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Abstract

Public health surveillance is crucial for early disease
detection, outbreak prediction, and epidemic
response. However, traditional surveillance
systems primarily rely on structured clinical
data, limiting their capacity to capture emerging
health threats from diverse and unstructured
sources. This study explores the integration
of Natural Language Processing (NLP) and
Artificial Intelligence (AI) to automate disease
surveillance by analyzing wunstructured data,
including electronic health records (EHRs), social
media posts, news reports, and online health forums.
Leveraging state-of-the-art NLP techniques—such as
transformer-based language models, named entity
recognition (NER), sentiment analysis, and topic
modeling—an Al-driven surveillance framework
is proposed to process, classify, and extract
epidemiological insights from vast unstructured
text streams in real time. The framework integrates
multilingual data processing, anomaly detection,
and geospatial trend analysis to enhance early
warning capabilities for healthcare authorities. Its
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effectiveness is evaluated using benchmark datasets,
such as the BioCaster Global Health Monitor,
and real-world case studies on infectious disease
outbreaks, demonstrating significant improvements
in detection speed and accuracy. The findings
highlight the transformative role of NLP and Al in
advancing public health intelligence, improving
disease surveillance scalability, and enabling
proactive intervention strategies.
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1 Introduction

Public health surveillance plays a vital role in detecting
emerging health threats, monitoring disease outbreaks,
and guiding timely interventions.  Traditional
surveillance systems primarily rely on structured
data sources, such as hospital records, laboratory
test results, and government health reports. While
these methods provide critical insights, they often
suffer from delays in data collection, processing,
and reporting. Studies indicate that conventional
surveillance systems can lag by days or even weeks
in detecting outbreaks, limiting their effectiveness
in real-time decision-making [1].  Furthermore,
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structured datasets alone may not capture early
indicators of disease spread, especially in rapidly
evolving epidemiological scenarios.

With the rise of digital platforms, vast amounts of
unstructured data [2] are continuously generated from
sources such as electronic health records (EHRs),
social media platforms, online news articles, scientific
literature, and patient forums like HealthBoards
and MedHelp. Reports suggest that over 80% of
healthcare data is unstructured, making it a valuable
yet underutilized resource for disease monitoring.
Social media platforms such as Twitter (now X) and
Reddit have been shown to provide early warning
signals for emerging diseases, as users often share
symptoms and local outbreaks before official reports
are published. However, extracting meaningful
insights from such unstructured textual data presents
significant challenges due to the volume, variability,
and linguistic complexity of the information.

Recent advancements in Natural Language Processing
(NLP) and Artificial Intelligence (AI) have
revolutionized the ability to analyze unstructured text
at scale. Transformer-based language models, such
as BERT and GPT, enable accurate text classification,
named entity recognition (NER), sentiment analysis,
and topic modeling, facilitating automated public
health intelligence. By leveraging NLP and Al-driven
methodologies, public health agencies can detect early
warning signals, identify emerging disease clusters,
and track misinformation related to health crises. For
instance, studies have demonstrated the effectiveness
of NLP-based models in tracking influenza and
COVID-19 trends using social media posts and online
news [3, 4].

This research introduces an Al-driven NLP
framework for automating disease surveillance
using unstructured data. The proposed system
integrates advanced NLP techniques to extract
epidemiological insights, perform anomaly detection,
and conduct geospatial trend analysis. The framework
is designed to analyze multilingual data streams in
real time, enhancing the responsiveness of public
health authorities. Potential applications include
monitoring respiratory illnesses (e.g., influenza,
COVID-19), vector-borne diseases (e.g., dengue, Zika
virus), and foodborne outbreaks.

By leveraging real-time unstructured data processing,
the proposed approach has the potential to transform
public health intelligence, improving outbreak
detection, response times, and overall disease
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monitoring capabilities.

Key Contributions This study makes the following
key contributions to the field of Al-driven public health
surveillance:

e It proposes a modular NLP-AI framework
capable of ingesting and analyzing large-scale
unstructured data from social media, EHRs, news,
and forums to extract early signals of disease
outbreaks.

e The system integrates transformer-based
models (BERT, GPT, BioBERT) for classification,
sentiment analysis, and named entity recognition
tailored to the public health domain.

e It incorporates real-time anomaly detection,
geospatial trend mapping, and multilingual
support using cross-lingual transfer learning to
enable global applicability.

e The framework includes interpretable AI
components (LIME, SHAP), federated learning
with differential privacy, and adaptive learning
mechanisms to ensure continuous performance
and ethical operation.

e The system’s scalability and effectiveness are
demonstrated through real-world case studies
and simulations of pandemic-scale health data
streams.

2 Related Work

The integration of Natural Language Processing
(NLP) and Artificial Intelligence (AI) in public
health surveillance has gained significant attention in
recent years. Existing research has explored various
methodologies for extracting epidemiological insights
from unstructured data sources, such as electronic
health records (EHRs), social media, news articles, and
online health forums. This section reviews relevant
literature on Al-driven disease surveillance, NLP
techniques for health intelligence, and applications
of deep learning models in epidemiology.

2.1 AI-Driven Disease Surveillance

Traditional disease surveillance methods, which rely
on structured data from hospitals and laboratories,
often suffer from delayed reporting and limited
coverage [1]. Al-driven surveillance systems aim
to overcome these limitations by leveraging machine
learning and NLP techniques to analyze unstructured
data sources in real time. Studies have demonstrated
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that social media platforms, such as Twitter and
Reddit, provide early warning signals for emerging
disease outbreaks. For example, the HealthMap
project utilizes automated data mining to extract
epidemiological insights from news reports and online
content, contributing to real-time disease tracking [5].

Recent advancements in deep learning have further
enhanced the ability to process and interpret
unstructured health data. Transformer-based models,
such as BERT and GPT, have been used for real-time
disease classification and outbreak prediction [6].
Additionally, hybrid models combining NLP with
geospatial analysis have been developed to map the
spread of infectious diseases and identify high-risk
regions [7, 18]. However, while Al-driven approaches
significantly improve surveillance efficiency, ethical
concerns arise regarding the collection and analysis
of publicly shared health data. Studies highlight
the need for privacy-preserving techniques and
data anonymization to ensure ethical compliance in
Al-driven public health applications [16].

