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Abstract
Federated Learning (FL) which eliminates the
centralized data storage requirement by facilitating
model training on diverse edge devices is
now a promising paradigm for decentralized
machine learning (ML). Applications involving
privacy-preserving Artificial Intelligence (AI),
including wearable technology, IoT networks, and
smart healthcare appliances, can particularly benefit
from this solution in embedded systems. By using
on-device local data from devices such as sensors,
embedded controllers, and smartphones, FL keeps
confidential information local, minimizing the
data transfer cost and privacy risks. Potentiality,
challenges, and key applications of FL integration
with embedded systems are addressed in this paper.
Device-to-device efficient communication, model
updating, and trade-offs between model accuracy
and computational resource limitations are some of
the issues addressed. Also addressed in the paper
are model aggregation, federated optimization
methods, and their usage in edge-based AI in
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real-life applications. Problems with security,
system reliability, and heterogeneous data in
federated environments are also discussed in the
paper. The extensive use of FL in embedded
systems is one of the important developments in
edge AI solution designing that is more scalable,
secure, and privacy-conscious.
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artificial intelligence, edge computing, privacy-preserving
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1 Introduction
The increasing application of AI in embedded systems
has transformed the operation of such systems
dramatically, enabling real-time decision-making
and enhancing device autonomy. Embedded
systems—such as Internet of Things (IoT) devices,
wearables, and smart sensors—previously heavily
utilized cloud computing for training and inference
activities. This centralized method, however, poses
significant issues, including subjecting data to
privacy threats, vulnerability to security attacks, high
costs of data transmission, and the unavailability
of bandwidth in distributed environments. Such

Citation
Radhakrishnan, K., Ramakrishnan, D., & Freeda, R. A. (2025).
Federated Learning for Artificial Intelligence in Embedded Systems.
ICCK Transactions on Emerging Topics in Artificial Intelligence, 2(2),
91–115.

© 2025 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

91

http://dx.doi.org/10.62762/TETAI.2025.440076
http://crossmark.crossref.org/dialog/?doi=10.62762/TETAI.2025.440076&domain=pdf
https://orcid.org/0000-0001-5537-2571
https://orcid.org/0000-0002-3599-7272
https://orcid.org/0009-0002-3335-0907
https://orcid.org/0000-0002-5300-3999
http://dx.doi.org/10.62762/TETAI.2025.440076
mailto:dhayavel2005@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Transactions on Emerging Topics in Artificial Intelligence

concerns are especially crucial in privacy-conscious
domains like health, smart home, and individualized
services where real-time sensitive data is being
produced.

FL addresses such concerns by enabling decentralized
ML. Rather than sending raw data to the cloud,
FL offers the possibility of local training of models
on devices and model updates relayed to a central
server [12]. This distributed architecture significantly
reduces the transmission of sensitive data, enhances
privacy of data, and reduces the likelihood of breaches.
FL also removes locality issues with data by training
models at the data source. This is very helpful for
embedded systems operating in environments with
limited processing power, connectivity, and storage.
In the domain of embedded systems, FL offers new
possibilities for AI deployment in the network edge.
These systems can now perform on-device learning
without compromising the confidentiality of sensitive
data, as required by applications such as healthcare
monitoring, autonomous driving, smart homes, and
industrial IoT. By enabling local decision-making and
model updating, FL can significantly reduce latency,
enhance real-time responsiveness, and lower the need
for continual cloud communication, further boosting
the overall efficacy of embedded systems [2].

Despite its clear value, FL integration into embedded
systems brings a variety of unique challenges.
One of the key issues is device heterogeneity:
embedded devices are very heterogeneous in
terms of computational capabilities, storage, and
networking [25]. Ensuring that FL models can
be trained effectively on such diverse platforms
without sacrificing performance or accuracy is a major
challenge. Moreover, model aggregation becomes
harder when local updates must be aggregated
from devices producing non-independent and
identically distributed (non-IID) or noisy data [21].
Communication overhead is also a major problem.
The frequent transfer of model updates among edge
devices and central servers may lead to intensive
bandwidth usage, especially for mass deployments.
Compressing the model, pruning the model, and
applying differential privacy have been proposed for
minimizing communication overheads and ensuring
data privacy for model aggregation. Security is yet
another equally critical issue: since updates to models
are shared across networks, FL systems are vulnerable
to adversarial attacks and model poisoning attacks
and demand the creation of robust security protocols
for real-world FL deployment [39].

The aim of this paper is to investigate the uptake of
FL in embedded systems through an examination
of its benefits, limitation, and latest technological
advancements. We introduce a comprehensive review
of FL models and their accuracy under constraints
of embedded settings. Some of the discussion areas
include privacy-preserving techniques, training
strategies for models, federated optimization
algorithms, and real-world applications such as
smart healthcare monitoring, self-driving cars,
and smart industrial automation [13]. We also
address current challenges such as handling
non-IID data, fault tolerance, and scalability—and
present recent advances to address these challenges.
Finally, we introduce future research directions for
enhancing FL-based embedded AI systems in terms
of next-generation edge computing solutions through
AI.

2 Foundations and Architecture of FL for
Embedded Systems

Embedded AI and Edge AI are revolutionizing the
way intelligent services are deployed, especially
in resource-constrained environments such as IoT
devices, sensors, wearables, and mobile platforms.
FL a golden opportunity to jointly train models over
distributed embedded devices without centralizing
sensitive data, offering it as an ideal technique for
next-generation edge systems [3].

2.1 Need for FL in Embedded and Edge
Environments

FL in the context of embedded and edge deployments
addresses some of the inherent issues of modern-day
distributed systems. As the amount of edge devices
increases exponentially, it is not economically feasible
to push huge quantities of raw data to central servers
with bandwidth concerns, latency concerns, security,
and privacy issues [29]. FL offers a decentralized
solution in the form of enabling devices to learn shared
models in a cooperative manner without disclosing
local data. This paradigm shift is crucial in the
development of efficient, secure, and scalable edge
smart systems for multiple edge applications.
• Data Privacy: performing processing of informed

information (such as medical or security
surveillance) right at the edge device avoiding to
route it all back into a remote location [38].

• Communication Efficiency: FL reduces the
amount of raw data that needs to be transferred
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back and forth with servers, which is important
for systems where bandwidth is critical [4].

• Personalization: user-specific data may be
privately learned by the models on devices.

• Scalability: Millions of other interested devices
can also help enhance learningwithout swamping
the cloud servers.

2.2 Challenges of Implementing FL on Embedded
and Edge Devices

FL has many benefits for embedded and edge AI
systems, but it is difficult to efficiently deploy in
these environments. Compared to typical cloud-based
setups, embedded and edge devices suffer from harsh
resource limitations, varying connectivity, and diverse
hardware environments. Tomake FLmodels deployed
over distributed edge networks effective, efficient, and
robust, these challenges must be overcome [32].
• Hardware Constraints: The devices possess

limited memory, compute power, and battery life.
• Network Instability: Synchronous model

updates are plagued by unstable network
connectivity from edge devices.

• Hardware Heterogeneity: Computers are much
more heterogeneous with respect to hardware
organization (ARM, RISC-V, special ASICs).

• Security Risks: FL edge exposes models
to greater threats of model poisoning and
adversarial attacks.

2.3 Recent Technological Trends
Recent developments in edge and embedded
computing technologies have profoundly influenced
the development of FL frameworks. Developments
in low-power hardware, lean model design, and
distributed training paradigms are rendering FL more
viable and beneficial for real-world edge applications.
Attaining awareness of these emerging trends is
crucial towards understanding how FL is evolving
to tackle the challenges and needs of embedded AI
ecosystems [10].
• TinyML Integration: Ultra-lightweight ML

model that is deployable in low-RAM and storage
devices, enabling on-device learning via FL.

• Low-Power AI Accelerators: Hardware
platforms like Google’s Coral TPU and
NVIDIA’s Jetson Nano accelerate deep learning

computations on embedded devices at high
energy efficiency.

• On-Device Training: Techniques like
quantization and pruning allow embedded
devices to fine-tune and update FL models locally
without servers.

• Federated Reinforcement Learning (FRL):
Combines FL and reinforcement learning to
enable cooperative embedded systems like drone
swarms and autonomous vehicles.

Embedded and Edge AI settings are significantly
advantaged by the decentralized, privacy-protecting,
and communication-effective character of FL. With
improved hardware and more advanced optimization
methods being developed, FL will be a key enabler for
extreme edge intelligence in networks [24].

