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Abstract
In the medical field, efficient and accurate
classification of sequential and structured data
is crucially important and useful for early diagnosis
and treatment. Traditional machine learning models
struggle with the complexity and nonlinearity of
dynamic datasets, whereas deep learning models,
despite their effectiveness, require extensive
resources and lack transparency. This paper
proposes a novel lightweight ensemble framework
integrating a parameterized SoftMax function with
a non-parametric Random Forest method through a
soft voting mechanism, supported by the Nonlinear
AutoRegressive eXogenous (NARX) model and
optimized using a forward orthogonal search and
selection (FOSS) algorithm for feature selection.
This innovative approach enhances the accuracy and
robustness of classifiers for both static and dynamic
medical datasets, while improving interpretability
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and computational efficiency. Extensive validation
on various medical datasets demonstrates the
model’s superior performance and adaptability,
offering a reliable solution for complex medical data
scenarios. It is expected that the results achieved in
this study paves the way for future innovations in
medical data analysis and the broader application of
artificial intelligence in healthcare.

Keywords: healthcare, medical data, static data, dynamic
data, classification, soft voting, machine learning.

1 Introduction
In themedical field, efficient and accurate classification
of high-dimensional datasets is essential for improving
early diagnosis and treatment of diseases. Common
clinical and research datasets may be generally divided
into two categories: static datasets and dynamic
datasets. Static datasets usually include physiological
indicators measured at a specific time point, such
as blood pressure, blood sugar or cholesterol
levels, which are essential for judging the patient’s
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immediate health status and formulating treatment
plans. Dynamic datasets, such as electrocardiogram
(ECG) and electroencephalogram (EEG), record
physiological signals that change over time, providing
key information for dynamic monitoring of health
status and diagnosis of chronic diseases [1].

Traditional machine learning models perform well
in processing and classify static data [2], but they
often fail to adapt to the complexity and nonlinear
characteristics of dynamic data and struggle to
effectively capture the time dependencies and complex
patterns hidden in the data. Deep learning techniques
have been proven to be effective in processing complex
dynamic datasets [3], but they usually require a
large amount of data and computing resources.
Additionally, the black-box nature of most deep
neural network structures makes it less than ideal in
some real applications that require fast, interpretable
and clear decisions [4]. Therefore, to overcome
these drawbacks, this paper proposes an innovative
lightweight framework that combines a parameterized
SoftMax function and a non-parametric Random
Forest model through a soft voting mechanism
and operates under the support of the Nonlinear
AutoRegressive with eXogenous input (NARX)model,
which is a special case of the well-known NARMAX
(Nonlinear AutoRegressive Moving Average with
eXogenous inputs) representations [5, 6]. To make
the generated models transparent, interpretable,
parsimonious (compact) and simple (TIPS) , a forward
orthogonal search and selection (FOSS) technique
is introduced to optimize feature selection. The
proposed approach not only improves the accuracy
and robustness of the models in handling static and
dynamic medical and healthcare dataset classification
tasks, but also improves the accuracy and reliability
of diagnosis through precise feature selection, which
is crucial for high-risk medical and healthcare
applications.

This paper will introduce the design and
implementation of the ensemble model in detail,
evaluate its performance on multiple medical
datasets, and explore its potential impact in practical
applications. Through comparative analysis with
existing technologies, we will show how this
method can provide more accurate and interpretable
diagnostic results while maintaining efficient data
processing. Ultimately, this study aims to provide a
feasible and efficient solution for efficient processing
of statics or dynamic high-dimensional datasets,
paving the way for future medical and healthcare

technology innovations.

The contributions of the paper are fourfold:

1. Development of a novel ensemble learning
framework based on NARX.
We developed an innovative ensemble
learning framework that integrates nonlinear
autoregressive exogenous input (NARX) models
with SoftMax and Random Forest models through
a soft voting mechanism. This approach not
only leverages the strengths of each model in
processing data but also significantly enhances
the accuracy and robustness of the classifiers
when dealing with high-dimensional static and
dynamic datasets.

2. Feature information mining.
Within the proposed ensemble model, the
NARX model learns complex features through
polynomial combinations, markedly improving
the model’s ability to detect changes in
high-dimensional dynamic data. Moreover,
we developed a forward orthogonal search and
selection (FOSS) method based on the analysis of
variance (ANOVA) technique to optimize feature
selection. This method significantly reduces
computational complexity and enhances data
processing speed by accurately identifying the
most impactful features. These enhancements
not only boost the model’s prediction accuracy
with complex time series data but also increase its
adaptability and interpretability when handling
both dynamic and static datasets.