2.2 NLP Techniques for Public Health Intelligence

NLP has emerged as a powerful tool for extracting and
analyzing health-related information from large-scale
text data. Named Entity Recognition (NER) enables
the identification of disease names, symptoms, and
locations in textual data, while sentiment analysis
helps assess public perception and concerns regarding
health crises [9]. Topic modeling techniques, such
as Latent Dirichlet Allocation (LDA) and dynamic
topic modeling, have been applied to detect emerging
disease-related discussions on social media [10].

Several studies have focused on mining insights from
EHRs using NLP. For instance, deep learning-based
clinical NLP models have been deployed to extract
patient symptoms, comorbidities, and treatment
histories from clinical notes [11]. The development
of domain-specific pre-trained language models, such
as BioBERT and PubMedBERT, has significantly
improved performance in biomedical text processing
tasks [12]. Additionally, transfer learning techniques
have been employed to overcome the challenge of
limited labeled datasets in the public health domain.
By fine-tuning pre-trained transformer models on
small, domain-specific datasets, researchers have
demonstrated improvements in disease prediction and
symptom extraction accuracy [17].

2.3 Deep Learning in Epidemiology

The application of deep learning in epidemiology
has revolutionized disease forecasting and outbreak
prediction. Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks [13]
have been employed to model disease spread based
on historical health data and social media trends.
Additionally, convolutional neural networks (CNNs)
have been used to analyze medical imaging data for
early disease detection, complementing NLP-based
text analysis in disease surveillance systems [14].

Recent work has explored the use of federated learning
for collaborative disease surveillance while preserving
data privacy [8, 15]. This approach enables multiple
institutions to contribute to a shared AI model without
exposing sensitive patient data, making it a promising
direction for large-scale public health monitoring.

2.4 Research Gaps and Contributions

Despite advancements in Al-driven public health
surveillance, several challenges remain. Many existing
NLP-based surveillance systems lack the capability
to process multilingual data effectively, limiting their
applicability in global epidemiological monitoring.
Additionally, while deep learning models demonstrate
high accuracy, they often require large labeled
datasets, which are scarce in the public health domain.
Although transfer learning provides a viable solution
to this problem, further research is needed to improve
model adaptation across different epidemiological
contexts. Moreover, integrating real-time geospatial
analysis with NLP-based surveillance remains an
ongoing research challenge.

This research addresses these gaps by developing
an Al-driven NLP framework capable of processing
multilingual, unstructured health data in real time.
The proposed system integrates transformer-based
models for epidemiological text processing, anomaly
detection for outbreak identification, and geospatial
analytics for disease spread visualization. By
leveraging state-of-the-art NLP and deep learning
techniques, this study aims to enhance the efficiency
and scalability of automated disease surveillance while
adhering to ethical considerations in public health data
processing.

2.5 Comparison with Existing AI-Driven Disease
Surveillance Systems

While several Al-based systems have been proposed
for disease surveillance, many face limitations in
real-time processing, handling diverse unstructured

45



ICCK Transactions on Emerging Topics in Artificial Intelligence

ICJK

data, or providing early warning capabilities. Table 1
presents a comparative analysis of existing systems
alongside the proposed framework.

Unlike previous systems, the proposed framework
provides an integrated pipeline capable of real-time
analysis, multilingual processing, geospatial trend
detection, and privacy-preserving model training.
Furthermore, it incorporates transformer-based NLP
and deep anomaly detection, improving both accuracy
and responsiveness in disease surveillance.

3 Methodology

This section presents the proposed Al-driven NLP
framework for automated disease surveillance from
unstructured data sources. The framework integrates
state-of-the-art Natural Language Processing
(NLP) techniques, deep learning models, and
geospatial analysis to extract, process, and analyze
epidemiological information from electronic health
records (EHRs), social media, news reports, and
online health forums. The methodology consists
of four key stages: data acquisition, preprocessing,
NLP-based disease surveillance, and anomaly
detection with geospatial trend analysis.

3.1 Data Sources and Acquisition

The framework collects data from multiple
unstructured sources to ensure comprehensive
disease surveillance. De-identified electronic
health records (EHRs), including clinical notes and
discharge summaries, are obtained from public health
repositories and collaborating healthcare institutions
while adhering to privacy regulations. Social media
data is sourced from platforms such as Twitter
(X), Reddit, and online health discussion forums,
capturing real-time public discourse on disease
symptoms and outbreaks. Additionally, news articles
and government reports provide epidemiological
updates, while scientific literature from repositories
such as PubMed and arXiv offers expert-driven
insights into emerging diseases. Data acquisition
is conducted through API-based streaming, web
scraping (where permitted), and bulk dataset retrieval
from publicly available sources while ensuring strict
compliance with ethical guidelines.

3.2 Data Preprocessing and Normalization

Given the heterogeneous nature of the collected data,
preprocessing is necessary to standardize and clean
textual information. The preprocessing pipeline
follows a structured sequence: first, tokenization splits
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text into words or subwords using transformer-based
subword tokenization techniques such as WordPiece.
Next, stopwords are removed to eliminate common
but non-informative words, followed by named
entity recognition (NER) using domain-specific
models like BioBERT to identify disease names,
symptoms, locations, and other medical entities.
Part-of-speech (POS) tagging assigns grammatical
categories to words, aiding in syntactic analysis,
while lemmatization and stemming normalize word
variations.  Finally, since data is sourced from
multilingual platforms, language detection and
automatic translation ensure uniform processing
across different languages. These steps create a
structured text corpus that can be efficiently analyzed
by the NLP models.

3.3 NLP-Based Disease Surveillance

The core of the framework is an Al-driven NLP
pipeline designed to extract epidemiological insights
from unstructured text. Transformer-based text
classification models, including fine-tuned BERT, GPT,
and BioBERT variants, categorize disease-related
content into outbreak reports, misinformation, or
symptom discussions. Sentiment analysis is applied
to gauge public perception and emotional responses
to diseases, enabling the detection of fear-driven
trends or misinformation spread. Topic modeling,
using methods such as Latent Dirichlet Allocation
(LDA), identifies emerging health topics and evolving
discussions within digital spaces. Furthermore,
temporal trend analysis monitors disease-related
discussions over time, allowing the system to detect
unusual increases in specific symptoms or outbreaks
before official reports.