3 Key Applications and Case Studies of FL in
Embedded Systems

FL applied to embedded systems is a giant leap
towards creating more privacy-focused, secure, and
efficient AI-powered devices. With increasing
technology advancements, FL is poised to transform
sectors such as healthcare, smart cities, the automotive
sector, and the Internet of Things (IoT) by offering an
even more scalable, fault-tolerant, and secure way of
delivering AI at scale. FL has garnered considerable
attention in recent years for application in embedded
systems as it can support decentralized ML with
security and privacy. Embedded devices, particularly
IoT devices, wearables, and smart sensors, typically
operate in environments with scarce resources, and
therefore typical cloud-based AI systems are not viable
due to latency, bandwidth, and privacy concerns. FL
surpasses these constraints by allowing training of
models on the local devices directly and sending
updates to models over the network instead of
transmitting the data, keeping the data private and
saving data transmission costs.
FL was initially proposed by McMahan et al. [28],
in which they proposed an approach to train ML
models on a large number of decentralized devices
without invading data privacy. The main idea of
FL is that the local data remains on the device, and
only model weight updates are exchanged with a
central server for aggregation to build a global model.
The approach is especially handy for embedded
systems applied in sensitive areas such as healthcare
monitoring [17], autonomous vehicle systems [27],
and home automation [30]. Even with the advantages,
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its adoption in embedded systems is faced with
several challenges. Its greatest challenge is the
heterogeneity of the devices, where they vary greatly in
computation power, storage, and network connectivity.
Embedded devices such as smartphones, wearables,
and IoT sensors have high heterogeneity, and hence
it’s challenging to deploy FL models effectively on
different platforms. Another major issue is that data is
non-IID (non-independent and identically distributed)
across devices. In most real-world scenarios, local data
significantly differs, making it difficult to aggregate
local updates into a uniform global model [25]. This is
an even more serious issue in large-scale FL networks
consisting of thousands or even millions of devices [7].

In addition to device heterogeneity and data
distribution problems, communication overhead is
another major problem too. Communication costs
associated with model updates transmission from
edge devices to the server can be enormous, especially
in networks with large device numbers. To address
this, authors have proposed techniques such as model
pruning, update compression, and sparsification
for reducing the communication overhead [10].
Besides, deployed FL systems also need to address
potential security risks. Model updates transmitted
over networks are susceptible to attacks by attackers
like model poisoning and backdoor attacks, which
undermine the integrity and confidentiality of
the learning process [4]. Although FL inherently
preserves privacy through local data retention, model
updates can still potentially leak sensitive information.
To promote privacy and security, numerous advanced
techniques have been incorporated. Differential
Privacy (DP) introduces noise scaled to the model
updates to prevent information leakage [37]. Secure
Multi-Party Computation (SMPC) enables various
parties to jointly compute model updates without
exposing their private inputs [8]. Resilient aggregation
techniques and adaptive techniques have also been
developed to safeguard against model poisoning and
backdoor attacks [18]. These methods guarantee that
sensitive data are safe even in hostile settings, and
this makes FL implementations in embedded systems
more reliable and secure.

There has been progress in recent years to improve
the privacy, scalability, and efficiency of FL systems
intended for the embedded environment. The
integration of TinyML, which allows the running
of ML models on low-resource devices such as
microcontrollers, has rendered FL possible even
with computation and power resources available

[36]. TinyML combined with FL is critical to
supporting decentralized intelligence on IoT devices
and wearables. Another recent development is
Personalized FL, where it is possible to personalize
local models for personal devices and yet still
contribute to the global model to solve device
heterogeneity as well as enhance model accuracy.
Additionally, cross-silo FL with fewer trusted nodes
(e.g., hospitals or firms) and cross-device FL at
huge scale on personal devices have arisen as two
different operational modes of FL. Energy-efficient
FL techniques are also being designed to reduce
power consumption due to local model training and
communication, which is crucial for battery-powered
devices. Additionally, Federated Transfer Learning
(FTL) has been proposed to enable the contribution
of small and highly disparate datasets of devices
efficiently, leveraging transfer learning principles
to leverage the performance of the global model.
Application areas of FL in embedded systems are
abundant and revolutionary. In medical surveillance,
FL enables training customized AI models on
health wearables such that real-time diagnostics and
prediction are feasible without the need to send
patient data to cloud servers. Within the autonomous
vehicle context, FL allows vehicles to locally train
their AI models with unique driving data in a private
manner, thus allowing real-time decision-making and
continuous learning based on the diverse conditions
encountered by the fleet [26]. In clever homes, device
like thermostats, lights, and security cameras utilize
federated gaining knowledge of two parent human
choices and automate responses at the same time as
safeguarding personal household facts. FL is applied
in business contexts for predictive protection, tool
tracking, and anomaly detection, wherein nearby
statistics is processed through deployed sensors and
devices to enhance efficiency and avoid malfunctions,
all even as safeguarding unprocessed operational
information from imperative servers [27].

Integrating FL into embedded devices provides
huge benefits in terms of privateness renovation,
facts protection, performance, and scalability.
However, to completely harness its capability,
considerable challenges related to device
heterogeneity, conversation overhead, non-IID
data distributions, and security vulnerabilities
need to be addressed. Federated optimization
methods, privateness-improving technologies which
include differential privateness and stable multiparty
computation (SMPC), and power-green computing
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strategies like TinyML are topics of ongoing take a
look at with full-size promise for development. As
federated gaining knowledge of evolves, it possesses
the ability to convert healthcare, transportation,
smart homes, and business packages by offering
privateness-keeping, scalable, and efficient options to
standard centralized device mastering strategies.

FL is a distributed ML technique that allows multiple
age units (such as smartphones, IoT units or built-in
system) to train a global ML model to stay located
on devices [19]. The model allows the FL model
updates (gradients) to be sent to a central server,
rather than transferring raw data on a centralized
server for training where they are gathered to improve
the global model. This approach preserves data
privacy, reduces communication costs and ensures that
sensitive information remains on the device, making it
especially useful for health care applications, finance
and IoTs. Important concepts for FL include:

• Local training: Each unit trains its model on local
datawithout the need to sharewith Central Server
or other devices.

• Model aggregation: After the local model is
trained, updates (not raw data) are sent to a
central server for aggregation. The process usually
includes average model parameters or gradients
(eg when using fedavg-algorithm).

• Decentralized learning: The FL machine enables
a decentralized approach to learning, which is
the opposite with traditional centralized learning
methods.

• Privacy protection: Since raw data is never
exchanged, FL naturally is more privacy
protection than traditional ML models that
depend on central data storage [6].

3.1 Historical Development and Milestones
FL emerged from the need to train models on data
that could not be centralized due to privacy concerns
or logistical issues. The concept was first introduced
by Google researchers in 2016, as a way to enable
ML on mobile devices without sharing user data with
centralized servers. The initial work by McMahan et
al. [28] introduced the Federated Averaging (FedAvg)
algorithm, which became a foundational method in
FL. Key milestones in the development of FL include:

• 2016: Introduction to Federated Learning by
McMahan et al. [28] For mobile devices, such as

central technology for model aggregation with
FedAvg algorithm.

• 2017: The release of Open-Source frames such as
TensorFlow Federated, which helped make the FL
algorithm more accessible and easier to use for
researchers and developers.

• 2018: For the IoT and health care applications
that expanded FL, researchers demonstrated the
ability of FL for personal health services while
maintaining the patient’s privacy.

• 2019: Important research to increase privacy,
such as model updates ahead and the use of
differential privacy to prevent the leakage of
sensitive information during aggregation.

• 2020: Edge computing and integration of FL
with 5G networks, fast and more efficient model
enables training and distribution for IoT system
[25].

• 2021: Connecting research and model toxicity
attacks in secure aggregation, makes FL stronger
for use in the real-world applications [41].

3.2 Basic Architecture for FL
FL Architecture is usually composed of three main
components and the Figure 1 elaborates the Basic FL
Architecture.
• Customer equipment (Edge Device): These

are devices (eg smartphones, IoT devices or
built-in systems) that host local data and do local
training. Each device calculates the model update
based on the local dataset. These updates are
usually gradients or weights that reflect local data
training.

• Central server (agriculture): Central Server
receives updates from client equipment. It collects
these updates to improve the global model. The
aggregation can be done by techniques such
as FedAvg, where the server keeps the average
of weight or gradients from customers and
updates the global model. Server can also handle
the orchestration of the training process, such
as planning when each customer participates
in training, manages communication between
customers and controls the synchronization
process.

• Communication network: Communication
networks are used to transfer updates between
clients and servers. In FL, data privacy is ensured
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by not transferring raw data. Instead, local model
parameters or gradients are sent to the server for
aggregation. Communication is usually periodic,
after sending updates to customers after training
in a certain number of ages or completed local
workouts [14].

Figure 1. Basic FL architecture.

3.3 Basic Workflow in FL
The workflow of FL consists of several key steps,
including initialization, local training on client devices,
model updates and aggregation at a central server,
and global model refinement. This cycle continues
until the model reaches the desired level of accuracy

or meets predefined stopping criteria. The Figure 2
elaborates the workflow model and below is the
detailed explanation.
• Initialization: The central server integrates

the global model with random or pre-trained
parameters.