3. Improvement of model interpretability and
adaptability.
The design of our ensemble model fully considers
the high requirements for model interpretability
in the medical and healthcare field. By
transparently demonstrating the interactions
and contributions of each model component,
we have substantially improved the model’s
interpretability, enabling medical and healthcare
professionals to better understand and trust the
model’s decision-making process.

4. Extensive empirical validation.
We conducted extensive validation on a variety of
medical and healthcare datasets, covering simple
static datasets to complex dynamic multivariate
time series. The test results confirmed the
efficiency and reliability of the NARX-based
ensemble model in actual medical and healthcare
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applications, demonstrated its superiority in
processing complex datasets, and provided
strong support for future medical and healthcare
technology innovation and application.

Through the detailed description of these innovations,
we clearly demonstrated the important contributions of
the research work at the scientific and practical levels,
as well as its role in promoting future data analysis
technology.

2 Literature review
2.1 Static and dynamic medical and healthcare

datasets
With the advancement of medical technology, medical
and healthcare datasets are becoming increasingly
important in decision-making, especially in terms of
accurate diagnosis and real-time health monitoring.
As mentioned earlier, these datasets are usually
divided into two types: static and dynamic, each
with its own unique application scenarios and
analysis requirements. Static datasets usually
involve physiological indicators measured once, while
dynamic datasets record physiological signals that
change over time. Although existing technologies
can effectively process these data, the optimized
processing methods and challenges faced for specific
data types still need to be further explored [7].

In order to have a more systematic understanding of
these datasets and their processing technologies, the
main characteristics, common physiological signals,
challenges and applicable analysis methods related to
static and dynamic datasets are summarized in Table 1.

2.2 State-of-the-art in classifying medical and
healthcare data

For static data classification tasks, traditional machine
learning techniques such as support vector machines
(SVM), decision trees, and logistic regression have
been widely used, providing disease diagnosis and
patient risk assessment based on simple indicators [8].
These methods are favoured due to their simple
models and high computational efficiency and
are particularly suitable for processing data that
do not require complex temporal dependencies.
However, they perform poorly when processing
dynamic datasets where different features are
associated with or dependent on each other
temporally, such as electrocardiograms (ECGs)
and electroencephalograms (EEGs), which require
models to capture long-term dependencies and
nonlinear features. Traditional machine learning
techniques usually cannot naturally process time
series data and require tedious feature engineering to
reveal the temporal dependencies in the data, this not
only increases the complexity of model building, but
may also lead to information loss [9]. Furthermore,
these methods generally face challenges in handling
nonlinear or high-dimensional datasets, particularly
when handling complex interactions between features.

For dynamic datasets, deep learning models like
Recurrent Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs), and the more recent
Transformers are adept at managing complex temporal
dependencies typical of time-series data. These
models are crucial in predicting patient outcomes
efficiently. However, their effectiveness comes at the
cost of requiring large amounts of data and substantial

Table 1. Overview of static and dynamic datasets in medical data analysis.
Category Static Datasets Dynamic Datasets

Definition Data measured at specific time
points. Data recorded over a period, capturing changes over time.

Common Signals Blood pressure, blood sugar,
cholesterol levels, etc.

Electrocardiogram (ECG), Electroencephalogram (EEG),
etc.

Characteristics
Single-time measurements often
include basic physiological
parameters.

Continuous recording, displaying trends and variations.

Challenges
Data may lack long-term context,
susceptible to measurement noise
and errors.

Complex, time-dependent patterns; high data volume
increases computational demands.

Techniques
- Logistic Regression
- Support Vector Machine (SVM)
- Decision Trees
- Random Forests
- k-Nearest Neighbors (k-NN)

- Recurrent Neural Networks (RNN)
- Long Short-Term Memory (LSTM)
- Transformer
- Nonlinear Autoregressive with Exogenous Input (NARX)
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computational resources, which can be limiting in
resource-constrained settings. Moreover, the opaque
nature of these models poses significant challenges
in clinical environments where transparency and
explainability are critical for gaining the trust of
healthcare professionals and patients. This "black box"
aspect often complicates their use in urgent medical
scenarios where quick, precise decision-making is
necessary, and the reasoning behind every diagnosis
or treatment recommendation needs to be clear and
justifiable.