To enhance model transparency, the framework
integrates model interpretability tools such as Local
Interpretable Model-Agnostic Explanations (LIME)
and SHapley Additive exPlanations (SHAP). These
tools are applied to explain predictions made by text
classifiers and anomaly detection models. For example,
when a post or cluster is flagged as indicative of a
potential outbreak, SHAP values are computed to
identify which tokens or phrases contributed most to
the decision (e.g., “shortness of breath,” “emergency

room,” “spike in fever”).

LIME is used in real-time within the dashboard to
provide local, human-interpretable explanations
for individual predictions, especially helpful in
identifying misinformation or sentiment-related
triggers. These explanations enhance transparency
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Table 1. Comparison of Al-driven disease surveillance systems.

System / Paper Data Sources Real-Time Processing NLP Techniques Limitations / Gaps
HealthMap [5] News media, official Near real-time Keyword filtering, Limited to structured and
reports clustering semi-structured sources; lacks
advanced NLP or multilingual
support
ProMED-mail Expert-curated email No Manual narrative ~ Human-in-the-loop  curation;
reports analysis lacks automation and scalability
GPHIN (WHO) News, web articles, No Topic tracking, keyword = Proprietary system; limited
official alerts search publicly verifiable NLP
integration

via

Signorini et al. (2011) [3] Twitter Yes
Proposed Framework EHRs, social media, Yes (real-time
news, literature Spark/Kafka)

Symptom keyword
matching, time series
regression
Transformer-based
models (BERT,
BioBERT, GPT),

NER, sentiment, topic
modeling

No multilingual support; limited
entity resolution; no geospatial
mapping

Multilingual,
privacy-preserving, geospatial
trend mapping, entity
disambiguation, adaptive
learning

by helping public health officials understand not
only that an alert was raised, but why. Feature
importance visualizations are integrated into the
monitoring interface, supporting trust, verification,
and decision-making.

To improve entity precision and reduce semantic
ambiguity, the framework integrates a domain-specific
entity disambiguation pipeline. Medical terminology
often overlaps with general vocabulary (e.g., “cold”
as a symptom vs. “cold weather”), leading to false
positives. To address this, the system employs a
hybrid approach combining rule-based and neural
techniques.

First, named entities extracted by NER models are
mapped to canonical concepts using domain-specific
knowledge graphs such as UMLS (Unified Medical
Language System) and SNOMED CT. This entity
linking process involves candidate generation followed
by contextual disambiguation using surrounding
lexical features. For example, “cold” co-occurring with
“runny nose” and “fever” is likely linked to the disease
concept, while “cold” appearing with “climate” or
“winter” is rejected.

A lightweight neural re-ranker further evaluates
candidate mappings using embeddings trained on
medical corpora. This pipeline improves the accuracy
of symptom recognition, particularly in noisy or
informal texts such as social media posts, and
significantly reduces false positives in outbreak
detection.

In addition to lexical context, the framework leverages
semantic context for more robust disambiguation
using biomedical knowledge graphs. Entities linked
via NER are enriched with graph-based metadata

from sources such as UMLS, SNOMED CT, and
MeSH. A graph traversal algorithm computes semantic
similarity between candidate entities and known
health concepts using concept embeddings and
path-based proximity. This allows the system to
infer correct meanings even in ambiguous contexts.
For example, when the term “viral” appears, the
system distinguishes between a medical usage (e.g.,
“viral pneumonia”) and a digital one (e.g., “viral
video”) by evaluating the semantic coherence of
neighboring entities. Future work will explore tighter
integration with ontology-based reasoning engines
and biomedical language models for automated
concept grounding.

Together, these NLP components form a multi-stage
analytical pipeline. Incoming unstructured text is first
passed through the transformer-based classification
and NER modules to identify symptom mentions,
misinformation, or outbreak-related content. Relevant
entities are disambiguated and linked to structured
disease concepts, while sentiment analysis and topic
modeling help capture public emotions and thematic
shifts. The outputs of these components are then
fed into temporal and geospatial analysis modules,
which detect anomalies, trends, and potential outbreak
signals in specific regions. This integrated workflow
ensures that each NLP task contributes to building a
structured, interpretable, and actionable surveillance
signal from noisy, real-world data sources.

3.4 Anomaly Detection and Geospatial Analysis

To support early outbreak detection, the framework
includes an anomaly detection module designed
to identify statistical and semantic deviations from
expected epidemiological patterns. The system flags
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anomalous events such as unexpected spikes in
symptom mentions, emerging geographic clusters of
health discussions, and misinformation surges.

Both unsupervised and deep learning-based anomaly
detection techniques are employed in the framework.
Autoencoders are trained on historical baseline data
representing normal public health discourse and
symptom patterns. These models compress input
representations and reconstruct them; significant
reconstruction errors serve as indicators of outliers.
Additionally, LSTM-based anomaly detectors are
utilized to capture temporal dependencies in
symptom trajectories, enabling the detection of
sudden deviations in health-related discussions over
time. Isolation Forests are also incorporated for
their efficiency in identifying local anomalies within
high-dimensional feature spaces.

To reduce false positives—particularly those caused
by metaphorical or non-health-related language
(e.g., “fever pitch” in sports or “viral trend” on
social media)—a two-step disambiguation process is
employed. First, symptom co-occurrence and entity
linking strategies are used to determine whether
terms appear within a valid medical context. Second,
domain-specific knowledge graphs and context-aware
named entity recognition (NER) models are applied
to distinguish between literal and figurative mentions.
For example, if the term “cough” co-occurs with
indicators such as “clinic,” “flu,” or “shortness of
breath,” the probability of a genuine health-related
mention increases.

Geospatial trend analysis is conducted using extracted
location references from social media content, news
reports, and structured metadata from EHRs. Disease
clusters and discussion densities are visualized
through tools such as Leafletjs, Kepler.gl, and
Plotly. Temporal-geospatial correlation is utilized to
validate outbreak signals by assessing the convergence
of anomalies across both time and geographic
dimensions.

3.5 Handling Geographic Uncertainty

Social media data often contains ambiguous or
indirect geographic references, leading to uncertainty
in outbreak localization. To address this, the
framework incorporates a fuzzy geocoding module
that uses probabilistic mapping of location mentions
to known geospatial entities. This module accounts for
common ambiguities (e.g., city names shared across
countries) and informal references (e.g., "the Bay
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Area", "downtown").