• Local training: Customers (Edge units) train
models locally using their own data. They
calculate the model grades or parameters.

• Model updates and aggregation: Customers
send their updates to the Central Server, which
collects the update using an algorithm as a
FedAvg.

• Global Model Update: The update collected is
used to update the global model, which is later
sent back to the client unit for further training.

• Repeat: The process is repeated until the global
model is convergence, or restriction criteria are
completed.

Figure 2. Workflow in FL.

The associated learning system provides a compelling
solution for the AI model training, which provides
privacy protection, low data transfer and decentralized
processing. The development of FL has seen an
increase in adoption in different fields, and architecture
is sewn to accommodate the resource information
environment as a built-in system and IoTs.
Built-in systems are widely used in various
applications, including the Internet of Things
(IoT), autonomous vehicles, health equipment and
smart home automation. Traditional ML models
require centralized data processing, where raw data
is collected and sent to a central server for model
training. However, this approach presents many
challenges are shown in Table 1:
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• Privacy considerations: Many built-in systems
collect sensitive data (eg the health care
system’s monitoring devices, smart cameras).
Dissemination of raw data on a centralized server
caused significant privacy risk.

• Bandwidth boundaries: built-in devices often
work in the atmosphere with limited network
band width, making data transfer expensive and
disabled.

• Loadstones barriers: real-time applications,
such as autonomous vehicles and industrial
automation, require low suppression treatment,
which cannot always be guaranteed by centralized
training.

• Energy efficiency: built-in systems usually have
limited power resources. Sending large versions
of data for processing can lead to rapid flow.

• Scalability: Increasing number of connected
devices make centralized ML impractical, as it
leads to data processing and storage [7].

FL addresses these challenges by allowing a built-in
system to the Train ML model without broadcasting
raw data. Instead, models are shared updates,
retaining data privacy and adapting to the use of
resources.

3.4 How FL Fits into the Resource Quality
Environment

FL is designed to function effectively in the resource
environment by taking advantage of the following
strategies. Here’s a Table 2 summarizing how FL fits
into the resource-quality environment:
• Decentralized learning: FL enables built-in

devices to train models locally and only transfer
models’ updates (gradients or parameters),
which significantly reduces the data transfer
requirements.

• Model compression and optimization:
Techniques such as permineralization, pruning
and knowledge distillation are used to reduce
the size and calculation complexity of the model,
which makes it possible for built-in systems.

• Adaptive aggregation: FL Employees Techniques
such as Federated Averaging (FedAvg) to collect
the model update effectively, reduce calculation
and communication costs [21].

• Downed FL architecture: Instead of direct

communication with a central server, hierarchical
structures (eg edge-based aggregation) allow the
mediated edge tools to collect updates before
forwarding the cloud [7].

• Energy-ability training: Built-in systems can use
techniques such as selective update transfer and
event-controlled learning to adapt the power
consumption.

• Security and Privacy Mechanisms: Federated
Learning includes disruptive and secure
aggregation methods to protect and reduce
unfortunate attacks of sensitive data.

3.5 Applications of FL in Embedded Systems
Application of FL in built-in systems: Federated
Learning has a wide range of applications in the
built-in system, which enables smarter and safer
AI-powered solutions. FL is increasingly being
incorporated into practical embedded applications
in a variety of domains with significant privacy,
communication efficiency, and scalability benefits.
Integration is extremely relevant to new and upcoming
areas such as smart agriculture, edge-based medical
diagnosis, and energy-conscious edge robotics. Here’s
a Table 3 summarizing the applications of FL in
embedded systems: Some major applications include:
Below is a step-by-step description of how FL supports
these applications and the added value it provides to
real-world edge AI use cases:

3.5.1 Smart Agriculture
In smart agriculture, FL has a key role as it enables
collaborative ML in a decentralized network of
distributed IoT sensors, drones, and farm equipment.
The biggest challenges facing agriculture are how to
handle huge volumes of real-time sensor data (e.g.,
crop health, temperature, and soil moisture) without
breaching data confidentiality and reducing network
bandwidth usage [21].
• FL keeps data in the edge devices (e.g., IoT

sensors or drones) locally and transmits only
model updates, thus protecting proprietary data.

• Efficiency of Communication: Instead of
pushing all raw data to a master server, FL
reduces bandwidth-hungry data communications.
Models are trained locally and incremental
updates are shipped, thereby saving
communication resources, particularly in
remote or off-grid farmland where there are few
network facilities.
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Table 1. Federated learning in embedded systems.

Aspect Challenges in Traditional ML How FL Addresses It

Privacy Centralized data collection exposes
sensitive user data.

FL keeps data localized, only sharing
model updates.

Bandwidth Limited network bandwidth makes large
data transfers costly.

FL reduces data transmission by only
sharing model parameters.

Latency Real-time applications require low-latency
processing.

Local model training ensures faster
decision-making.

Energy Efficiency Embedded systems have limited power for
processing and transmission.

FL optimizes computation and minimizes
communication.

Scalability Centralized ML struggles with a growing
number of devices.

FL enables decentralized learning across
multiple devices.

Table 2. How FL fits into the resource-quality environment.

Strategy Description

Decentralized Learning FL allows devices to train models locally and only send model updates (gradients
or parameters), reducing data transfer needs.

Model Compression &
Optimization

Techniques like pruning, quantization, and knowledge distillation help minimize
model size and computational complexity, making FL feasible for embedded
systems.

Adaptive Aggregation FL uses methods like Federated Averaging (FedAvg) to efficiently collect model
updates while reducing computational and communication costs.

Hierarchical FL
Architecture

Instead of direct communication with a central server, hierarchical structures
(e.g., edge-based aggregation) allow intermediate edge devices to collect updates
before sending them to the cloud.

Energy-Efficient
Training

Embedded systems can optimize power consumption using techniques such as
selective update transfer and event-triggered learning.

Security & Privacy
Mechanisms

FL integrates methods like differential privacy and secure aggregation to protect
sensitive data from exposure and adversarial attacks.

• Personalization: Every single farm can have its
own setup of environment. FL enables devices
to learn and train models locally under specific
conditions and, therefore, generate personalized
outputs for a specific farm, e.g., best irrigation
timing or tailored pest control.

• Scalability: FL enables AI-powered analytics at
scale. New sensors and devices deployed at
various sites in the agriculture sector can both
collaborate and improve models together without
bogging down central systems [7].

3.5.2 Edge-Based Medical Diagnostics
In medicine, FL can transform edge-based medical
diagnostics in revolutionary ways. This includes areas
such as wearable health monitoring devices, medical
imaging, and mobile health applications, where
real-time, privacy-preserving insights are critical.
• Data Privacy: Healthcare information, such

as patient health records, imaging information,
and wearable sensor readings, is extremely
sensitive. FL ensures that no such information
ever leaves the patient’s device or local healthcare
organization, reducing privacy risks from central
storage of data and complying with regulations
such as HIPAA (Health Insurance Portability and
Accountability Act).

• Real-Time Decision-Making: In medical
diagnostics, real-time readings can be the
difference in patient care. FL allows for local
training of the model at the edge, and thus makes
real-time processing of medical data, such as ECG
signals, blood glucose, or X-ray images, without
the wait of data transfer to central points.

• Personalization: Medical therapies may be
tailored inmultiple dimensions. FL enables health
monitors andwearable sensors to tailor diagnostic
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models according to the patient’s individual
data, resulting in customized medical treatments.
For example, wearable sensors can continuously
improve for the early identification of illnesses
such as arrhythmias and diabetes problems.

• Collaborative Learning: Local hospitals and
clinics could share a consolidated dataset. The
information could be combined and used in
tandem to train the diagnostic models together. It
can be helpful to develop better predictions and
models to diagnose patients without having to
share the identity of each patient.

3.5.3 Energy-Aware Edge Robotics
FL is also contributing meaningfully in the area of
edge robotics with energy efficiency, i.e., autonomous
mobile robots, drones, and other robotic systems based
on the edge implemented in manufacturing, logistics,
and environmental monitoring use cases.
• Energy Efficiency: In-field robots would

normally have constraints on their energy
budgets, and sending a lot of data to central
servers normally requires energy. FL allows
robots to learn and update their model in the
field with minimal communications and energy
requirements. This benefits battery-powered
units in the field, enabling them to operate in an
efficient way for longer.

• Collaborative Robotic Systems: For use in areas
like drone swarms or warehouse robots, FL can
enable that multiple robots learn from their
local environment as a group and exchange as
little data as necessary. Every robot is capable
of helping in model update, local experience
learning independently, and adding to system
knowledge without requiring data to be taken to
a central point.

• Local Adaptation to Environment: Robots
deployed in varying environments (diverse
terrain, factory plant floors, or warehouses) may
find themselves being exposed to local difficulties
that would require local learning adaptation. FL
facilitates adaptation at the local level but benefits
from global knowledge acquired by all devices.