When exploring existing data processing methods,
the main challenge we face is how to effectively
handle various complex datasets, including static and
dynamic data, while ensuring the model has high
performance and interpretability [10]. This challenge
requires us to not only improve the predictive accuracy
of the algorithm when designing the model, but also
enhance the interpretability of the model to ensure
that medical professionals can understand the decision
logic of the model. In addition, it is necessary to
solve the problems of large-scale data processing and
high consumption of computing resources, which is
particularly important in resource-constrainedmedical
environments. Therefore, it is particularly important
to develop new technical solutions or improve existing
technologies to meet these challenges. This includes
using hybrid models to make up for their respective
shortcomings and developing more efficient training
strategies, with the aim of creating an analysis tool
that can process data efficiently while being highly
transparent and adaptable.

After conducting an in-depth study of the
existing technology, we believe that the Nonlinear
Autoregressive model with exogenous inputs (NARX)
offers a promising solution for addressing complex
medical data problems. The NARX model is a
dynamic nonlinear system modeling method suitable
for data with time dependency and nonlinear
characteristics. To accommodate different types
of data and application scenarios, various variants
of the NARX models have been proposed, such as
the polynomial NARX model [6], NARX neural
network [11], fuzzy NARX model , and NARMAX
model.

The NARX model and Recurrent Neural Networks
(RNNs) have similarities in handling time series data
but are not the same, nor is NARX a variant of
RNNs [12]. NARX (Nonlinear AutoRegressive with
eXogenous inputs) is a nonlinear autoregressivemodel

specifically designed to manage dynamic systems with
external inputs. It uses lagged input and output
values directly for prediction, effectively capturing
nonlinear patterns and temporal dependencies in the
data. Unlike RNNs, which rely on hidden states
to implicitly capture temporal dependencies, NARX
depends on explicit historical data and current inputs.
This approach enhances the accuracy and flexibility of
time series analysis by directly utilizing past inputs and
outputs without the need for complex hidden states,
thereby effectively managing both dynamic and static
datasets.

In standard RNNs (such as simple RNNs, LSTMs,
or GRUs), the internal update mechanisms are
typically implicit, meaning they do not directly
reveal the specific mathematical relationships between
inputs and outputs. However, NARX is unique
in that its explicit structure directly tracks the
relationships between inputs and outputs, providing
clear interpretability. This high level of transparency
makes the NARX model an excellent tool for gaining
insights and providing accurate, flexible decision
support in the analysis of complex medical data.

NARX has shown excellent performance in
dealing with regression tasks, especially in
predicting real-valued outputs such as medical
time series data like electrocardiogram (ECG) and
electroencephalogram (EEG). However, its ability
and application to deal with classification tasks have
been relatively less explored, mainly because it was
originally designed for prediction using real-valued
data recorded sampled from the system of interest.
Nevertheless, through in-depth development and
innovation of it, we propose applying NARX to
classification tasks, which represents a direction with
great innovative potential.

In this paper, we propose a lightweight ensemble
method that integrates SoftMax and Random Forest
with the support of the NARX framework to
effectively apply NARX to one-dimensional datasets.
Classification tasks. This not only expands the
application scope of the NARX model, but also
provides an efficient and interpretable tool for
processing complex medical datasets, promoting the
development of precision medicine and personalized
treatment strategies.
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3 Methodology
3.1 NARX model
Nonlinear Autoregressive Models with Moving
Average and Exogenous Input (NARMAX) methods
were initially developed for solving complex nonlinear
system identification and modelling problems
following systems science and systems engineering
principles. A wide range of real-life complex nonlinear
systems can be well represented by the NARMAX
model. Taking multiple input, single output (MISO)
systems as an example, the NARMAX model can be
written as:

y(k) = f
(
y(k − 1), . . . , y(k − ny),

u1(k − d− 1), . . . , ur(k − d− 1),

ξ(k − 1), . . . , ξ(k − d− nξ)
) (1)

where f is a linear or nonlinear function; y, ui (i =
1, 2, . . . , r), and ξ are the output, the ith input, and
noise; [ny, nu, nξ] are the maximum lags for the system
output, input and noise. It is assumed that the noise
signal is assumed to be with zero-mean and finite
variance. Note that the existing AR, ARX, ARMA,
ARMAX, and NARX models can be considered as
special cases of NARMAX models, demonstrating the
model’s applicability to a wide range of systems with
nonlinearity and time-varying characteristics.
The NARMAX model is widely used in regression
classification problems, especially in time series
prediction, such as weather changes, melting of
glaciers, prediction of epilepsy, etc., due to its good
model structure, the prediction ability and model
interpretability. But at present, relatively less efforts
have been made to explore the potentials of NARMAX
for solving classification problems, which is what we
see worthy of innovation.
The NARX model is a subset of the NARMAX model.
If we only consider the current noise and ignore its
accumulative effect on the system output, that is, we
only consider the additive noise at the present time
instant, then the NARMAX model (1) reduces to the
following NARX model structure:

y(k) = f (y(k − 1), . . . , y(k − ny),

u1(k − d− 1), . . . , u1(k − d− nu),

. . . , ur(k − d− 1), . . . , ur(k − d− nu),

) + ξ(k)