In cases where exact coordinates are not available, the
system infers approximate locations by leveraging
co-occurrence with known landmarks, user
profile metadata (when publicly available), and
content-based location cues. A location confidence
score is assigned to each mapped entity based on
context reliability and ambiguity level, allowing
downstream components to prioritize high-confidence
detections.

To further enhance spatial accuracy, the framework
integrates external geospatial datasets, including;

e Census-based population density for weighting
outbreak significance

e Human mobility data (e.g.,
smartphone movement trends)

anonymized

e Environmental/satellite data (e.g., air quality,
temperature) from sources like Google Earth
Engine

These additional inputs help validate outbreak clusters
and distinguish between organic geographic noise and
emerging health threats, improving the reliability of
the spatial outbreak mapping.

3.6 Integration of Environmental, Population, and
Mobility Data

To improve the contextual accuracy of outbreak
detection and risk modeling, the framework integrates
additional structured data sources, including
environmental conditions, population density, and
human mobility data.

Environmental variables such as temperature,
humidity, and air quality index (AQI) are retrieved
from public APIs and geospatial repositories (e.g.,
Google Earth Engine, OpenAQ). These features are
known to influence the spread of respiratory and
vector-borne diseases and are aligned temporally
and spatially with symptom trends extracted from
unstructured text.

Population density data is sourced from census-level
geospatial grids and is used to weight the relative
importance of detected outbreaks. For example,
a symptom cluster in a densely populated area
may be flagged with higher urgency than one in a
rural region. Human mobility data, obtained from
anonymized sources such as Google Community
Mobility Reports or telecom-based movement



ICJK

ICCK Transactions on Emerging Topics in Artificial Intelligence

patterns, helps contextualize the potential for disease
transmission across geographic boundaries.

These structured inputs are integrated into the
anomaly detection and SEIR modeling pipelines,
allowing for more nuanced assessments of outbreak
significance and public health risk. By combining
unstructured signals with these external datasets,
the framework produces a richer, more holistic
understanding of emerging disease threats.

3.7 Privacy-Preserving Techniques and Bias

Mitigation

Given the sensitive nature of health-related data, the
framework incorporates both privacy-preserving
mechanisms and ethical safeguards to ensure
responsible Al deployment. Federated learning is
used to enable collaborative model training across
multiple institutions without sharing raw patient data.
This approach preserves local privacy while enabling
generalizable insights. In addition, differential privacy
mechanisms inject calibrated noise during training and
inference to obscure identifiable information while
maintaining utility. All data undergo de-identification
prior to processing, and system logs are stripped
of personally identifiable information (PII), in
compliance with global data protection standards.

Beyond privacy, ethical considerations also extend
to algorithmic fairness and bias mitigation. Social
media data, in particular, is prone to demographic,
linguistic, and geographic biases. To address these, the
framework implements adversarial debiasing, where
an auxiliary model is trained to predict protected
attributes (e.g., language, region), and the main model
is penalized for retaining that information. This
reduces unwanted correlations between demographic
indicators and model decisions.

Additionally, This study uses fairness-aware training
objectives that balance performance across subgroups
and apply stratified sampling during preprocessing
to ensure representative class distribution. In
low-resource language settings, data augmentation
techniques, including back-translation and synonym
replacement, are employed to enrich minority
linguistic groups and reduce bias in multilingual
learning.

These measures enhance the system’s ethical
robustness by reducing both privacy risks and
representational bias, ensuring fairer and more
inclusive disease surveillance across global
populations.

Federated  Learning  and
Implementation and Trade-offs

The framework implements federated learning using
a central parameter server that coordinates model
updates from multiple decentralized clients, such as
healthcare institutions or regional data nodes. Each
client trains the model locally on its private data (e.g.,
EHRs), and only the model gradients or parameters
are shared with the server. The server aggregates
these updates using a secure averaging protocol (e.g.,
Federated Averaging) to produce a global model
without exposing raw patient data.

Differential ~ Privacy:

To preserve individual privacy, differential privacy
is applied during local training using gradient
perturbation. Specifically, calibrated Gaussian noise
is added to model updates, and a privacy budget (¢)
is enforced to ensure quantifiable privacy guarantees
over repeated training rounds.

These privacy-preserving techniques are deployed
in realistic healthcare settings where regulatory
constraints prohibit centralized data sharing. For
example, collaborating hospitals retain full control over
patient records, while contributing to a shared disease
classification model.

However, these methods introduce trade-offs.
Injecting noise (DP) may reduce model accuracy,
particularly for rare conditions or small datasets.
Federated learning increases communication
overhead and may require more training rounds to
converge. To mitigate this, adaptive aggregation and
secure compression techniques are used to reduce
performance degradation.

Overall, the integration of FL and DP ensures a balance
between preserving data privacy and maintaining
model utility, making the framework suitable for
real-world public health deployment.

3.8 Implementation and System Architecture

The proposed system is implemented using a
combination of deep learning and big data processing
technologies. Data streaming and preprocessing are
handled using Apache Spark and Kafka, allowing
real-time ingestion and transformation of unstructured
text. The NLP models are deployed using TensorFlow
and Hugging Face’s Transformers library, leveraging
pre-trained models for text classification, entity
recognition, and topic analysis. A NoSQL database
(MongoDB) stores structured epidemiological
insights, enabling efficient querying and retrieval
of disease-related trends. Finally, an interactive
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dashboard, powered by Dash and Plotly, provides
real-time visual analytics, allowing public health
officials to monitor outbreaks dynamically.

The architecture is designed for horizontal scalability
and real-time resilience. The system is containerized
using Docker and deployed on a Kubernetes cluster
to support distributed processing and fault tolerance.
It supports deployment on major cloud platforms
(AWS, GCP, Azure) and integrates with auto-scaling
policies based on incoming data stream volume. Model
training and inference tasks are parallelized across
GPU-enabled nodes to ensure efficient processing of
high-throughput health signals during pandemic-scale
surges.

Computational Complexity and Runtime Considerations

The computational complexity of the proposed
framework is managed through a combination
of architectural optimizations and model selection
strategies. =~ Transformer-based models, such as
BioBERT and XLM-R, are used in their fine-tuned
or distilled forms to reduce inference time without
sacrificing accuracy. Sentiment analysis and topic
modeling components are run in parallel using
batch processing on multi-core CPUs, while real-time
classification and NER tasks are GPU-accelerated
using TensorFlow with mixed precision.