• Security and Robustness: FL lowers security
risks of exposing edge devices to direct attack
by malicious parties, i.e., model poisoning.
By enabling local model updating and
communication of aggregate updates instead

of individual parameters, the system is less
susceptible to intentional modification [42].

3.6 Smart Home Automation
FL is transforming smart home systems by enabling
devices to learn user preferences regarding
environmental control and security without violating
personal data. Such devices, such as smart thermostats,
lighting, and security devices, can adapt themselves
based on local data without transmitting sensitive
user information to central servers.
• Personalization of User Preferences: FL allows

smart devices like smart thermostats, lighting
systems, and security cameras to learn and adapt
together based on individual user patterns and
preferences. Training is local to the device, i.e.,
user-specific data (like favorite temperature, light
levels, or security settings) is kept private to
servers outside the device.

• Voice Assistant and Smart Speakers: Platforms
like Google Home or Amazon Alexa can utilize
FL to enhance voice recognition and natural
language processing on their platforms. The
framework can fine-tune user experiences in the
local environment to enhance speech recognition,
personalized responses, and recommendation
systems without violating users’ privacy and
sending any data to cloud servers.

• Energy Optimization Consumption: FL can
be used by smart meters and energy-efficient
appliances to learn from real-time consumption
to optimize maximum energy use in the home. FL
can real-time optimize heating, cooling, lighting,
and appliance controls based on usage to optimize
energy efficiency without any impact on user data.

3.7 Autonomous Vehicles
In autonomous driving, FL enables the cars to learn
from each other’s experience without exchanging
sensitive driving information with the cloud and
improving the safety, performance, and efficiency of
autonomous systems.
• Navigation and Threat Alerts: FL may be

utilized by autonomous vehicles to share
navigation route, road condition, and threat
alert information without sharing raw data such
as GPS coordinates, camera images, or driving
habits. Decentralized learning enables cars to
continuously update decision-making algorithms,
improving safety features such as adaptive cruise
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control, collision avoidance, and lane-keeping
assistance.

• Continuous Safety Enhancements: Cars can
also collaborate in real-time to improve their
safety functions through the sharing of models
that more accurately identify hazards, adaptive
braking based on learning from conditions, and
emergency response systems. FLmakes it possible
to carry out these upgrades locally on the vehicle
without the necessity for the sharing of sensitive
driving data with a central point.

• Traffic Control and Route Guidance: FL can be
used by traffic control systems to dynamically
control traffic in real time and provide advanced
route guidance to vehicles. FL can avoid traffic
congestion and synchronize traffic signal times
using decentralized vehicle and traffic sensor
information without violating the privacy of
individual drivers.

3.8 Industrial IoT (IIOT)
FL for Industrial IoT allows production line machinery
and factory devices to learn from local data to optimize
processes, identify anomalies, and prevent equipment
failure, without exposing proprietary production data.
• Predictive Maintenance: FL can be employed

to update predictive maintenance models
utilizing on-board sensors from machinery and
equipment. The sensors monitor preliminary
failure signals (e.g., vibration, temperature,
pressure variations) and refresh the models
without relaying unprocessed sensor data.
This enables firms to maintain operations and
minimize downtime by forecasting maintenance
requirements prior to equipment failure.

• Supply Chain Optimization: FL can be
employed to improve supply chain management,
enabling diverse businesses to optimize
operations, forecast demand, and manage
stocks without accessing sensitive business
information. Each plant can enhance the overall
model’s efficiency without revealing confidential
operational data.

3.9 Intelligent Urban Development and
Infrastructure

FL greatly enhances the development of intelligent
and sustainable cities by facilitating decentralized
intelligence for public safety, energy distribution, and
urban transportation.

• Public Surveillance Systems: FL may augment
public safety by enabling surveillance cameras
and sensors to collaboratively learn to identify
potential threats, security abnormalities, or
suspicious activities. The system can enhance its
detection models over time by utilizing local data
from municipal cameras, without transmitting
raw video feeds to a central server, thereby
preserving privacy and security.

• Energy Distribution Optimization: FL can
enhance energy use in smart cities by enabling
various infrastructure components (e.g., smart
grids, meters, and energy consumption devices)
to develop localized models based on regional
consumption trends.

• Production Efficiency: Smart companies can
utilize FL to optimize their production efficiency.
For example, factory equipment and floor
sensors can collaborate to analyze operating
efficiency, spot bottlenecks, and optimize the
manufacturing process for increased output while
protecting confidential and sensitive production
information.

FL provides a promising solution for integrating
ML into built-in systems by addressing privacy,
bandwidth, delay and energy barriers. By taking
advantage of decentralized learning, model adaptation
and adaptive aggregation, FL enables effective
and scalable AI-powered applications in the
process-intensive environment.

4 Challenges, Research Gaps, and Future
Directions

FL data enables decentralized training of models on
different devices without giving up privacy. However,
the implementation of FL on the built-in system
presents many challenges such as the unit, security,
data division and communication.
• Heterogeneity of Devices

– Calculation barriers: Built-in systems
usually have limited processing power,
memory and energy resources, making
it challenging to train complex models
effectively.

– Venus’s architecture: Unit machine product
layout (CPU, GPU, accelerator) can be
different and therefore perform different
performances and adjustments.
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Table 3. Applications of FL in embedded systems.

Application Description

Healthcare • Wearable health devices (e.g., smartwatches, fitness trackers) train models
to detect irregular heart rates, blood pressure deviations, and other health
conditions while preserving patient data privacy.

• Smart hospitals use FL to enhance disease spread models without sharing
sensitive records.

Smart Home • Home automation systems learn user preferences for lighting, temperature,
and security without sending personal data to the cloud.

• Voice assistants and smart speakers refine speech recognition models locally.
FL also optimizes energy consumption by training models on local data
from smart meters.

Autonomous Vehicles • Self-driving cars share navigation patterns, road hazard detection, and
recognition updates without exposing raw driving data.

• FL improves safety features like adaptive cruise control and lane-keeping.
• Traffic management systems use FL for real-time route optimization while

preserving user location privacy.

Industrial IoT (IIoT) • Predictive maintenance models are trained on embedded devices to detect
equipment failures.

• Smart factories analyze production efficiency with FL without exposing
proprietary manufacturing data.

Agriculture &
Environmental
Monitoring

• FL enables precision agriculture by training crop monitoring models using
distributed field sensors without centralized data storage.

• Environmental monitoring systems improve pollution and weather
forecasting models with minimal bandwidth usage.

• FL supports sustainable farming by optimizing irrigation and resource
management.

Smart Cities &
Infrastructure

• Public surveillance systems enhance security threat detection without
streaming raw video to cloud servers.

• FL customizes energy distribution in smart grids by training decentralized
models on local consumption data.

• Traffic lights and road sensors collaborate to improve urbanmobility through
FL-powered traffic optimization.

– Software inequality: Variability in the
operating system, firmware versions and
software libraries lead to difficulties in a
standard FL structure.

• Data Privacy and Security Problems

– Model threat to inverted attacks: Although
FL does not share raw data, attackers can
recreate sensitive information from model
updates.

– Malicious participants: Some equipment

can be erected malicious, injecting biased
or misleading updates and poisoning of the
model.

– Encryption Overhead: Homomorphic
encryption and differential privacy Incur
Calculation and ensure aggregation
techniques such as calculation and
communication costs, which can make
built-in systems sick.

• Model aggregation and non-IID data
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– Non-IID data division: Introduced
units collect data from the asymmetrical
environment, causing global models
to influence convergence-cracking and
unbalanced datasets.

– Personal model adaptation: A single global
model cannot perform well in all devices
due to separate data division, which requires
individual FL approaches to connect the
complexity.

– Unstable Convergence: Variability in data
distributions and computational capabilities
can result in slow or unstable convergence of
the federated model.

• Communication overhead and efficiency

– Limited bandwidth: built-in devices
are often dependent on low-bandwidth
networks (eg IoT protocols such as MQT,
LPWAN), causing constant model update.

– High energy consumption: Modeled
model updates often reduce battery life to
resource-related equipment.

– Asynchronous partnership: Equipment can
go offline or stop connection, disrupt the
training process and require techniques
such as Asynchronous FL or client selection
strategies.

• Ultra-Low-Latency Constraints: Edge devices,
particularly for real-time applications like
self-driving cars and industrial control, require
ultra-low-latency computation. FL, while
reducing the requirement to send data to the
central servers, is still struggling to match the
requirements of latency. Model updates and
training must be performed rapidly without
disrupting real-time decision-making. The
necessary speed in communication between
edge devices and the server and local processing
capability is required to meet these standards.

• Real-TimeOn-Device Learning: For themajority
of edge AI applications, models will need to learn
and adapt at every moment. However, the ability
to perform on-device real-time learning presents
considerable challenge. The embedded devices
usually have sparse processing capabilities and
memory, making it hard tomanage big data sets as
well as perform recurrent model updates. Model
pruning, quantization, and knowledge distillation

are some of the methods employed for optimizing
learning without compromising performance or
energy efficiency.

