
(2) Medium-term renewable energy demand
forecasting involves predicting energy demand trends
over the coming months to several years. Compared
to short-term forecasting, medium-term prediction
requires considering a broader range of factors, such
as economic development, social changes, policy
adjustments, and industrial structure upgrades. For
instance, governments can utilize medium-term
forecasting results to design renewable energy subsidy
policies, optimize energy infrastructure construction,
and facilitate sustainable energy transitions.
(3) Long-term renewable energy demand forecasting
spans several years to decades and involves more
complex factors, including technological progress,
global climate change, energy market transformations,
and carbon neutrality goals. Although long-term
forecasting entails greater uncertainty and risks, it
is crucial for formulating national energy strategies,
investing in new energy projects, and establishing
carbon reduction plans. For example, energy
companies can use long-term predictions to plan
the development and investment of wind and solar
energy projects, aligning with future energy structure
adjustments.

2.2 Forecasting Methods
Traditional forecasting methods: In the research of
electricity demand forecasting, traditional methods
primarily rely on statistical analysis and time series
modeling. Regression analysis is a common statistical
approach; for instance, Bianco et al. [3] utilized a linear
regression model to predict electricity consumption
in Italy. Additionally, time series methods, such
as ARIMA and its improved versions, have been
widely applied in electricity load forecasting. For
example, some employed ARIMA and seasonal
ARIMA models [5–7] to forecast electricity load,
respectively. Furthermore, Mitkov extended the use
of the ARIMA model by incorporating the linear
characteristics of historical electricity consumption
data to establish an energy demand forecasting model
[8]. However, traditional models often underperform
when dealing with complex nonlinear features,
especially when electricity demand is influenced by
multiple factors such as weather, policy changes, and
economic fluctuations. Statistical models frequently
fail to accurately capture the intricate dynamic

3



ICCK Transactions on Emerging Topics in Artificial Intelligence

patterns in the data, leading to diminished forecasting
performance [9].

Deep learning prediction methods: ANN with
their powerful nonlinear modeling capabilities, can
effectively address the limitations of traditional
methods in handling complex data patterns [13].
For instance, Valenzuela et al. [18] proposed an
ARIMA-ANN hybrid model that integrates a fuzzy
logic expert system to optimize the parameters of the
ARIMAmodel, thereby improving prediction accuracy.
Additionally, Fan et al. [19] employed ARIMA to
preprocess time series data and fed the residuals into
an LSTM network, constructing an ARIMA-LSTM
integrated forecasting model to enhance the accuracy
of oil well production predictions. Nie et al. [20]
utilized a multi-objective grey wolf optimization
algorithm to combine radial basis function networks,
generalized regression neural networks, and extreme
learning machines, further improving prediction
performance. These studies demonstrate that
integrating traditional statistical methods with deep
learning techniques can uncover trends in electricity
demand from time series data, significantly enhance
the accuracy of electricity demand forecasting, and
improve adaptability to complex load variations.
However, although combining regression models with
deep learning models can effectively leverage the
strengths of each approach to improve prediction
accuracy, renewable energy power systems remain
inherently complex and dynamic. These systems
are influenced by multiple factors such as weather
patterns, technological advancements, policy changes,
and social trends, which are often difficult to fully
capture using single time series data alone.

Multimodal fusion methods: Multimodal
information fusion involves integrating data from
various sources to improve decision-making [22],
prediction [23], recognition, and classification tasks.
In recent years, this approach has garnered increasing
attention in electricity demand forecasting. For
instance, Xuan et al. [24] employed a random
forest-based feature selection algorithm to optimize
input features for load forecasting models and
proposed a hybrid neural network-based method
for short-term load forecasting using multimodal
fusion. Ji et al. [25] applied decision fusion by
combining GBDT, XGBoost, and LightGBM to
develop a multimodal fusion model with enhanced
predictive performance. Furthermore, Kong et al. [26]
introduced a short-term load forecasting method that
integrates Empirical Mode Decomposition (EMD), the