Among the components, named entity recognition
and geospatial disambiguation are the most
computationally intensive due to context-aware
embedding and knowledge graph traversal. However,
caching frequently seen entities and using fast
approximate nearest neighbor (ANN) search reduce
lookup costs. Anomaly detection models, such as
autoencoders and isolation forests, are lightweight
and optimized for streaming input.

Overall, the system maintains near real-time
processing performance with an average end-to-end
latency of 45 milliseconds per social media message
and 210 milliseconds per EHR note under high-load
scenarios. These results demonstrate the system’s
feasibility for both research and operational public
health use.

3.9 Evaluation Metrics

The effectiveness of the framework is evaluated
using multiple performance metrics. For NLP-based
classification tasks, accuracy, precision, recall,
and Fl-score measure the effectiveness of the text
classification, named entity recognition (NER), and
sentiment analysis components. Anomaly detection
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performance is assessed using the Area Under the
Curve - Receiver Operating Characteristic (AUC-ROC)
metric, as well as sensitivity and specificity in
detecting unusual disease-related activity.  The
geospatial accuracy of the system is validated by
comparing detected outbreak locations against official
epidemiological data. Additionally, system scalability
and efficiency are analyzed by measuring the real-time
processing capability of large-scale unstructured data
streams.

3.10 Multilingual Disease Surveillance and

Cross-Lingual Transfer Learning

To support global applicability, the proposed
framework incorporates multilingual capabilities.
Incoming unstructured data (e.g., tweets, forum
posts, EHR notes) are first processed using language
detection tools. If supported, text is passed to a
multilingual NLP pipeline built on fine-tuned versions
of XLM-R (XLM-RoBERTa) and mBERT (Multilingual
BERT). For unsupported or low-resource languages,
fallback mechanisms include automatic translation
to English using pretrained transformer-based
translation models.

The multilingual models are fine-tuned on publicly
available datasets such as the COVID-19 multilingual
tweet corpus and multilingual health-related QA
datasets. For tasks like named entity recognition and
symptom classification, cross-lingual transfer learning
enables zero-shot or few-shot generalization to
unseen languages. Fine-tuning was performed using
mixed-language batches to improve representation
alignment across language families.

Despite these techniques, challenges persist in
under-resourced languages due to limited annotated
data and domain adaptation issues. Future work
will explore improved domain-aligned multilingual
pretraining and adversarial adaptation to enhance
robustness in low-resource settings.

Multilingual Evaluation

A subset of health-related tweets and EHR notes in
five languages—English, Spanish, Hindi, Arabic, and
Indonesian—was created to evaluate the multilingual
capability of the framework. XLM-R and mBERT
were fine-tuned for symptom classification and named
entity recognition (NER) using multilingual training
data.

Preliminary results show that XLM-R outperformed

mBERT in low-resource settings, particularly in
Hindi and Indonesian. Fl-scores across languages
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ranged from 89.2% (English) to 78.6% (Indonesian),
demonstrating strong generalization but leaving room
for improvement in lower-resourced languages. Use
of mixed-language batches during training helped
stabilize multilingual performance.

These results confirm the framework’s cross-lingual
adaptability and highlight the potential of transfer
learning in global disease surveillance applications.

3.11 Integration with SEIR-Based Epidemiological

Modeling
To enhance predictive capabilities, the
proposed NLP-based surveillance framework
is integrated with classical compartmental

epidemiological models, particularly the SEIR
(Susceptible-Exposed-Infected-Recovered) model.
This integration enables the system to move beyond
real-time monitoring and perform outbreak forecasting
and intervention simulation.

NLP-extracted signals—including symptom mention
frequency, geographic concentration of health
discussions, and temporal progression—are used to
inform and calibrate SEIR parameters. Specifically,
the rate of increase in symptom-related posts is
mapped to estimates of the transmission rate (f3),
while delays between symptom emergence and
formal reporting inform the latency period (1/0).
Additionally, region-specific outbreak intensities
derived from geospatial NLP trends serve as priors
for initial conditions in the SEIR compartments.

By feeding this enriched input into a SEIR differential
equation solver, the system can simulate the projected
spread of an outbreak under various scenarios.
This includes evaluating the impact of public
health interventions such as social distancing, mask
mandates, or vaccination rollouts. The combination
of real-time, language-driven insights with traditional
epidemiological forecasting offers a powerful hybrid
approach for proactive public health decision-making.

Future work will explore dynamic coupling of NLP
outputs with adaptive SEIR models that update
parameters over time, creating a closed-loop system
for responsive surveillance and forecasting.

4 Experiments and Results

This section presents the experimental setup, datasets,
and evaluation results of the proposed Al-driven NLP
framework for disease surveillance. The experiments
are designed to assess the effectiveness of the
NLP models, anomaly detection mechanisms, and

geospatial analysis components. The framework is
evaluated using benchmark datasets, real-world public
health data, and social media streams to validate
its performance in identifying disease trends and
detecting outbreaks.

4.1 Datasets

To ensure a comprehensive evaluation, multiple
datasets encompassing both structured and
unstructured health-related data sources are utilized.

1. Electronic Health Records (EHRs): The
MIMIC-III dataset, a large, de-identified
database containing over 2 million clinical
notes from intensive care unit (ICU) patients,
is utilized [2]. This dataset includes physician
observations, discharge summaries, and symptom
descriptions, which are extracted and analyzed
for epidemiological trends.

2. Social Media Data: Health-related posts from
Twitter (X) and Reddit are collected using
keyword-based filtering. Keywords are selected
based on disease symptoms (e.g., '"fever,"
"cough," "shortness of breath"), location-based
terms (e.g., "outbreak in [city]"), and general
pandemic-related discussions (e.g., "flu season,”
"new virus"). The dataset is further refined using
language models to eliminate irrelevant posts.

3. News and Government Reports: News
articles from HealthMap and CDC outbreak
reports provide structured epidemiological
insights. These reports are processed to facilitate
comparisons between official data and social
media-based disease surveillance outputs.

4. Scientific Literature: PubMed abstracts and arXiv
preprints related to infectious diseases are used as
references to identify patterns in disease spread
and support model training and validation.

All datasets are preprocessed following the
methodology outlined in Section 3, ensuring
standardization across different sources.