• Hardware Heterogeneity: Edge devices are
extremely heterogeneous in terms of their
hardware capabilities, including different
processors, memory, and power constraints. This
hardware heterogeneity makes deployment of
FL systems difficult because models need to
be designed to operate well on a wide range
of devices. Some devices may not be capable
of executing certain computations involved
in training models, which leads to difficulty
in synchronization and ensuring successful
cooperation among edge devices.

In order to remove these challenges, adapted FL
frameworks must take into account lighter model
architecture, effective encryption techniques, adaptive
aggregation methods and correlation-qualified
strategies for built-in systems.

5 Techniques and Frameworks Enabling FL in
Embedded Systems

To address the problem of FL in embedded systems,
numerous methods have developed that attempt to
improve efficiency, security, and scalability. Such
methods enhance model training based on the
computational and communication constraints of
embedded devices.

5.1 FL Algorithms for Embedded Systems: FedAvg
and FedProx with Real-World Applications

Federated Averaging (FedAvg) is the cornerstone
algorithm for federated learning (FL). In FedAvg,
local devices independently educate models the use
of their personal information and percentage only
version updates with a valuable server for aggregation.
Mathematically, if each device k has nk data points,
and wk is the nearby version, the server updates the
worldwide version w by using weighted averaging:

w ←
K∑
k=1

nk
n
wk where n =

K∑
k=1

nk (1)

FedAvg has been practically carried out in numerous
embedded environments. A tremendous instance
is Google’s Gboard keyboard gadget. In this
machine, consumer smartphones embedded gadgets
with limited processing and reminiscence assets
collaboratively train subsequent-word prediction
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fashions without transmitting non-public typing
data to imperative servers. Each phone regionally
fine-tunes the language model using user interactions,
then sends encrypted model updates to the server.
This guarantees low conversation overhead while
keeping person privateness — a critical consideration
for embedded cell systems running in diverse network
environments. In the healthcare domain, FedAvg
was used to educate models throughout wearable
medical devices used for monitoring cardiac activity.
Each wearable device, like a heart fee sensor,
amassed personal fitness information and skilled a
nearby version to detect early signs of cardiovascular
anomalies. The local updates, in place of the sensitive
raw fitness records, were aggregated centrally. This
FL-based totally approach included affected person
privateness at the same time as allowing the advent of
correct, population-wide predictive health fashions,
demonstrating how FedAvg fits clinical embedded
structures limited with the aid of privateness and
battery life.
However, embedded systems often gift demanding
situations which includes hardware heterogeneity and
records non-IIDness (non-Independent and Identically
Distributed facts), which could have an effect on
FedAvg’s performance. To deal with those troubles,
FedProx modifies FedAvg’s local schooling goal
through adding a proximal term that penalizes
deviation from the global version, mathematically:

min
w
fk(w) +

µ

2
‖w − wglobal‖2 (2)

where µ controls the regularization strength. The
proximal term allows stabilize schooling when gadgets
have differing computational abilities or whilst
statistics distributions are extraordinarily skewed.
In a clever domestic case have a look at via [15],
FedProx turned into used to train models across
diverse embedded devices like smart thermostats,
protection cameras, and lighting fixtures structures.
These gadgets had relatively personalized usage styles
and ranging computational assets. By applying
FedProx, researchers ensured that neighborhood
fashions educated successfully nomatter heterogeneity
in device electricity and person conduct. The ensuing
global model enabled extra intelligent and customized
electricity control systems without compromising
person data privateness or requiring regular cloud
connectivity.
Another sturdy utility of FedProx became

demonstrated within the business IoT (IIoT)
environment with the aid of. Manufacturing
gadgets prepared with embedded sensors varied
extensively in phrases of records generation costs and
hardware talents. By the use of FedProx, predictive
upkeep models were trained throughout those
distributed systems to hit upon gadget disasters
early. The proximity constraint avoided devices with
noisy or low-quantity facts from negatively impacting
the global model, enhancing both the accuracy
and stability of the federated gadget. This reduced
downtime in business operations and showed how FL
can be a game-changer for smart factories.
In the context of self-reliant cars, [35] explored
making use of FL to onboard embedded processors.
FedAvg was to begin with used to enable automobiles
to collaboratively teach object recognition and lane
detection fashions without uploading raw sensor
statistics to a cloud. However, due to variations in
riding environments (e.G., town traffic as opposed
to rural roads), non-IID information became a
vast hurdle. Introducing FedProx allowed each
vehicle to conform education at the same time as
retaining alignment with a global fleet-extensive
model, improving robustness and decreasing version
glide — crucial for preserving protection and overall
performance in self-reliant driving systems.
Thus, each FedAvg and FedProx have validated
instrumental in permitting federated studying across
embedded structures. FedAvg is efficient when
devices are exceedingly homogeneous, even as
FedProx excels in environments with large device and
facts heterogeneity, that is common in actual-global
embedded programs. Their a success deployment in
clever houses, healthcare wearables, self-reliant cars,
and IIoT validate the sensible capability of federated
gaining knowledge of to revolutionize AI deployment
at the network edge even as upholding strict privacy,
latency, and strength-performance necessities.

5.2 Model Compression and Perishable
Built-in units have limited memory and data capacity,
and therefore FL is necessary for model compaction
and finance for finance.
• Weight Prize: Removes fruitless parameters and

weight from the nerve network to reduce the size
of the model without damaging the accuracy.

• Privation: The model changes the model
parameters in little perfect (eg 8-bit integer)
than highs perception (eg 32-bit floating point),
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reduces memory and calculation expenses
significantly.

• Knowledge distillation: A small "teacher"
trained by a large "teacher" model benefits from
a small "student" model, maintains performance,
but reduces calculation requirements.

• Low rank constitutions: Weight matrix is a
factor in the form of low-ranking forms to
reduce parameters while maintaining important
functions.

5.3 Gradient Sparsification Techniques
considering that recurrent update transmission of a
model is expensive for embedded hardware, gradient
Sparsification is used to alleviate communication
overhead.
• Top-K Sparsification: The most important shield

sends the top K% of the update, which occupies
the minimum bandwidth.

• Random todrop: A random selection of gradients
that are useful in low bandwidth environmental
magazines.

5.4 Secure Aggregation
A data adopts security methods, including
improvement in safety against leaks, flies in built-in
systems and safe aggregation.
• Differential Privacy (DP): Themodel introduces

noise control for the update before sending the
server, preventing the end of personal data

• Secure Multi-Party Computation (SMPC):
Enables the device to calculate the collected
model updates without highlighting personal
data and secure privacy.

• Homomorphic Encryption: Encrypt model
updates are such that they can be collected
without decrypting to secure the data privacy.

• Blockchain-based Safe FL: User Blockchain
Technology to tamper-illustrated logging and
distributes the model updates, increases the
security and confidence.

FL can be implemented with success on built-in
systems, and combines federated optimization, model
compression, gradient savings and safe aggregation
techniques. Such methods reduce resource limits,
increasing safety and communication reduces
overheads, which makes FL -er more convenient for

real-world applications in IoT, Smart Healthcare and
Edge AI.
Federated Learning (FL) in built-in systems enables
decentralizedAI treatmentwhile retaining privacy and
reducing communication costs. Below are the most
important applications where FL built-in AI changes
the deployment. Applications of FL in embedded
systems are clearly shown in Figure 3.
• Health care and medical equipment

– Personal health monitoring: Use FL to
analyze user health data (heart rate, sleep
patterns) without sharing raw data (eg
Smartwatch, Fitness Trackers), protect
privacy.

– Medical imaging and diagnostics: FL helps
hospitals work on AI-based diagnostics
(X-rays, MRI analysis) without dividing the
patient’s data into institutions.

– Glucose monitoring and insulin pumps:
built-in FL models in continuous glucose
monitors (CGM) improve future accuracy
for diabetes treatment.

– Prediction of the disease: FL enables AI
training to associate patient health records
in many hospitals to detect initial illness (eg.
heart disease, Parkinson’s).

• Autonomous Systems and Smart Vehicles

– Autonomous driving: FL allows to learn
vehicles connected to real driving conditions
without postponing sensitive location and
behavioral data.

– Traffic flow optimization: Smart traffic
systems Use FL-competent built-in devices
to analyze vehicle movement patterns and
adjust the traffic signal dynamically.

– Driver behavior analysis: AI systems in
vehicles use FL to adapt help companies and
secure privacy.

– Conflict prevention system: built-in sensors
and cameras in vehicles train Corporately AI
models to detect real-time objects and predict
danger.

• Smart Homes and IoT Applications

– Voice assistant and home automation:
Amazon Alexa and Google Home can
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increase voice recognition locally without
sending sensitive data to shuttle servers.