similar-day method, and deep neural networks. This
study utilized an EMD-based CNN-LSTM approach
to extract multimodal spatiotemporal features from
the input data, improving prediction accuracy.
Despite significant progress in multimodal fusion
research, several key challenges remain. For
instance, effectively selecting key modalities to
comprehensively represent core factors influencing
electricity demand—such as weather conditions,
economic activities, policy changes, and social
behavior patterns—remains an unresolved issue.
Additionally, traditional deep learning models still
face limitations in handling long-sequence data,
making it difficult to capture long-term dependencies
fully. To address these challenges, this paper
proposes a multimodal fusion-based forecasting
model using CNN-Bi-LSTM. This model leverages
CNN’s feature extraction capabilities and Bi-LSTM’s
bidirectional learning ability in processing time-series
data, enablingmore efficient capture of spatiotemporal
characteristics in electricity demand and enhancing
prediction accuracy and stability.

3 Methodology
In order to combine the temporal information of
time series data with the nature information of
textual data, we propose a novel ensemble prediction
modeling approach based on multimodal information
fusion for quantitative analysis and forecasting of
electricity demand and renewable energy supply. The
fundamental principle of the prediction model lies in
the concept of multimodal information fusion-driven
modeling, where the complementary nature of time
series data and textual data forms the foundational
assumption for building effective models. The
framework of this model is illustrated in Figure 1,
consisting of four main steps:
(1) Data Preprocessing: The preprocessing of both
modalities of data is conducted separately. Time
series data is transformed into one-dimensional format
using time window techniques, while textual data
undergoes structured processing using the Word2Vec
model, capable of extracting semantic features of text.
(2) Feature Extraction: Utilizing CNNs, we extract
the hidden features of the processed time series and
textual data, and then combine the features extracted
from both data modalities as input for the prediction
module.
(3) Feature Fusion: Considering the heterogeneity
of the original data, this paper employs vector
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Figure 1. Prediction scheme based on multi-modal information fusion.

concatenation to merge and integrate the hidden
features of the two modalities.

(4) Prediction Module: Model training is conducted
using Bi-GRU, which exhibit favorable properties for
processing sequential data.

It is worth noting that due to the differences between
mid-term and long-term predictions in time series
and textual data, this paper adopts the same model
framework to train corresponding mid-to-long-term
electricity demand prediction models using different
time series and textual data.

3.1 Data Preprocessing
In most cases, the raw data we acquire tends to
be messy and incomplete, making it challenging
for machine learning models to extract meaningful
information. To ensure that the data fed into the input
feature extraction module meets the requirements,
some preprocessing of the raw data is necessary.

Time series data preprocessing: Our process begins
with an initial cleanup of the raw time series data,
starting with the filling of missing values to ensure
data completeness and continuity. This step is crucial
for maintaining data quality and for subsequent
analyses. Following this, we employ the sliding
window technique for further processing. The sliding
window technique moves a fixed-length window
across the time series, extracting segments of data
from each window. This transforms continuous data
segments into a series of independent observations,
making the processed data more suitable for input
into CNN. This approach not only aids in capturing
local features and trends within the time series data
but also facilitates the model’s learning of temporal
dependencies, laying the groundwork for subsequent
deep learning model training and prediction. Finally,
to map the data within a fixed range, we utilize the
method of min-max normalization to process the input
data. Themin-max normalization formula is expressed

as follows:
x =

xt − xmin
xmax − xmin

(1)

Figure 2. The Word2Vec model.