(2)

A polynomial NARX model of nonlinear degree ℓ can

be expressed in a linear-in-the-parameters form as

y(k) =

M∑
m=1

θmφm(φ(k)) + ξ(k) (3)

where y(k) represents the scalar output at
time step k, φm(φ(k)), with m = 1, 2, . . . ,M ,
are the multivariable polynomial terms that
are function of the regressor vector φ(k) =

[(y(k − 1)), . . . , y(k − ny), u(k − 1), . . . ]T of past
outputs and inputs, θm (m = 1, 2, . . . ,M) are the
coefficients of the corresponding polynomial terms;
andM is the total number of polynomials, the number
of polynomial terms, which depends on the nonlinear
degree ℓ, and the maximum lags ny and nu. M is
calculated as follows:

M =

(
n+ l

l

)
=

(n+ l)!

n! · l!
(4)

where n = ny + nu in Equation (3) can be rewritten in
a vector form as:

Y = ϕθ + ξ (5)

3.2 Error Reduction Ratio index and Forward
Orthogonal Search and Selection method

Error Reduction Ratio (ERR) is a significant concept
used in the field of system identification, particularly
in the context of Orthogonal Least Squares (OLS)
algorithms. The ERR quantifies the contribution of
each potential model term to the reduction of the
error variance when the model is included in the
model. It is a simple but effective and efficient index
for determining the significance of candidate terms.
The ERR index of the kth term is calculated as follows.

ERRk =

(
xTk y

∥xk∥∥y∥

)2

(6)

where y is the observed output vector; xk is the kth
orthogonalized regressor (input vector); ∥xk∥ is the
Euclidean norm of the kth orthogonalized regressor
and xTk y is the inner product (dot product) of the kth
orthogonalized regressor with the observed output
vector.
A Forward Orthogonal Search and Selection (FOSS)
algorithm is designed and implemented based on
ERR values [13]. Unlike standard forward selection
methods, FOSS introduces an element of orthogonality,
ensuring that each new feature added to the model is
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Figure 1. Forward orthogonal search and selection process.

not only significant but also minimally correlated with
the features already chosen. This orthogonalization
is crucial in preventing multicollinearity, a common
pitfall in regression models. Figure 1 shows the
diagram of the FOSS algorithm. A detailed description
of the algorithm is given in Section 3.3.

3.3 Proposed NARX-based ensemble classifier
3.3.1 NARX-SoftMax
Although the traditional NARX model performs well
in capturing the temporal dependencies of dynamic
data and handling nonlinear features, it is initially
designed for regression problems real-valued outputs
and may not be applied to classification tasks directly.
To address this issue, we first introduce the SoftMax
classifier based on the polynomial NARX model. The
SoftMax classifier is a generalization of the logistic
regression model [14] that can convert the real-valued
output of the NARX model into a discrete probability
distributionwith a corresponding probability value for
each class; this enables themodel to be directly applied
tomulti-class classification tasks. This combination not
only leverages the powerful capabilities of NARX in
dynamic data analysis, but also makes the model more
accurate and reliable in classifying medical conditions
through the clear probabilistic output provided by
SoftMax.
The NARX model (2) can usually be rearranged to a
linear-in-the-parameters form below:

y(t) = θ0 +
n∑

i1=1

θi1ϕi1(t) +
n∑

i1=1

n∑
i2=1

θi1i2ϕi1(t)ϕi2(t)

+
n∑

i1=1

n∑
i2=1

· · ·
n∑

il=1

θi1i2...ilϕi1(t)ϕi2(t) . . . ϕil(t)

+ ξ(t)
(7)

where the parameter ℓ is called the degree of
nonlinearity which controls the complexity of the
model, where the power of the cross-product terms is
not higher than ℓ. The total number of potential terms

in the model is given by (4).
For the SoftMax regression, the model adapts to deal
with multi-classification tasks by defining an output
for each class j as follows:

yj(t) =
M∑

m=1

θjmϕm(φ(t)) + ξ(t) for j = 1, . . . ,K

(8)
pj =

eyj∑K
k=1 e

yk
(9)

Note that for (8), each class j has its ownweight vector
θj . K denotes the total number of classes. Figure 2
shows the workflow of the NARX-SoftMax model.