– Energy handling: Smart meters and
thermostats use FL to optimize energy
consumption patterns, and preserve
domestic data privacy.

– Discover deviations in smart homes: FL
helps to detect unusual activities in safety
cameras or smart door locks without
broadcasting sensitive recordings.

– Personal AI Services: FL enables smart
-TVs and home entertainment systems to
recommend material based on the pattern
of use without central data collection.

• Industrial IoT and Predictive Maintenance

– Fault Detection in Manufacturing: Detects
in production: Factory lets the built-in
sensors in the machinery predict the need
for maintenance without learning from local
errors and sharing sensitive production data.

– Optimization of the supply chain: FL
models in logistics networks optimize
inventory and delivery routes based on
real-time data from different places.

– Energy-capable factory operations: Smart
networks and industrial energymanagement
system FL is used to balance load and
prevent overcoming.

– Cyber security for Industrial IoT: FL
detects danger in the industrial network by
collaborating in detecting training deviations
in units distributed equipment.

Figure 3. Applications of FL in embedded systems.

In the built-in system, Federated Learning
revolutionizes Healthcare, Autonomous System,

Smart Homes and Industrial IoT AI in different fields.
By activating decentralized model training, FL data
increases security, privatization and efficiency by
reducing transfer costs.
Recent advancements in FL highlight the incorporation
of lightweight models, energy-efficient hardware, and
reinforcement learning to improve scalability and
performance in embedded and edge AI systems. These
nascent study domains are essential for facilitating
the practical implementation of FL in resource-limited
settings. Principal research trajectories encompass:

5.5 TinyML for Low-Power Embedded Systems
TinyML focuses on deploying AI models on
ultra-low-power embedded devices, such as
microcontrollers and sensors. The advancements are
• Ultra-Lightweight Models: Neural network

architectures like MobileNet, SqueezeNet, and
EdgeTPU-optimized models allow efficient
on-device training.

• Hardware-Accelerated Learning: Specialized AI
chips (e.g., Google Coral, NVIDIA Jetson, Arm
Cortex-M) enable energy-efficient FL on edge
devices.

• Sparse and Quantized Models: Techniques like
pruning, weight sharing, and quantization reduce
model size, making FL feasible on constrained
devices.

• On-Device Continual Learning: Embedded
FL adapts models over time without
requiring cloud-based retraining, improving
personalization.

Research Focus: TinyML’s combination with FL aims
at on-device learning with minimal data being sent to
the cloud, which is suitable for use in remote locations
with constrained connectivity [11]. Notable areas of
research explore the development of highly compact
models that can be run on devices with only a few
kilobytes of memory, and model quantization and
pruning methods for model size and computation
reduction.

5.6 FRL
FRL extends FL to reinforcement learning (RL)
problems, enabling decentralized agents to learn
optimal policies collaboratively. FRL is the
combination of FL and RL concepts to provide
distributed learning in situations where agents (e.g.,
drones, autonomous vehicles) can learn from feedback
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from their environment and experience shared among
group members without compromising privacy [38].
• Autonomous Systems: Smart robots, drones, and

self-driving cars use FRL to learn navigation
strategies without central data collection.

• IoTDevice Coordination: Smart grids, industrial
automation, and collaborative robots (cobots)
optimize energy use and task scheduling

• Personalized Edge AI: Wearables and healthcare
devices use FRL to customize user interactions
without exposing private data

• Multi-Agent Learning: Distributed agents in
smart environments (e.g., traffic systems, disaster
response) coordinate decisions while preserving
privacy.

Research Directions: FRL allows multiple
independent agents to improve their decision
models (e.g., path planning, collision avoidance)
collaboratively through sharing updates in a
privacy-preserving manner. Research includes
decentralized agent coordination, reward sharing,
and policy update that is exploration-exploitation
balanced within a federated setting.

5.7 Integration of Edge Computing with FL
Edge computing reduces reliance on cloud
infrastructure by processing data closer to the
source, minimizing latency and bandwidth usage.
The key innovations are
• Hierarchical FL (HFL): Edge nodes aggregate

local model updates before sending them to the
central server, reducing communication overhead.

• On-Device Inference & Training: Embedded AI
models perform both inference and incremental
updates locally, making FL more efficient.

• EdgeAIHardware: Newprocessors (e.g., Google
Edge TPU, Intel Movidius, Raspberry Pi 5)
accelerate FL workloads in resource-constrained
environments.

• Adaptive Client Selection: Dynamic edge-based
FL systems select only relevant devices for
training, optimizing resource utilization.

Research Focus: FL integration with low-power
accelerators is focusing on increasing deep learning
computations’ energy efficiency [1]. Researchers
are attempting to fine-tune hardware-centric features
(e.g., low-precision computing, quantization) so they

provide the ideal tradeoff among power consumption
and model accuracy for federated training [16].

5.8 Blockchain and FL for Security
Blockchain technology ensures secure, transparent,
and tamper-proof model aggregation without
centralized trust. The recent developments are

• Decentralized FL: Eliminates the need for a
central server by using blockchain for model
aggregation, reducing single points of failure.

• Smart Contracts for Incentives: Devices
contributing high-quality updates can be
rewarded using blockchain-based token systems.

• Secure Multi-Party Computation (SMPC) +
Blockchain: Combines cryptographic techniques
with distributed ledgers for enhanced privacy and
security.

• Federated AI Marketplaces: Blockchain enables
privacy-preserving data marketplaces where
devices can share model updates securely.

Research Focus: Blockchain and FL is an efficient
solution to security and privacy concerns in
decentralized AI systems. Blockchain enables
secure and transparent aggregation of models
without centralized trust. Decentralized FL, where
model update is controlled by the blockchain in a
decentralized manner, reducing the points of failure
to one is some of the recent work. Furthermore,
smart contracts facilitate quality input from devices
through a token-based reward system effectively [40].
Blockchain also safeguards privacy through Secure
Multi-Party Computation (SMPC) with cryptographic
techniques and distributed ledgers for secure data
aggregation [22]. Federated AI marketplaces based
on blockchain also facilitate secure sharing of
model updates with preserving data privacy and
allowing a decentralized data exchange [23]. These
developments mark a significant achievement in
the development of secure, privacy-preserving, and
decentralized AI technology for embedded systems.

The convergence of TinyML, FRL, Edge Computing,
and Blockchain is shaping the future of FL in
embedded systems. These advancements enable
more efficient, secure, and intelligent AI solutions
across diverse applications, from IoT and healthcare
to autonomous systems and industrial automation.
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6 Security and Privacy in FL for Embedded
Systems

FL facilitates decentralized model training with data
stored on the local devices. However, security and
privacy attacks such as data leakage, adversarial
attacks, and tampering of models are still important
concerns. Some of the most significant techniques
to enhance privacy and security in FL are explained
below.

6.1 Privacy Protection Technique:
Privacy Protection Mechanisms ensure that FL
participants do not leak sensitive information when
dividing the model updates.
• Differential Privacy (DP): The model provides

controlled noise to the model grades before
transferring, and prevents the attackers from
mentioning individual data points. DP-fed
hob Privacy Conservation Model Changes
the traditional association average with noise
injections for updates. Model at high privacy
level can reduce accuracy.

• Homomorphic Encryption: This model update
can therefore be calculated (eg yoga) data
without decrypting. Parlier encryption
allows encrypted model aggregation without
highlighting individual updates. Calculation
overhead increases, making it less convenient for
resource-limited units.

• Safe aggregation: FL servers receive the
collected model updates instead of individual
contributions, which prevent exposure to data
on a device. Eg: The safe aggregation of Google
hides the individual model update by encrypting
them before collecting protocol. Local Different
Privacy (LDP) Uses direct noise at unit level
before transfer, also ensures privacy in small-scale
FL layout [7].

6.2 Safe Multi-Party Computation (SMPC):
SMPC enables many FL participants to calculate a
function on their personal information.
• Secret sharing technique: Each model update

is divided into several shares distributed among
different parties. Only when joint updates can
only be rebuilt. The secret sharing of Shameer
shares themodel gradients betweenmultiple units
to increase privacy [21].

• Circuitmade: Allows the device to safely perform

functions without revealing input. Privacy
protection is used for federated medical analysis.

• Decentralized federal learning with SMPC:
Exits the central aggregation server by allowing
units to safely communicate using the SMPC
protocols. Calculation and communication costs
increased. Bag Protocol Design is required to
balance efficiency and privacy.

• Adversarial Attacks and Robustness of FL: FL is
vulnerable to various attacks that can compromise
model integrity and privacy.

• Model Poisoning Attacks: Malicious
participants inject manipulated model
updates to degrade global model performance.
Byzantine-resilient aggregation (e.g., Krum,
Trimmed Mean) filters out abnormal updates.

– Data Poisoning Attacks: Attackers modify
local training data to introduce biases in the
global model. Robust FL techniques like
anomaly detection and outlier rejection help
mitigate this.