Textual data preprocessing: The raw textual data
is considered unstructured data and requires data
preprocessing before feature extraction. During
the process of converting text data, it’s essential to
preserve as much useful information as possible.
Basic preprocessing of textual data includes steps like
tokenization and stop word removal. Subsequently,
the Word2Vec model [27] is utilized for text
representation, also known as text vectorization (Word
Embedding). This technique enables quantitative
measurement of the relationships between words,
facilitating the exploration of connections between
them. Text vectorization eliminates the cumbersome
task of feature processing, maximally preserving the
essential content within the text. The model’s network
structure comprises three layers: the input layer, the
projection layer, and the output layer, as illustrated
in Figure 2. The purpose of training this model is to
maximize the value expressed as follows:

1

T

T∑
t=1

∑
−c≤j≤c

log p(wt+j |wt) (2)

where c > 0 represents the window size, and the
conditional probability p(wt+j |wt) is designed as:

P (w0|wt) =
exp

(
e′(w)T e(wt)

)∑|v|
w=1 exp (e

′(w)T e(wt))
(3)

However, Word2Vec has limitations, such as its
inability to fully capture contextual nuances and
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polysemy in textual data. To address this, alternative
or complementary methods such as Bidirectional
Encoder Representations from Transformers
(BERT) or GloVe could be explored to enhance
the representation of textual information and mitigate
potential biases.

Figure 3. Inception structure diagram.

3.2 Feature Extraction
This section focuses on exploring how to perform
feature extraction from preprocessed data, a key aspect
of the method proposed in this paper. The input data
consists of two distinct datasets, comprising time series
data and related textual data. We aim to extract data
features from these two types of data that are suitable
for constructing a Bi-GRU prediction model.
Feature extraction of time series data: The Inception
architecture is an innovative convolutional neural
network design aimed at capturing multi-scale
image features by paralleling convolutions of
varying sizes, while employing convolutions for
dimensionality reduction to enhance computational
efficiency and minimize overfitting [28], as depicted
in Figure 3. This architecture has undergone several
iterations, incorporating optimizations such as batch
normalization and residual connections, showcasing
exceptional performance and efficient computation in
tasks like image recognition and classification. The
entire process of using CNNs to extract features from
time series data is outlined as follows:
First, the convolutional layer extracts features from the
input data.

ci = f (W ⊗Xi:i+h−1 + b) (4)

where W , b, h denote the convolution kernel
parameters.
Second, in order to accelerate the convergence speed,
the ReLU function is added as an activation function

after the convolutional layer. The formula is as follows:

f(x) = max(x, 0) (5)

Third, after the convolutional layer, a pooling layer
is introduced to reduce the dimensionality of the
feature maps and prevent the curse of dimensionality.
The max-pooling strategy is applied to perform
pooling operations on the feature maps obtained after
the convolution operation, effectively reducing the
number of parameters in the model while retaining
useful information. This pooling operation is a
common technique used to reduce the complexity of
computations and improve the performance of the
model by reducing the dimensionality of the input
feature maps. The formula is as follows:

zi = max{cj} (6)

where ci represents the feature map.
Finally, add a flattening layer to flatten the pooled
feature maps into one-dimensional form, forming the
final latent feature for the time series data.
Text data feature extraction: Traditional text feature
extraction methods face challenges with high
dimensionality and inefficiency. This study adopts
a CNN-based approach proposed by Er et al. [29],
which not only excels in feature extraction but also
aligns structurally with previously extracted time
series features. The text feature extraction process,
illustrated in Figure 4, utilizes convolution and
pooling as core mechanisms. These operations process
fixed-length text sequences to distill primary features,
which are then transformed into advanced features
through further convolution and pooling. After being
processed by a flattening layer, these features are
directly output as the text features (TF) required for
this study.

3.3 Feature Fusion
The Inception structure in CNNs is particularly
effective for text feature extraction due to itsmulti-scale
processing capability, allowing simultaneous capture
of both local and global textual patterns. Its
efficient architecture facilitates deep, complex feature
learning without substantial computational cost,
offering adaptability for various text analysis tasks
while also mitigating overfitting through its parallel
convolutional paths. This makes it adept at handling
the intricacies of textual data, enhancing model
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Figure 4. Text feature extraction process.