Figure 2. The workflow of the NARX-SoftMax model. The
input layer consists of current and past input values

ui(t), ui(t− 1), . . . , ui(t− n) along with an error term ξ(t).
These inputs are processed by the NARX model to produce

an intermediate output yj(t), which is converted into
probabilities pj for each class j by the SoftMax classifier.

3.3.2 Feature selection
In traditional NARX models, the Error Reduction
Ratio (ERR) metric is typically employed for feature
selection in regression tasks. However, ERR’s
applicability is limited when it comes to classification
tasks, particularly in the context of probabilistic
models like SoftMax. To address this limitation, we
turn to Analysis of Variance (ANOVA), a statistical
technique that excels in identifying significant features
for classification purposes. Specifically, in this setting,
F-statistic for each feature used to replace ERR as the
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primary tool for assessing the relevance of features. It
provides a robust framework for testing the statistical
significance of each feature, determining how different
levels of a feature affect class probabilities. This
approach is particularly effective in scenarios where
the relationship between features and class outcomes
is not linear or straightforward. F-Statistic is defined
as follow:

F =
Variance between groups
Variance within groups (10)

Between-GroupVariance represents the variance of the
group means from the overall mean. Within-Group
Variance reflects the average of the variances within
each group. The F-statistic thus provides a measure of
the ratio of the explained variance between groups
to the unexplained variance within groups. A
higher F-statistic indicates a greater disparity between
group means, suggesting that the variable under
consideration has a significant effect on the outcome
variable. In hypothesis testing, this measure is used
to reject or fail to reject the null hypothesis that the
groupmeans are equal, with a lower p-value indicating
a higher likelihood of the means being significantly
different.

3.3.3 Stopping criteria for forward feature selection
In order to improve the performance of the
classification model and avoid overfitting, we
developed the Penalized Error-to-Signal Ratio (PESR)
as the stopping condition in the feature selection
process. PESR combines the prediction error and
complexity of the model and controls the complexity
of the model by introducing a penalty term. In this
paper, we use cross-entropy loss as a measure of model
prediction error and gradually add features through
forward selection to optimize the performance of the
classification model. When the number of important
features selected is k, the PESR is defined as follows:

PESRk =

(
N

N − λk

)2

× Lossk (11)

The cross-entropy loss is defined as below:

Loss = − 1

N

N∑
i=1

M∑
j=1

yij log(Pij) (12)

where N is the number of samples in the test set,
k is the current number of features in the model, λ
is a parameter controlling the penalty term (which

is usually chosen to be λ ≥ 1), and Lossk is the
cross-entropy loss at the k-th iteration.
When the inclusion of an additional new feature
cannot help reducing the PESR value, the iteration
terminates, meaning that the current feature
combination has reached the optimal balance point, as
adding more features will only increase complexity
without significantly improving the model prediction
performance.
PESR can effectively control the model complexity; it
is particularly effective in high-dimensional datasets
or when dealing with many features. Using
cross-entropy loss as the error measure provides a
more comprehensive evaluation ofmodel performance
compared to accuracy.
The Forward Orthogonal Search and Selection (FOSS)
algorithm [6, 13], which is used to implement the
feature selection procedure for the NARX-SoftMax
model described in Sections 3.3.1-3.3.3, is depicted in
Algorithm 1.
In the algorithm, the initial step involves computing the
weight wi for each regressor vector ϕi in the dictionary,
which helps identify the candidate model terms with
the highest contribution. The algorithm then selects
the term with the highest weight and initializes the
NARX-SoftMax model using this term, followed by
training and performance evaluation.
Subsequently, the algorithm iteratively uses the
modified Gram-Schmidt method to orthogonally
select the next candidate term that contributes the
most to the model, while removing terms with
minimal contribution. Each selected term is evaluated
through ANOVA. This process continues until the
model’s accuracy no longer improves, indicating that
additional terms would no longer enhance the model.
This procedure follows a greedy approach, selecting
the best candidate term at each iteration.
Finally, the algorithm outputs the selected important
feature subset, which represents the terms that
contribute most significantly to the NARX-SoftMax
model.