4.2 Experimental Setup

The experiments are conducted on a computing cluster
equipped with NVIDIA A100 GPUs and 256 GB RAM.
The NLP models are implemented using TensorFlow
and Hugging Face’s Transformers library. Data
preprocessing and real-time ingestion are handled
using Apache Spark and Kafka, ensuring efficient
large-scale processing.
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The transformer-based NLP models, including
fine-tuned BERT, GPT, and BioBERT, are trained using
a dataset split of 80% for training, 10% for validation,
and 10% for testing. The Adam optimizer is employed
during training, with a learning rate of 3e-5 and a
batch size of 32. Anomaly detection models, including
autoencoder-based methods and isolation forests, are
trained on historical epidemiological data to identify
atypical trends. Geospatial analysis is conducted
using Python’s GeoPandas library, with Kepler.gl
utilized for interactive visualization.

4.3 Evaluation Metrics

The framework is evaluated wusing multiple
performance metrics to assess the accuracy and
reliability of its various components:

e NLP Model Performance: Accuracy, Precision,
Recall, and Fl-score are used to evaluate the text
classification, named entity recognition (NER),
and sentiment analysis models.

e Anomaly Detection: The Area Under the Curve
- Receiver Operating Characteristic (AUC-ROC)
and sensitivity-specificity analysis measure the
effectiveness of detecting unusual disease trends.

o Geospatial Accuracy: The geospatial mapping
system is validated by comparing detected
outbreak locations with official CDC and WHO
epidemiological reports. Accuracy is quantified
as the percentage of overlapping regions between
system-detected outbreaks and officially reported
outbreaks.

o Scalability and Efficiency: The real-time processing
capability is measured in terms of throughput
(tweets per second, EHR records per second) and
system latency.

4.4 Results and Performance Analysis
4.4.1 NLP Model Evaluation

Table 2 presents the performance of the NLP models
on disease classification, NER, and sentiment analysis
tasks. BioBERT outperforms other models in medical
text processing, achieving an Fl-score of 92.4% in
named entity recognition.

4.4.2 Anomaly Detection Performance

The anomaly detection module successfully identifies
disease outbreak anomalies with high accuracy. In one
example, the system detected an abnormal surge in
"persistent cough" and "shortness of breath" mentions
in New York two weeks before an official spike in
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COVID-19 cases. Table 3 shows the AUC-ROC scores
for different anomaly detection models.

4.4.3 Geospatial Analysis Evaluation

The geospatial analysis module successfully maps
disease clusters in real-time. A comparison with
CDC-reported outbreaks shows an 87.3% alignment,
measured as the percentage of overlap between
detected clusters and officially reported outbreak
locations.

4.4.4 Scalability and Efficiency Results

The framework demonstrates real-time processing
capabilities. During peak load testing, the system
processed 1,500 tweets per second and 200 EHR
records per second, with an average latency of
45 milliseconds per request. This indicates that
the framework is highly scalable for large-scale
epidemiological monitoring.

4.5 Case Study: COVID-19 Early Detection

To further validate the framework, a case study
was conducted on COVID-19 early detection using
historical Twitter and EHR data from January-March
2020. The system detected a spike in symptom-related
discussions approximately two weeks prior to the first
official lockdown announcements. Figure 1 illustrates
the comparison between social media-based symptom
detection and official case reports.

4.6 Discussion and Error Analysis

While the results demonstrate the effectiveness of the
proposed framework, some limitations remain. False
positives in symptom detection occur when generic
terms (e.g., "fever pitch" in sports discussions) are
misclassified as health-related mentions. Additionally,
multilingual NLP models show lower accuracy in
languages with fewer training examples, highlighting
the need for improved cross-lingual adaptation. Future
work will focus on refining entity disambiguation
techniques and expanding multilingual training
datasets.

4.7 Scalability and Real-World Performance

Evaluation

To simulate real-world outbreak conditions, including
global pandemics, the system was stress-tested using
high-volume data streams. A scenario was emulated
using synthetic and real datasets, involving up to 10
million social media posts and 1 million EHR notes
over a 24-hour period.
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Figure 1. Comparison of social media-based symptom detection and official case reports.

Table 2. Performance of NLP models.

Model Task Accuracy (%) F1-Score (%) Precision-Recall
BERT Disease Classification 88.2 87.5 0.89 / 0.86
GPT-3 Sentiment Analysis 91.3 90.9 0.92 7/ 0.90
BioBERT Named Entity Recognition 93.1 924 094 /091

The system demonstrated the ability to ingest and
process up to 1,500 social media posts per second
and approximately 200 EHR records per second,
with an average latency of 45 milliseconds per
post. Apache Kafka and Spark Streaming ensured
near-linear scalability under increasing load, and the
containerized deployment on a Kubernetes cluster
enabled seamless horizontal scaling across 16 nodes
on an AWS EC2 environment.

These results indicate that the framework can be
effectively scaled for national or global surveillance
efforts, making it suitable for early outbreak detection,
situation awareness, and real-time health monitoring
at population scale.

4.8 Adaptive Learning and Model Evolution

To maintain long-term effectiveness, the framework
incorporates adaptive learning capabilities that enable
continuous updates based on newly emerging health

data. These updates address shifts in public discourse,
the emergence of new symptoms, and evolving
outbreak terminology.

The NLP pipeline is designed to support periodic
retraining using newly ingested, weakly-labeled data
from social media, EHRs, and news reports. A
dynamic vocabulary expansion mechanism tracks the
co-occurrence of novel terms with existing symptom
clusters and flags candidate tokens for inclusion in the
medical lexicon. For example, during early COVID-19
outbreaks, terms like “loss of taste” or “long COVID”
became important indicators that were not part of
standard symptom sets.

To avoid catastrophic forgetting, continual learning
strategies—such as rehearsal-based memory buffers
and parameter regularization—are used during model
updates. Additionally, semi-supervised learning
techniques allow the system to benefit from unlabeled
data, reducing dependency on manual annotation.
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Table 3. Anomaly detection model performance.

Model AUC-ROC (%) Sensitivity (%)
Autoencoder 89.5 91.2
Isolation Forest 86.7 88.4
LSTM-based Anomaly Detector 92.1 93.8

This adaptive learning loop ensures that the framework
remains responsive to the evolving linguistic landscape
of global health discourse and sustains its ability to
detect and interpret novel disease signals in real time.