Figure 5. Feature fusion diagram.

performance across a range of linguistic analysis
applications.
This paper adopts the feature-level fusion strategy
to build the prediction model, merging the latent
features obtained from the two modalities through
multimodal fusion methods. For feature fusion, we
choose the direct concatenation of feature vectors
to preserve the original data information as much
as possible. In the linear fusion method based on
manual rules, weight values need to be manually set
to adjust the proportion of feature vectors, which
may introduce subjectivity and limitations. The
similarity matrix approach requires computing the
similarity matrix between feature vectors, which may
encounter complexity issues inmatrix calculations. On
the other hand, the direct concatenation of feature
vectors is relatively simple and straightforward, as
it only involves concatenating the feature vectors
together. Especially in the case of heterogeneous
data, the direct concatenation method does not require
additional calculations and transformations, making
it more convenient and efficient. In summary, when
performing feature fusion, the most suitable fusion
method should be selected based on the specific
situation to maximize the extraction and preservation
of data information.
Vector concatenation, or concatenation fusion as
described by Yang et al. [30], involves joining latent
features from time series and text data end-to-end
for feature fusion, depicted in Figure 5. SF and
TF denote latent features from time series and
text, with elements like being vectors [y1, y2, . . . , yn].

This process leverages DenseNet’s [31] concatenate
operation to merge and aggregate flattened vectors
post-extraction.
In this study, vector concatenation is adopted
as the fusion method for textual and time series
data, primarily due to its computational efficiency,
interpretability, and suitability for electricity demand
forecasting. Electricity demand forecasting involves
time series data (such as historical load and
meteorological factors) and textual data (such as
policy announcements and news reports), which have
distinct feature representations. Directly mapping
them into the same space may result in information
loss or distribution mismatches. Vector concatenation
enables efficient information fusion while preserving
the independent characteristics of each modality,
avoiding the computational overhead and noise that
more complex models might introduce. Moreover,
electricity demand forecasting often requires high
real-time performance, and vector concatenation
offers a low computational cost, making it suitable
for large-scale data processing and online prediction
scenarios. Experimental comparisons demonstrate
that this method achieves a good balance between
prediction accuracy and computational efficiency in
the fusion of time series and textual data, effectively
meeting the practical application needs of electricity
demand forecasting.

Figure 6. The architecture of Bi-GRU.
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3.4 Prediction Model
The prediction module employs the Bi-directional
Gated Recurrent Unit (Bi-GRU) neural network (as
shown in Figure 6), using the fused features TSF as
input. Bi-GRU is chosen for two key reasons: First, its
bidirectional processing effectively models temporal
dependencies and mitigates the vanishing gradient
problem. Second, while CNNs excel at extracting
local features, Bi-GRU’s long-term memory capability
complements this by capturing broader temporal
relationships.
Unlike traditional RNNs, Bi-GRU processes sequences
in both forward and backward directions, allowing it
to incorporate past and future context. Its architecture
consists of input layers, bidirectional GRU layers, and
output layers, where each GRU layer contains two
subunits processing data in opposite directions. This
enables the model to better understand sequential
patterns. Bi-GRU has proven effective in tasks such
as natural language processing, speech recognition,
and time series analysis due to its ability to capture
long-range dependencies efficiently.
First, for every GRU, the update gate decides how
much of the past information should be retained for the
current time step. It takes as input the concatenation
of the previous hidden state and the current input .
This gate determines the proportion of the previous
hidden state that will be combined with the candidate
hidden state . It is calculated using a sigmoid activation
function as follows:

zt = σ (Wz · [ht−1, xt] + bz) (7)

The reset gate controls how much of the past
information should influence the calculation of
the candidate hidden state h̃t. It also takes the
concatenation of the previous hidden state ht−1 and
the current input xt as input and is computed using a
sigmoid activation function as follows:

rt = σ (Wr · [ht−1, xt] + br) (8)

The candidate hidden state is an intermediate
representation computed based on the reset gate and
the concatenation of the modified previous hidden
state rt⊙ht−1 and the current input xt. This candidate
hidden state captures the potential new information
for the current time step.

h̃t = tanh (W · [rt ⊙ ht−1, xt] + b) (9)

Finally, the update gate zt. decides how much of the
candidate hidden state h̃t should replace the previous
hidden state ht−1.