3.3.4 Enhancing model robustness and reliability with
Random Forest ensembles

To further improve the NARX-SoftMax model
performance, a soft voting mechanism [15] combined
with Random Forest (RF) is proposed in this paper to
enhance the robustness and reliability of the classifier
and the interpretability of the entire model system.
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Algorithm 1: FOSS for NARX-SoftMax model
Input: Dictionary of regressor vectors

D = {ϕ1, ϕ2, . . . , ϕM}, output signal y,
maximum number of terms tmax

Output: NARX-SoftMax model with significant
terms selected from D

for all ϕi ∈ D do
Define wi = ∥ϕi∥ ;

end
Compute F (ϕi, y) ;
Define j = argmax ∥wi∥ ;
Define q1 = ϕj ;
Define p = ϕj ;
Train a NARX-SoftMax model using y and p1 ;
Remove ϕj from D ;
for s = 2 to tmax do

for all ϕi ∈ D do
Orthogonalize ϕi with respect to [q1, . . . , qs]
to obtain wi ;
if wT

i wi < 10−10 then
Remove ϕi from D ;
Go to next iteration ;

end
end
Compute F (ϕi, y) ;
Find j = argmaxs−1

i=1 F (ϕi, y) ;
Define qs = ϕj ;
Define ps = ϕj ;
Train a NARX-SoftMax model using y and
p1, . . . , ps ;
Compute Accuracy ;
if the PESR value no longer reduces then

Delete ϕj from D ;
Go to next iteration ;

end
Record Accuracy and Remove ϕj from D ;

end
return Matrix of terms selected P = [p1, p2, . . . , pn]

Random Forest can handle nonlinear relationships
and complex interactions between features well,
provides additional error correction capabilities,
thereby improving the robustness of the model and
adapting to complex classification tasks [16]. As
shown in Figure 3, a random forest is made up of
several decision trees, each of which predicts the
class for a new sample. In this example, three trees
(Result 1, Result 2, and Result 3) provide their own
predictions. The final result is determined by majority
voting, where the most common prediction among the

trees is chosen. This method helps improve accuracy
by combining the strengths of multiple trees to make
the final prediction.
Soft voting is an advanced aggregation technique used
in our ensemble model to combine the predictive
strengths of the SoftMax and RF modules. Each
module generates a number of probabilities for each
class after processing the input data. Soft voting
takes these probabilities into account rather than just
considering the most voted class. This ensemble
strategy improves the overall predictive accuracy
because it integrates the confidence levels of each
classifier’s output into the decision-making process.
By averaging the probabilities, the model reduces
the variance and potential biases that might occur
if only a single classifier’s output was considered.
This is particularly beneficial in medical data analysis,
where the stakes are high, and decisions need to be
both accurate and reliable. Furthermore, soft voting
inherently provides a layer of error correction, as it
tends to cancel out any outlier predictions made by
individual models in the ensemble. For example,
if one model erroneously predicts a rare class due
to some noise in the data, but the other models
consistently predict a more probable class, the final
averaged probabilities will likely favour the correct
class. Figure 4 shows the overall structure of the
proposed ensemble model NARMAX-SoftMax-RF
(shortly NARX-SR), where ‘S’ represents SoftMax, and
‘R’ represents Random Forest.
This flowchart illustrates the overall structure of the
NARMAX-SoftMax-RF (NARX-SR) model. First, the
input data is processed through the NARX model
to generate polynomial features, followed by feature
selection using FOSS combined with ANOVA. The
filtered feature set is then used to train the SoftMax
and Random Forest (RF) classifiers. The output
probabilities from these classifiers are combined
using a soft voting mechanism to produce the final
prediction. The process checks if the PESR value is
reduced to determinewhether further feature selection
optimization is required. The process then checks if
the PESR value is reduced. If yes, the model proceeds
to predict on the test set and evaluates the results.
If not, further optimization is done before making
predictions.

4 Case study
To evaluate the performance of the proposed
NARX-based classifier, we conducted a series of case
studies relating to classification tasks focused on
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Figure 3. Prediction process in a random forest model. The diagram illustrates how the soft voting mechanism integrates
the probability outputs from multiple classifiers to make a final decision, enhancing accuracy and robustness.

Figure 4. The overall structure of the proposed ‘NARX-SR’ ensemble framework.

both static and dynamic datasets. The aim was to
assess the classifier’s prediction accuracy and feature
selection capability across different scenarios. We
started with a traditional static classification task
as an initial test. Following this, we utilized a time
series dataset for binary classification to examine

the classifier’s dynamic capabilities. Lastly, we
applied our method to a multi-class classification
problem involving a dynamic dataset of Alzheimer’s
Disease (AD). This progression allowed us to test
the method’s adaptability and performance across
varying classification challenges.
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We evaluated the classification performance using
four commonly used key metrics: accuracy, precision,
recall, and F1 score [17]. Accuracy is an index
showing the overall proportion of correct predictions,
while precision and recall provide insights into
the model ability to correctly identify specific
categories—precision focusing on the accuracy of
positive predictions and recall on their completeness.
The F1 score combines precision and recall, offering
a balanced perspective. Additionally, we detailed the
feature subset selected by our method, highlighting its
impact on enhancing the model performance.