– Inference Attacks (Model Inversion &
Membership Inference): Adversaries
attempt to reconstruct private training data
from shared model updates. Differential
privacy and gradient obfuscation techniques
reduce data exposure.

– Evasion Attacks (Adversarial Examples):
Attackers craft input data that misleads the
trainedmodel (e.g., causingmisclassification
in image recognition). Adversarial training
and defensive distillation enhance model
robustness.

Ensuring security and privacy in FL requires a
multi-layered approach combining differential
privacy, encryption, SMPC, and adversarial defense
mechanisms. Ongoing research focuses on reducing
computational overhead while strengthening FL’s
resistance to attacks, making it more reliable for
real-world applications.

6.3 Model poisoning, data poisoning, and
adversarial attack

Ensuring safety and privateness in FL is crucial, in
particular in embedded systems, wherein sensitive
records from healthcare devices, autonomous
automobiles, and IoT sensors ought to be safeguarded.
Although FL inherently reduces the danger of facts
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leakage by using maintaining raw records localized, it
is nevertheless susceptible to state-of-the-art assaults
along with model poisoning, records poisoning, and
adversarial assaults.
• Model poisoning attacks involve malicious

clients intentionally sending manipulated version
updates to deprave the global model. For instance,
an attacker should inject updates that degrade
model accuracy or introduce unique backdoors. A
well-known case consists of "backdoor assaults" in
which an adversary subtly poisons a fragment of
the clients to make the version misclassify unique
inputs whilst keeping high accuracy on smooth
statistics [4].

• Data poisoning assaults goal the nearby datasets
on purchaser devices. Here, malicious records
points are inserted into the schooling records to
mislead the model. In useful resource-limited
embedded environments like smart sensors,
detecting and mitigating facts poisoning is mainly
tough because of restricted computational abilities
[37].

• Adversarial attacks similarly exacerbate FL
vulnerabilities by way of crafting diffused input
perturbations that idiot the model into wrong
predictions. Attackers might not even need get
right of entry to to the schooling facts without
delay but can infer facts from the updates shared
during FL rounds [18].

To combat those safety threats, numerous mitigation
strategies have been proposed:
• Robust aggregation techniques consisting of

Krum, TrimmedMean, and Bulyanmake sure that
malicious customer updates have minimal impact
on the worldwide model by using selectively
aggregating handiest dependable updates [5].

• Differential privacy (DP)mechanisms, by using
including calibrated noise to model updates,
shield against leakage of sensitive information
from the shared parameters while keeping a
reasonable stability between privacy and model
overall performance.

• Secure Multi-Party Computation (SMPC) and
Homomorphic Encryption (HE) permit version
updates to be aggregated without revealing the
individual updates, as a consequence retaining
customer privacy even for the duration of
communication [6].

• Anomaly detection at the server facet is hired to
perceive abnormal updates, that could symbolize
a poisoning attempt. Thresholding strategies and
clustering analysis are sensible for lightweight
embedded structures [33].

• Recent advances have also added
Byzantine-resilient optimization algorithms
that tolerate the presence of a positive fraction
of antagonistic customers with out significantly
impacting the convergence or accuracy of the
model [9].

In embedded systems, wherein gadgets are often
heterogeneous and resource-confined, light-weight
protection solutions tailor-made for federated settings
are vital. Future paintings ought to awareness on
growing adaptive protection frameworks that bear
in mind computation, verbal exchange, and strength
constraints whilst making sure resilience against a
huge range of opposed threats.
FL has shown significant opportunities in AI
protection, but many challenges remain. Future
scalability is focused on improving scalability,
handling unit’s asymmetry, reducing communication
and calculations overhead and taking advantage of the
next generation network such as 5G and beyond [24].

6.4 Scalability and adaptability in FL
Since flatter to spread to billions of age units, it is an
important challenge to ensure effective model training
on large-scale networks. Major challenges are
• Scalability in large networks: As the number

of participants increases, administration of the
model updates and the collection becomes more
complicated than effective.

• Dynamic participation: Units often join in and
leave the FL network, and require adaptive
training mechanisms.

• Federation hypermeter optimization: It is
difficult to adapt to learning speeds, batch sizes
and updated frequencies in different devices.

Future solutions:

• Hierarchal FL (HFL): Before sending to the
central server, use intermediate age nodes to
collect updates before reducing the load and
improving scalability.

• Self-adaptive FL model: Algorithm that adjusts
exercise parameters dynamically based on device
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skills and network conditions.
• Decentralized FL architecture: Blockchain-based

or colleague to move away from learning point of
view, away from centralized aggregation.

6.5 Handling device with heterogeneity
FL includes different hardware functions, operating
systems and different types of devices with network
conditions. Major challenges are
• Calculation variability: Produced-divis often

contains limited memory, processing power and
battery life.

• Various network conditions: Some devices may
have high speed connections, while others depend
on low bandwidth networks.

• Non-IID data division: Tools generate very
individual and non-human data, which affect the
model’s convergence.

Future solutions:

• Individual Federated Learning (PFL):
Development of customer-specific models
instead of a single global model to accommodate
device variability.

• Asynchronous FL: Let the device update the
model at its own pace instead of following the
synchronized training round.

• Federated Transfer Learning (FTL): Use
knowledge transfer techniques to make
global models compatible with specific device
conditions.

6.6 Emerging solutions for communication and
calculation costs

Communication efficiency is one of the largest hedges
in FL, specially built-in and IoT units. Major challenges
are
• High bandwidth consumption: Continuous

model update leads to rush.
• Energy deficiency: built-in system has a limited

battery life, which makes FL participation
impractical.

• Researcher problems: Real-time FL-application
(eg autonomous vehicles) requires low delay
updates.

Future solutions:

• Gradient Compression and Sparsification:
Techniques such as top-key savings and
quantization reduce data transfer.

• Adaptable client selection: Choose only one of
the optimal networks and calculation resources
for each training round.

• Federated distillation: Instead of sharing full
model updates, units exchange knowledge in a
distilled form, reduces the communication load.

• Edge-Cloud Collaboration: Use hybrid
architecture where the Edge devices make
initial calculation before unloading the works on
the cloud.

• Edge-Cloud Collaboration: Using hybrid
architectures where edge devices perform initial
computations before offloading tasks to the cloud.

6.7 Integration with 5G and beyond
The deployment of FL in embedded systems has
been significantly greater by rising technologies
such as 5G networks and side computing. 5G gives
extremely-dependable low-latency conversation
(URLLC) and huge system-type verbal exchange
(mMTC), allowing speedy, real-time synchronization
of model updates throughout heaps of heterogeneous
embedded gadgets [34]. This is particularly beneficial
in use instances consisting of self-reliant vehicles,
where decentralized schooling improves riding
fashions based on neighborhood reports without
transmitting touchy sensor statistics to centralized
servers. Similarly, area computing introduces localized
aggregation and version validation, lowering verbal
exchange overhead and latency through processing
updates towards the statistics assets. In smart
production settings, embedded sensors and robots
collaboratively educate FL models to locate equipment
faults and optimize operations without exposing
proprietary business data to external servers [28].
Practical applications combining FL, 5G, and area
computing encompass healthcare wearables, clever
metropolis infrastructure, and precision agriculture.
Devices like smartwatches use FL for anomaly
detection even as benefiting from 5G-enabled rapid
model updates [20]. In intelligent traffic systems,
edge servers positioned at intersections combination
updates from vehicular sensors to optimize site visitors
go with the flow even as maintaining driving force
privacy [31]. Moreover, customized content material
shipping on cellular systems, such as Google’s Gboard,
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leverages FL to enhance predictive typing without
user statistics leaving the device. Emerging side-cloud
collaborations are also being utilized in agriculture,
permitting distributed sensors to predict soil and
climate conditions collaboratively. As 5G and aspect
infrastructure extend globally, the destiny of FL
in embedded systems factors toward fantastically
scalable, secure, and low-latency deployments across
crucial industries. FL is expected to replace FL by
activating the next generation network such as 5G and
future 6G, high speed, low-hearted sign. Big benefits
are
• Ultra-Low latency: Affairs of the important

following model updates that are important
for autonomous systems and real-time AI
applications.

• High bandwidth: The network continuously
allows data exchange without strong
infrastructure.

• Network slices: By improving reliability,
FL awards supplied network resources to
applications.

Future solutions:

• More than FL 6G and Quantum Network: Use
AI-driven, self-help network for real-time FL
updates.

• AI-enhanced 5GEdgeComputing: Combination
of FL with edge calculation in 5G base stations for
real-time treatment.

• Federated Network Intelligence: 5G-SAP FL to
increase network traffic adaptation, security and
increase unit-to-to-to-unit.