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (10)

where ⊙ denotes element-wise multiplication.
For Bi-GRU, the input sequence is [x1, x2, . . . , xT ],
where xt is the t-th element in the sequence. The
goal of Bi-GRU is to model the entire sequence and
extract bidirectional information from it. Bi-GRU
consists of two independent GRUs: one for processing
the forward sequence and the other for processing
the backward sequence. For the forward GRU zft ,
the forward update gate determines how much the
previous hidden state hft−1 and the current input xt
influence the current hidden state hft . It is calculated
using a sigmoid function. Forward Reset Gate rft , the
forward reset gate determines how much the previous
hidden state hft−1 and the current input xt influence the
calculation of the candidate hidden state h̃tf . Similarly,
it is computed using a sigmoid function.
Finally, Bi-GRU concatenates the forward and
backward hidden states to form the complete
bidirectional context information. During training,
Bi-GRU learns how to simultaneously consider both
forward and backward information and generate the
final sequential representation.

3.5 Evaluation Criteria
o assess predictive performance, the RootMean Square
Error (RMSE) and Mean Absolute Percentage Error
(MAPE) are utilized to evaluate prediction accuracy.
Additionally, the directional accuracy is evaluated
using the Dstat metric. The calculation methods for
these three metrics are as follows:
RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 (11)

where n is the total number of observations, Yi
represents the actual value, and Ŷi denotes the
predicted value.
MAPE:

MAPE =
100

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (12)
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where n is the total number of observations, Yi
represents the actual value, and Ŷi denotes the
predicted value.
Dstat:

Dstat = 1

n

n∑
i=1

sign(Yi − Yi−1) · sign(Ŷi − Ŷi−1) (13)

where n is the total number of observations, Yi
represents the actual value at time i, Ŷi denotes the
predicted value at time i, and sign(·) is the sign
function. Indeed, smaller values of RMSE and MAPE
indicate higher accuracy in horizontal predictions,
indicating better performance of the prediction model.
Conversely, a larger value of Dstat indicates better
directional prediction accuracy.

4 Results and Its Validation
4.1 Dataset
The predictive model requires heterogeneous data
from multiple sources, including time series data
and various types of textual data. In this study,
datasets related to renewable energy supply time series
data and relevant textual data were obtained. Each
observation in the time series data is influenced by
past observations, allowing for the prediction of future
trends using its memory. For the renewable energy
supply time series dataset, data were sourced from
the official website of the National Bureau of Statistics.
This dataset includes the electricity generation from
major clean energy sources such as hydropower, wind
power, and photovoltaic power, aggregated to monthly
renewable energy supply. It covers 240 monthly
observations from January 2003 to December 2022.
As shown in Figure 7, with China actively promoting
carbon peaking and carbon neutrality goals, and
actively promoting the development of renewable
energy, the country’s renewable energy generation
has been steadily increasing. Additionally, similar
to electricity consumption, seasonal fluctuations are
observed due to differences in power demand between
seasons. Furthermore, due to China’s energy resource
endowment, the country’s power supply is dominated
by coal-fired power generation, and investment in
renewable energy power generation is also constrained
by existing large-scale coal-fired power installations,
leading to a gradual slowdown in its growth rate.
The text data reveals that the demand for electricity
is influenced by various factors, including political,
economic, social, and technological aspects.

Figure 7. Monthly generation of renewable energy from
2003 to 2022.