4.1 Case 1
The dataset employed in the first case study is
designed to facilitate the estimation of obesity levels
among individuals from Mexico, Peru, and Colombia,
utilizing variables related to their dietary habits and
physical condition [18]. We selected this dataset as
our initial case study because it represents a typical
static multiclass dataset within the medical field.
Additionally, its medium size makes it ideally suited
for both conducting an initial analysis of our developed
model and comparing it with other classic models. The
dataset comprises 2,111 instances and 17 attributes,
aimed at studying obesity level classification. The
’Obesity’ variable classifies individuals into seven
distinct obesity levels: Insufficient Weight, Normal
Weight, Overweight Level I, Overweight Level II,
Obesity Type I, Obesity Type II, and Obesity Type
III. Approximately 77% of the data was synthesized
using the Weka software with the SMOTE filter, while
around 23% of the data was directly obtained from
individuals via a web-based platform.
In this case, we performed preprocessing on the
selected dataset, including filling missing values and
dividing 70% of the data into a training set which
we employed 10-fold cross-validation on it and the
remaining part as a test set. In particular, considering
that the dataset does not contain lag terms, we
manually set the nonlinearity of the model to 2 based
on previous experience to adapt to the characteristics
of the data. This process involves a search space of 171
features designed to optimize model performance.
Table 2 shows the performance comparison of various
classification methods on the test set. The NARX-SR
method achieved the highest scores, with an accuracy
of 0.9779, precision of 0.9792, recall of 0.9773, and an F1
value of 0.9746. This superior performance is due to the
Soft Voting method based on the NARX model, which
effectively combines multiple classifiers to reduce bias

Table 2. Results of case1(on test set). NARX-SR: NARMAX
+ SoftMax + Random Forest.

Methods Accuracy Precision Recall F1
NARX-SoftMax-RF 0.9779 0.9792 0.9773 0.9746
NARX-SoftMax 0.9605 0.9244 0.9235 0.9237

NARX-RF 0.9557 0.9487 0.9484 0.9483
SVM 0.9510 0.9527 0.9485 0.9490
KNN 0.7930 0.7855 0.7781 0.7763
RF 0.9494 0.9487 0.9484 0.9483
DT 0.8262 0.8219 0.8357 0.8212
CNN 0.9052 0.9017 0.9006 0.9005
LSTM 0.9368 0.9365 0.9356 0.9346

and variance. Other models, such as NARX-SoftMax,
NARX-RF, and RF, did not perform as well as the
NARX-SR (NARMAX-SoftMax-RF) ensemble. While
CNN and LSTM generally excel with larger datasets,
they underperformed on this small dataset. SVM with
L1 regularization, DT, and KNN showed reasonable
results but did not match the NARX-SR model.
Our developed model not only exhibits excellent
predictive performance but also excels in
interpretability and identifying and ranking important
features and their interactions within the dataset.
Figure 5 shows the accuracy improvement of our
model as important features are added, achieving a
peak accuracy of 97.79% with a minimal but crucial
feature set. This demonstrates the model’s high
learning ability and efficiency. Figure 6 displays the
confusion matrix at the model’s best performance.

Figure 5. Accuracy plot of NARX-SR (test set).

Table 3 presents the selected important
feature subset, including both original
features and nonlinear combinations (Weight,
Height×Height, Gender×Weight, Gender×Height,
Age×family_history_with_overweight, FAVC×NCP).
This proves that our method effectively captures
complex data patterns, provides interpretable
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Figure 6. Confusion matrix of the NARX-SR predictions
(test set).

Table 3. The selected features for Case 1. From top to
bottom, the importance of features decreases.

Features’ ID
Weight

Height × Height
Gender × Weight
Gender × Height

Age × family_history_with_overweight
FAVC × NCP

information for model predictions and enhancing
model performance.
Figure 7 Comparisons of different methods for feature
selection. We used Random Forest and l1-regularized
SVM as the baselines to evaluate the performance
of the proposed NARX-SoftMax and NARX-RF.
The NARX-SR (NARMAX-SoftMax-RF) model
consistently shows the highest accuracy, achieving
optimal performance with just six important features,
demonstrating its robustness and effectiveness in
feature selection.