Here’s a structuredTable 4 summarizing the challenges
and future solutions of FL in AI protection.
FL in AI protection faces several challenges and
potential future solutions. FL’s future depends on
addressing scalability, heterogeneity, communication
costs and integrating next-to-and-network. Edge
data processing, decentralized architecture, adaptive
learning and progress in 5G/6Gwill play an important
role inmaking flickmore efficient andwaswidely used
in built-in and IoT systems.
Despite significant development in federated gaining
knowledge of FL for embedded structures, several
crucial studies gaps stay, specifically regarding model
aggregation under heterogeneous conditions and
sturdy privateness protection strategies.

6.8 Model Aggregation in Heterogeneous
Environments

Traditional aggregation strategies like FedAvg assume
that each one collaborating gadgets own identical
version architectures, computational resources,
and relatively balanced statistics distributions.
However, in actual-international embedded
structures, heterogeneity is the norm devices
fluctuate significantly in hardware capabilities,
information quality, availability, and reliability. This
poses a couple of demanding situations:

• Non-IID Data Bias: Aggregating updates from
devices with massively exceptional local statistics
distributions can lead to biased international
models, sluggish convergence, or even version
divergence.

• Partial Participation: Due to confined energy,
connectivity issues, or dynamic availability, best a
subset of devices can participate in each spherical,
making aggregation techniques designed for
complete participation sub-finest.

• Diverse Model Architectures: In some
embedded settings, devices may not even
proportion identical version systems (e.G.,
light-weight CNNs on wearables vs. Deeper
models on part servers), growing a need for
heterogeneous version fusion techniques.

Current studies efforts inclusive of FedProx [25] and
MOON (Model-Contrastive de introduced changes to
deal with heterogeneity, but they regularly assume
solid device competencies and nonetheless require
synchronized replace durations. Future paintings
have to focus on adaptive aggregation algorithms that
dynamically weigh contributions primarily based on
tool reliability, version nice, or context-aware metrics.

Figure 4. FL performance in embedded systems.
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Table 4. Challenges and future solutions of FL in AI protection.
Category Challenges Future Solutions

Scalability &
Adaptability • Scalability in large networks: Managing

model updates becomes complex as
participants increase.

• Dynamic participation: Devices frequently
join and leave the FL network.

• Federation hyperparameter optimization:
Adapting learning speeds, batch sizes, and
update frequencies across different devices is
difficult.

• Hierarchical FL (HFL): Use edge nodes to
collect updates before sending to the central
server.

• Self-adaptive FL model: Algorithms that
dynamically adjust training parameters based
on device and network conditions.

• Decentralized FL architecture:
Blockchain-based peer-to-peer learning
instead of centralized aggregation.

Handling
Device
Heterogeneity

• Computational variability: Devices have
different memory, processing power, and
battery life.

• Varying network conditions: Some devices
use high-speed connections, while others rely
on low-bandwidth networks.

• Non-IID data distribution: Device-generated
data is highly individual, affecting model
convergence.

• Personalized FL (PFL):Develop client-specific
models instead of a single global model.

• Asynchronous FL: Devices update models
at their own pace instead of following
synchronized training rounds.

• Federated Transfer Learning (FTL): Use
knowledge transfer techniques to make global
models adaptable to specific devices.

Reducing
Communication
&
Computation
Costs

• High bandwidth consumption: Frequent
model updates cause network congestion.

• Energy inefficiency: Embedded systems have
limited battery life, making FL impractical.

• Real-time FL challenges: Applications like
autonomous vehicles require low-latency
updates.

• Gradient compression & sparsification:
Techniques like top-k selection and
quantization reduce data transfer.

• Adaptive client selection: Choose devices
with optimal network and computational
resources for training rounds.

• Federated distillation: Devices exchange
distilled knowledge instead of full model
updates.

• Edge-Cloud Collaboration: Hybrid
architecture where edge devices perform
initial computation before offloading tasks to
the cloud.

Integration
with 5G &
Beyond

• Ultra-low latency: Critical for real-time AI
applications like autonomous systems.

• High bandwidth requirements: Ensures
continuous data exchange with minimal
infrastructure constraints.

• Network slicing: Improves reliability by
allocating dedicated network resources for FL
applications.

• FL over 6G & Quantum Networks: AI-driven
self-adaptive networks for real-time FL
updates.

• AI-enhanced 5G Edge Computing: Combine
FL with edge computing in 5G base stations for
real-time processing.

• Federated Network Intelligence: Use
5G-enabled FL to enhance network traffic
adaptation and security.

6.9 Privacy Protection below Heterogeneous
Conditions

While differential privacy (DP) and stable aggregation
protocols offer strong theoretical ensures, making use
of them effectively in embedded settings stays an open
hassle:

• Resource Constraints: DP noise addition or
steady multi-celebration computation (SMPC)
schemes are computationally luxurious and
memory-in depth, that could overwhelm useful
resource-confined devices which includes
microcontrollers and IoT sensors.
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Table 5. FL performance in embedded systems.

Devices Data
Distribution

Aggregation
Algorithm

Accuracy (%) Training
Time (h)

Comm.
Overhead
(MB/device)

50 IID FedAvg 92.3 2.4 12.1
50 Non-IID FedAvg 88.5 2.8 12.4
100 IID FedProx 91.7 4.1 9.8
100 Non-IID FedProx 89.2 4.6 10.0
500 IID FedAvg 90.5 10.2 5.4
500 Non-IID FedProx 88.0 11.7 5.7

• Gradient Leakage in Non-IID Settings: In
heterogeneous datasets, version updates can
inadvertently leak more sensitive information
compared to IID settings, because the updates
become extra personalized and much less
generalizable, making them less complicated to
deduce.

• Adaptive Adversaries: Emerging assault
fashions, along with adaptive membership
inference assaults or version inversion attacks,
goal the weaknesses of privateness mechanisms
when devices have choppy defenses or numerous
statistics sensitivities.

Although approaches which includes FedSGD
with secure aggregation [7] and differentially
personal FL frameworks were proposed, they often
assume homogeneous device abilities or constant
privacy budgets. Future directions should explore
useful resource-conscious privacy techniques,
tool-particular privacy budgets, and contextual
differential privateness which could dynamically
modify to each device’s sensitivity and constraints.
In addition, the mixing of hardware-primarily
based security features which includes Trusted
Execution Environments (TEEs) into FL for embedded
systems remains in large part unexplored beyond
remoted proofs-of-concept. Embedding light-weight,
depended on computation zones at the tool stage
should bridge the gap among robust privacy ensures
and real-time embedded AI needs.
To examine how federated gaining knowledge of scales
in embedded environments, a synthetic simulation
was performed varying the variety of taking part
devices, records distributions (IID vs Non-IID), and
the aggregation algorithms (FedAvg and FedProx).
Results indicate that whilst accuracy remains
notably high as tool counts grow, non-IID records
distributions lead to a modest overall performance

drop, specifically for primary aggregation methods
like FedAvg. FedProx always outperforms FedAvg
beneath non-IID settings, even though at the fee of
slightly accelerated training time. Communication
overhead in keeping with device decreases with
large networks, highlighting the scalability benefit of
FL in bandwidth-limited embedded structures (see
Figure 4). The values are explained in the Table 5.
Here’s the output graph showcasing the synthetic
simulation results for FL in embedded structures.
It presentations both accuracy and conversation
overhead for the FedAvg and FedProx algorithms
across different numbers of devices (50, 100, 500).

7 Conclusion
Summary of Key Findings: FL is a promising
privacy-preserving and decentralized technology
for AI in embedded systems. The key findings
present the main challenges, including device
heterogeneity, communication overheads, and security
and privacy attacks. However, FL is growing fast with
TinyML, FRL, and blockchain. The advancements
will be directed to reduce computation cost and
communication cost, model performance and security.
Furthermore, techniques like differential privacy
and secure multi-party computation (SMPC) are
addressing data confidentiality and model integrity
challenges.
Future Research and Development Potential:
There are a number of promising fields for future
development of FL. In the future, future research
can be directed towards improving the scalability of
FL systems, especially for large-scale applications,
through hierarchical FL and decentralized aggregation
techniques. There is also room for personalized FL
models, which can learn according to the unique
capabilities of the devices they run on. Improving
energy efficiency and reducing computation loads
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will be crucial to allowing more extensive application
of FL on low-resource devices. Furthermore, as 5G
and subsequent networks become available, utilizing
these for high-speed and low-latency communication
will be key to facilitating real-time FL applications.
Impact on Real-World Applications: FL is already
contributing immensely to several fields with effective,
secure, and smart AI-powered solutions. In medicine,
it is enabling the creation of privacy-preserving
diagnostic devices, patient tracking, and personalized
therapy without exposing sensitive medical
information. In autonomous systems such as
autonomous cars and drones, FL is enabling FL to
achieve real-time decision-making without breaching
data confidentiality. IoT technology, smart cities, and
smart homes employ FL for energy management,
device coordination, and service personalization.
With the growth, it threatens to overwhelm markets
such as industrial IoT, manufacturing, and supply
chain optimization.
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