Short-term electricity demand is primarily affected by
seasonality, weather conditions, holidays, and special
events, while medium and long-term forecasts place
more emphasis on macroeconomic trends, population
growth, energy policies, technological advancements,
and societal changes. Therefore, different approaches
may be required for short-term and long-term
predictions based on text data. To ensure data
accuracy, we collected official data concurrent with
the electricity time series data through various means.
Ultimately, the text dataset related to electricity
demand covers 11342 records from January 2000 to
December 2022.

4.2 Model Construction
The experiments in this article were conducted on the
Keras deep learning framework. After preprocessing
the input data, which includes time series and textual
information, it was fed into the proposedCNN-Bi-GRU
model for training.
For time series data, the first step involves filling in
missing valueswithin the dataset. Next, the time series
data needs to be reshaped into one-dimensional format.
A parameter, n_steps, is set to determine the size of
the time window. The dataset is then structured such
that the input samples for the time series data have a
length of the preceding n_steps periods, and the value
for the next period (n_steps + 1) is used as the label.
Subsequently, the data undergoes normalization using
the min-max scaling method to map it within a fixed
range. Finally, the dataset is divided into training and
testing sets in a 9:1 ratio.
Before formally constructing the text data processing
module, it is necessary to build the Word2Vec
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Figure 8. Multi-source data labeling.

model for Chinese electricity demand. Firstly, each
category of text data is aggregated on a monthly basis.
Subsequently, textual data from different categories
will be combined in chronological order, forming
a corpus comprising all text data. Subsequently,
this corpus is utilized to train the Word2Vec model,
which will serve as the corpus for text vectorization
in subsequent steps. Through multiple experimental
comparisons, the dimensionality parameter value for
vectors is set to 200, and the sliding window parameter
value is selected as 15. Additionally, a lag_period is set
as the text’s lagging period to solve the delayed effect
of text data. The corresponding labels are illustrated
in Figure 8.

Upon formally constructing the text data processing
module, after the basic preprocessing steps such
as tokenization and stop word removal, the raw
unstructured text data is vectorized using the
pre-trained Word2Vec model. Subsequently, the
parameter lag_period is set, and in conjunction with
the pre-allocated training and testing datasets for the
time series data, the training and testing datasets for
the text data are partitioned. Finally, a subset of
text data with a length of lag_period is retained for
predicting future trends. Once the complete dataset is
constructed, text data of length lag_period is retained
based on the varying lag periods. For experiments, the
ratio of the dataset to the training set is 9:1. The model
is trained using the training set data and its predictive
ability is evaluated using the validation set.

Subsequently, when constructing the temporal CNN
neural network, the network is set up according to the
Inception structure with adjustable width. For each
channel of the network, an input layer, convolutional
layer, pooling layer, and flattening layer are added,
with the number of convolutional kernels in the
convolutional layer set as an adjustable parameter. The
outputs of the flattening layers from each channel are
then aggregated to form the output of the temporal
CNN neural network. As for the text CNN neural
network, the operations are similar to the temporal

Figure 9. Short-period forecast curves for four models.

Figure 10. Short-period forecast error curves for four
models.

CNN, except that an Embedding layer is added at the
input layer to pre-train word vectors.
Finally, the Bi-GRU prediction module is constructed.
The two types of latent features obtained from the
feature extraction module are aggregated as inputs
to the Bi-GRU neural network. The number of
hidden neurons in the network is set as an adjustable
parameter. MSE is utilized as the loss function, and
Adam is employed as the optimizer to train the model.

4.3 Model Evaluation
The dataset is labeled using the renewable energy
generation data from the previous 6 months and
aggregated textual data from 36 months ago to predict
the data for the next month. The final dataset
comprises 234 entries, with 210 entries in the training
set and 24 entries in the test set. This section will
compare the effectiveness of the proposed renewable
energy supply prediction model based on multimodal
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Figure 11. Evaluation criteria for short-period forecasting of
four models.

information fusion with ARIMA model, single GRU
network, and composite model EEMD-ARIMA to
validate its efficacy. This experiment is primarily
divided into two parts: the first part focuses on
short-term forecasting by month, while the second
part deals with long-term forecasting on a semi-annual
basis.