5 Conclusion and Future Research

This research introduced an Al-driven NLP framework
for automated disease surveillance by analyzing
unstructured data sources, including electronic
health records (EHRs), social media, news articles,
and scientific literature. = The proposed system
integrates transformer-based NLP models, anomaly
detection techniques, and geospatial analysis to
provide real-time public health intelligence. The
experimental results demonstrate the effectiveness
of the framework in detecting disease outbreaks,
identifying epidemiological trends, and offering early
warning signals.

The findings confirm that Al-driven NLP methods
can significantly augment traditional public health
surveillance by providing faster, scalable, and
data-driven insights for epidemic monitoring and
intervention planning. Transformer-based models,
particularly BioBERT, achieved high accuracy in
disease classification, sentiment analysis, and named
entity recognition (NER), with an F1-score of 92.4%.
The anomaly detection module successfully identified
outbreak patterns, with the LSTM-based anomaly
detector achieving an AUC-ROC of 92.1%. Geospatial
analysis demonstrated an 87.3% alignment with
officially reported outbreaks, confirming the reliability
of social media and news data in early disease
surveillance. Additionally, the system processed up
to 1,500 tweets per second and 200 EHR records per
second, with an average latency of 45 milliseconds,
demonstrating its real-time scalability. A retrospective
case study on COVID-19 showed that the system
detected early signals of an outbreak two weeks before
official reports, highlighting its potential as an early
warning system for future pandemics.
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5.1 Global Health Impact and Low-Resource
Deployment

A key strength of the proposed framework lies in its
adaptability to low-resource and underserved settings,
where traditional disease surveillance systems are
often limited or delayed. By leveraging publicly
available digital data streams—such as social media,
open health forums, and online news—the framework
provides a scalable and non-intrusive means of
monitoring public health trends in regions with limited
access to laboratory testing, reporting infrastructure,
or timely diagnostics.

To support deployment in constrained environments,
the system supports modular architecture with
lightweight NLP models that can run on cloud-based
or hybrid edge-cloud platforms [19]. Preprocessing
and inference pipelines are optimized for batch
and streaming modes, enabling asynchronous
processing in areas with intermittent connectivity. For
example, real-time alerts about symptom surges or
misinformation clusters can be generated centrally
while still protecting local data privacy through
tederated learning.

This capability is particularly valuable in low- and
middle-income countries (LMICs), where early
warning systems are often underdeveloped. The
framework can assist local health authorities and
NGOs by providing insights into emerging health
threats, identifying misinformation hotspots, and
supporting strategic allocation of healthcare resources.
By democratizing access to Al-powered health
intelligence, the system has the potential to improve
equity, resilience, and responsiveness across global
public health systems.

5.2 Limitations and Future Research Directions

While the proposed framework demonstrates strong
performance, several limitations remain, each
presenting an opportunity for future research. The
system occasionally misclassifies non-health-related
terms as disease mentions, leading to false positives.
Future work will address this issue by integrating
contextual disambiguation techniques such as
knowledge graphs and advanced entity linking
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methods to differentiate medical terms from unrelated
usages.

Another challenge arises in multilingual NLP, where
the system shows lower accuracy for non-English texts
due to the lack of high-quality labeled datasets. To
enhance cross-lingual disease classification, future
research will leverage cross-lingual transfer learning,
multilingual embeddings, and datasets such as XLM-R.
Similarly, geospatial data uncertainty affects outbreak
location mapping, as user-generated content often
lacks precise geographic references. Future work
will explore integrating additional geospatial datasets,
including human mobility data and environmental
factors, to improve outbreak localization.

Despite implementing privacy-preserving techniques
such as federated learning and differential privacy,
ethical concerns remain regarding the use of social
media data for health monitoring. Future research will
focus on developing privacy-enhancing mechanisms
and refining Al governance frameworks to balance
public health benefits with individual data rights.

5.3 Broader Future Research Directions

Beyond addressing these limitations, several research
directions could further improve Al-driven disease
surveillance. Integrating the proposed NLP-based
framework with epidemiological models, such as SEIR
(Susceptible-Exposed-Infected-Recovered) models,
could enhance predictive capabilities and provide
better insights into outbreak progression. Real-time
adaptive learning mechanisms can be implemented
to allow the framework to dynamically update its
models with new health-related terms, symptoms,
and outbreak patterns.

Expanded geospatial analysis is another promising
direction. The inclusion of air quality indices,
population density metrics, and urban mobility trends
can refine outbreak detection and risk assessment.
Additionally, the responsible deployment of Al
in public health intelligence requires continuous
advancements in Al transparency, fairness, and
accountability.  Future efforts should focus on
developing standardized guidelines for ethical Al
governance in disease surveillance.

5.4 Final Remarks

This research highlights the potential of Al-driven
NLP techniques to revolutionize disease surveillance
by leveraging vast amounts of unstructured health
data. The proposed framework demonstrates strong

performance in detecting outbreaks, analyzing
epidemiological trends, and providing early warnings
for public health decision-making. While challenges
remain, continued advancements in AI, NLP,
and geospatial analytics will further enhance the
capabilities of automated disease surveillance,
contributing to more proactive and data-driven global
health responses.

Acknowledgments

The author gratefully acknowledges the contributions
of the research community in advancing Al for public
health intelligence. Thanks are also extended to
the providers of open datasets, such as MIMIC-III,
HealthMap, and PubMed, which enabled this research.

Data Availability Statement

Data will be made available on request.

Funding

This work was supported without any funding.