Figure 9 demonstrates the prediction curves of the
real value of electricity with the four models ARIMA,
GRU, EEMD-ARIMA, and CNN-BI-GRU for renewable
electricity. Figure 10 presents the prediction error
curves for the fourmodels. Figure 11 displays the three
evaluation metrics MAPE, RMSE, Dstat for the four
models. Based on these short-period forecast results,
we can observer these conclusion as follows.

First, Figure 9 presents a comparison between the
actual electricity values and the predictions made by
four different models: ARIMA, GRU, EEMD-ARIMA,
and CNN-BI-GRU. It is noticeable that while all
models follow the trend of the actual values to some
extent, they each have varying degrees of accuracy
and precision. The short-term nature of the forecast
likely introduces significant uncertainty due to the
influence of many unpredictable factors that can
affect electricity consumption and production on a
short scale. Additionally, Figure 10 illustrates the
forecasting errors of the same models. It appears that
some models have larger spikes in error, potentially
indicating moments when the actual values had
sudden changes that the models failed to predict
accurately. The variability and sudden changes in
electricity demand or supply can be difficult for some
models to capture, especially in a short-term context.
In addition, Figure 11 shows the evaluation metrics
MAPE, RMSE, and Dstat. These metrics provide a

quantitative measure of the models’ performance. The
graph suggests that one of the proposed model has
a significantly lower MAPE and RMSE, indicating
better performance on average compared to the others.
Besides, among these four models, the Dstat of the
model proposed in this paper is relatively high, which
also indicates that the prediction direction of themodel
proposed in this paper is more accurate.

Figure 12. Long-period forecast curves for four models.

Figure 13. Long-period forecast curves for four models.

Figure 12 presents the prediction curves of the actual
power values by four different models: ARIMA,
GRU, EEMD-ARIMA, and CNN-Bi-GRU for renewable
electricity. Figure 13 depicts the error curves
of these models’ predictions. Figure 14 displays
the performance of these four models across three
evaluation metrics: MAPE, RMSE, and Dstat. Based
on the results of these long-term forecasts, we can draw
the following conclusions.
Firstly, Figure 12 compares the actual power values
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Figure 14. Evaluation criteria for long-period forecasting of
four models.

with the forecasted values by the four distinct models:
ARIMA, GRU, EEMD-ARIMA, and CNN-GRUBI-.
These models exhibit trends similar to the actual
data in long-term forecasting, demonstrating higher
predictive accuracy compared to short-term forecasts.
This suggests that the impact of many unpredictable
factors is significantly reduced in long-term forecasting.
Figure 13 presents the predictive error of these
models, indicating that long-term forecasting errors
are generally lower than those of short-term forecasts,
which underscores the reliability and credibility of
long-term predictions. Additionally, the evaluation
metrics of MAPE, RMSE, and Dstat shown in Figure 14
provide a quantitative assessment of the models’
performance. The proposed model in this study
exhibits smaller values in MAPE and RMSE compared
to the ARIMA, GRU, and EEMD-ARIMA models,
indicating superior average performance. Moreover,
the higher Dstat value for the proposedmodel suggests
more accurate predictive directionality.
In addition, we conducted paired sample t-tests
to evaluate the performance differences between
CNN-Bi-GRU and the baseline models (ARIMA,
GRU, EEMD-ARIMA). The t-test results indicate that
CNN-Bi-GRU demonstrates statistically significant
improvements over ARIMA (p = 0.01), GRU (p =
0.03), and EEMD-ARIMA (p = 0.02), confirming that
the observed performance enhancements are not due
to random variations but result from the structural
optimizations of the proposed model.
For the comparison between CNN-Bi-GRU and
ARIMA, the p=0.01 result suggests a highly significant
difference. This indicates that deep learning models
can more effectively capture the complex nonlinear
characteristics of electricity demand compared to
traditional time series methods such as ARIMA. Since

ARIMA relies on linear assumptions, it performs
well in stable time series forecasting but struggles
to generalize when faced with high volatility and
multi-factor influences in electricity demand. In
contrast, CNN-Bi-GRU overcomes this limitation by
utilizing deep feature extraction and bidirectional
temporal modeling.

In the comparison between CNN-Bi-GRU and GRU,
the p = 0.03 result indicates a statistically significant
improvement. This can be attributed to the
bidirectional structure of Bi-GRU, which enables the
model to consider both past and future information
in a time series, whereas unidirectional GRU only
leverages historical data for prediction. As a result,
GRU has certain limitations in modeling long-term
dependencies. Additionally, the integration of CNN
enhances feature extraction, allowing CNN-Bi-GRU to
outperform GRU in both RMSE and MAPE metrics.

For the comparison between CNN-Bi-GRU and
EEMD-ARIMA, the p = 0.02 result confirms a
statistically significant performance gain. Although
EEMD-ARIMA improves traditional statistical
methods by using EEMD to denoise and smooth
time series data, it still relies on ARIMA’s linear
modeling capabilities. This makes it less effective
in capturing the complex fluctuations in electricity
demand. In contrast, CNN-Bi-GRU leverages CNN
to extract local temporal features and utilizes Bi-GRU
to model temporal dependencies, providing superior
adaptability in handling nonlinear, cyclical, and
abrupt changes.

In summary, whether for short-term or long-term
demand forecasting of renewable energy, the proposed
multimodal information fusion CNN-Bi-GRU model
outperforms the ARIMA, GRU, and EEMD-ARIMA
models in terms of predictive performance. These
experimental results validate the effectiveness of the
predictive design scheme proposed in this paper. It is
worth noting that the proposed model still has certain
limitations when dealing with specific types of data or
particular scenarios. For instance, extreme unexpected
events, such as power grid failures or abrupt policy
changes, may cause significant shifts in historical data
patterns. Since the CNN-Bi-GRU model relies on time
series features and textual information, it may struggle
to quickly adapt to such changes, thereby affecting
prediction accuracy. Additionally, data missingness or
poor data quality poses a significant challenge. When
the input data contains a large number of missing
values or anomalies, the model may fail to effectively
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learn trend features, leading to prediction biases.

5 Conclusion
This study presents a novel integrated forecasting
modeling approach, CNN-Bi-GRU, for short-term and
long-term renewable power demand prediction, based
on the concept of multimodal information fusion. In
this approach, we delve into the analysis of data
essential for power demand forecasting and employ
the robust feature extraction capabilities of CNNs to
extract relevant latent features from both time series
and textual data. Subsequently, a concatenation fusion
method is applied to organically merge these features,
harnessing the complementary nature of information
from both modalities. Finally, the fused features are
inputted into a Bi-GRU model for prediction. Through
comparative experiments with traditional forecasting
models and ensemble models, the proposed model
exhibits superior directional and level accuracy over
widely adopted time series forecasting models, thus
effectively validating the superiority of our model
in terms of predictive performance. The proposed
model is primarily applied to smart grid optimization,
electricity market scheduling, and renewable energy
generation forecasting. However, challenges remain
in practical deployment, including computational
costs, data acquisition and quality issues, and extreme
unexpected events. Additionally, this study has
certain limitations. For instance, the feature extraction
module employs a convolutional neural network to
extract textual features, making it difficult to interpret
the actual significance of the extracted information.
Furthermore, the chosen multimodal information
fusion method is based on feature-level fusion, which
limits the depth of text data mining in this study.
Futureworkwill focus on further optimizing themodel
structure, improvingmultimodal fusion efficiency, and
enhancing the model’s anomaly detection capabilities.
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