Contflicts of Interest

Vijayalaxmi Methuku is an employee of CYNOSOFT
SOLUTIONS INC, Austin, TX 78750, United States.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] World Health Organization. (2020). Public health
surveillance for COVID-19: Interim guidance. WHO.
Retrieved from https:/www.who.int/publications/i/item/
WHO-2019-nCoV-SurveillanceGuidance-2022.2

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W.
H., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016).
MIMICH-III, a freely accessible critical care database.
Scientific data, 3(1), 1-9. [CrossRef]

Signorini, A., Segre, A. M., & Polgreen, P. M. (2011).
The use of Twitter to track levels of disease activity
and public concern in the US during the influenza A
H1N1 pandemic. PloS one, 6(5), €19467. [CrossRef]

Bose, P, Roy, S., & Ghosh, P. (2021). A comparative
NLP-based study on the current trends and future
directions in COVID-19 research. Ieee Access, 9,
78341-78355. [CrossRef]

Freifeld, C. C., Mandl, K. D., Reis, B. Y., & Brownstein,
J. S. (2008). HealthMap: Global infectious disease
monitoring through automated classification and
visualization of internet media reports. Journal of the

(2]

55


https://www.who.int/publications/i/item/WHO-2019-nCoV-SurveillanceGuidance-2022.2
https://www.who.int/publications/i/item/WHO-2019-nCoV-SurveillanceGuidance-2022.2
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1371/journal.pone.0019467
https://doi.org/10.1109/ACCESS.2021.3082108

ICCK Transactions on Emerging Topics in Artificial Intelligence

ICJK

[13]

56

American Medical Informatics Association, 15(2), 150-157.
[CrossRef]

Wang, Z., Zhang, P, Huang, Y., Chao, G., Xie, X,
& Fu, Y. (2023). Oriented transformer for infectious
disease case prediction. Applied Intelligence, 53(24),
30097-30112. [CrossRef]

Ye, J., Hai, J., Wang, Z.,, Wei, C.,, & Song, J.
(2023). Leveraging natural language processing and
geospatial time series model to analyze COVID-19
vaccination sentiment dynamics on Tweets. JAMIA
open, 6(2), 0ooad023. [CrossRef]

Myakala, P. K., Jonnalagadda, A. K., & Bura, C. (2024).
Federated learning and data privacy: A review of
challenges and opportunities. International Journal of
Research Publication and Reviews, 5(12), 10-55248.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H.,
& Kang, J. (2020). BioBERT: A pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics, 36(4), 1234-1240. [ CrossRef]

Parwez, M. A., Abulaish, M., & Jahiruddin, ]J.
(2020, December). A social media time-series data
analytics approach for digital epidemiology. In 2020
IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT)
(pp- 852-859). IEEE.

Huang, S., Cai, M., Xu, X.,, Wang, H., & Feng, J.
(2022). EHR-NLP: A comprehensive survey on deep
learning research and applications in electronic health
records. Journal of Biomedical Informatics, 125, 103958.
[CrossRef]

Gu, Y, Tinn, R., Cheng, H., Lucas, M., Usuyama,
N., Liu, X,, ... & Poon, H. (2020). Domain-specific
language model pretraining for biomedical natural
language processing. ACM Transactions on Computing
for Healthcare, 1(3), 1-23. [CrossRef]

Hochreiter, S., & Schmidhuber, J. (1997). Long
short-term memory. Neural Computation, 9(8),
1735-1780. [CrossRef]

[14]

[15]

[19]

Kumar, V., Igbal, M. I, & Rathore, R. (2025). Natural
Language Processing (NLP) in Disease Detection—A
Discussion of How NLP Techniques Can Be Used to
Analyze and Classify Medical Text Data for Disease
Diagnosis. Al in Disease Detection: Advancements and
Applications, 53-75. [ CrossRef]

Sheller, M. J., Reina, G. A., Edwards, B., Martin, J.,
& Bakas, S. (2020). Federated learning in medicine:
Facilitating multi-institutional collaborations without
sharing patient data. Scientific Reports, 10, 12598.
[CrossRef]

Benton, A, Hill, S., Ungar, L., & Hennessy, S. (2017).
Ethical implications of social media health research.
Big Data & Society, 4(2), 2053951717736338. [ CrossRef]

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021).
MedBERT: Pretrained contextualized embeddings on
large-scale structured electronic health records for
disease prediction. NPJ Digital Medicine, 4(1), 1-13.
[CrossRef]

Ismail, A. 1., Soronnadi, A., Adekanmbi, O., Ibrahim, B.
0., & Akanji, D. O. Geo-Semantic Analysis of Medical
Research Trends in Nigeria. In 5th Workshop on African
Natural Language Processing.

Thomas, S. G., & Myakala, P. K. (2025). Beyond the
Cloud: Federated Learning and Edge Al for the Next
Decade. Journal of Computer and Communications,
13(2), 37-50. [CrossRef]

Vijayalaxmi Methuku is a product
management professional with expertise in
Al, ML, and data-driven solutions. She holds
an MBA from UT Austin and a background
in electrical engineering. With a strong track
record in healthcare and e-commerce, she
has led the development of Al-powered
. disease surveillance and analytics solutions.
. . Dassionate about digital transformation,
she specializes in product strategy, agile

development, and driving innovation in healthcare technology.
(Email: methuku.vl@gmail.com)


https://doi.org/10.1197/jamia.M2544
https://doi.org/10.1007/s10489-023-05101-6
https://doi.org/10.1093/jamiaopen/ooad023
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.jbi.2022.103958
https://doi.org/10.1145/3458754
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/9781394278695.ch3
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1177/2053951717736338
https://doi.org/10.1038/s41746-021-00427-1
https://doi.org/10.4236/jcc.2025.132004

	Introduction
	Related Work
	AI-Driven Disease Surveillance
	NLP Techniques for Public Health Intelligence
	Deep Learning in Epidemiology
	Research Gaps and Contributions
	Comparison with Existing AI-Driven Disease Surveillance Systems

	Methodology
	Data Sources and Acquisition
	Data Preprocessing and Normalization
	NLP-Based Disease Surveillance
	Anomaly Detection and Geospatial Analysis
	Handling Geographic Uncertainty
	Integration of Environmental, Population, and Mobility Data
	Privacy-Preserving Techniques and Bias Mitigation
	Implementation and System Architecture
	Evaluation Metrics
	Multilingual Disease Surveillance and Cross-Lingual Transfer Learning
	Integration with SEIR-Based Epidemiological Modeling

	Experiments and Results
	Datasets
	Experimental Setup
	Evaluation Metrics
	Results and Performance Analysis
	NLP Model Evaluation
	Anomaly Detection Performance
	Geospatial Analysis Evaluation
	Scalability and Efficiency Results

	Case Study: COVID-19 Early Detection
	Discussion and Error Analysis
	Scalability and Real-World Performance Evaluation
	Adaptive Learning and Model Evolution

	Conclusion and Future Research
	Global Health Impact and Low-Resource Deployment
	Limitations and Future Research Directions
	Broader Future Research Directions
	Final Remarks
	Vijayalaxmi Methuku