Figure 7. A comparison of different methods in feature
selection (test set).

Table 4. Description of eye state dataset.
Attribute Details
Dataset Name Eye State dataset
Source UCI Machine Learning Repository
Classification Type Binary (Dynamic classification)
Measurement Device Emotive EEG Neuroheadset
EEG Channel Names AF3, F7, F3, FC5, T7, P7, O1, O2, P8,

T8
Measurement Duration 117 seconds

Eye State Detection
Detected via camera during EEG
measurement, addedmanually after
video analysis

States Encoding ’1’ for eye closed, ’0’ for eye open
Data Ordering Chronological

4.2 Case 2
This is a case concerned with a binary classification
task based on dynamic data. For the second case study,
we selected a binary classification time series dataset -
the Eye State dataset from the UCI Machine Learning
Repository [19] as our case study of binary dynamic
classification. Details are in the Table 4:

For this EEG dataset, past time information is added
to each sample point; here, the time delay is set to 5
and the nonlinear degree is set to 2. Thus, we can
scramble all samples for dynamic analysis without
losing time information. There are a total of 3655
candidates in the search space, and similar to the
breast cancer example, we select 70% as our training
set which we employed 10-fold cross-validation on it
and 30% as our test set. In they employed the PCA
to reduce the dimensionality of the dataset, which is
not what we desire. Our objective is to identify the
association between the original EEG channel data
and the results and to provide an interpretation based
on this information. As in Case 1, we used the same
models as the baselines for comparison purposes. Note
that the same autoregressive inputs are used in all the
compared methods.

Unlike for the above Case 1 where data are static,
for the time series binary classification task here, the
performance of different methods varies significantly.
As Table 5 shows, the NARMAX-SoftMax-RF method
remains highly stable and achieves the highest
performance due to its effective integration of
nonlinear time series features and complex temporal
dynamics. NARX-RF and RF also perform well but
fall short of the NARX-SR method, which uses a soft
voting ensemble approach. LSTM performs well due
to its strong ability to capture temporal dependencies
but has drawbacks such as long training time, high
computational resources, being a black-boxmodel, and
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Table 5. The results of the test data given by different
methods on the test data for Case 2.

Methods Accuracy Precision Recall F1
NARX-SoftMax-RF 0.9034 0.9061 0.9018 0.9035
NARX-SoftMax 0.6693 0.6539 0.6696 0.6536

NARX-RF 0.8823 0.8827 0.8901 0.8854
SVM 0.5895 0.5439 0.6173 0.4822
KNN 0.7766 0.7663 0.7787 0.7693
RF 0.8727 0.8684 0.8743 0.8705
DT 0.7183 0.7109 0.7147 0.7122
CNN 0.6233 0.6274 0.6266 0.6231
LSTM 0.8117 0.8190 0.8006 0.8048

complex hyperparameter tuning. Methods like SVM
with L1 regularization, CNN, and NARX-SoftMax
perform poorly due to their limitations in handling
complex time series data. Overall, the NARX-SR
method is recommended for the time series binary
classification tasks due to its superior performance.
Case 2, the proposed NARX-SR model demonstrates
a strong feature selection capability. Table 6 briefly
shows the critical feature interactions captured by the
model. With these interactions, the model’s accuracy
improved to a maximum of 0.9034. Figure 8 illustrates
this trend, showing a steady increase in accuracy with
the number of features, peaking at the 15th feature.
The confusion matrix displayed in Figure 9 details the
distribution of model prediction results.

Figure 8. Accuracy plot of NARX-SR (test set).

In Table 6, F7(t) × F7(t-1) represents themultiplication
of the current signal at the F7 electrode with the
signal at the same electrode from the previous
time step (t-1), capturing temporal dependencies
between consecutive time points. Similarly, T8(t-1)
× FC6(t-1) indicates the interaction between signals
from the T8 and FC6 electrodes at the previous time
point, and F3(t-1) × T7(t-1) reflects the interaction
between F3 and T7 from the previous time step. All
these interactions help model temporal and spatial
relationships in EEG data to enhance classification. To

Figure 9. Confusion matrix of the NARX-SR predictions
(test set).

Table 6. Selected important feature subset (Channels and
Sampling Points) for Case 2. From top to bottom, the

importance of features decreases.
Features’ ID

F7(t) × F7(t-1)
T8(t-1) × FC6(t-1)

. . .

. . .

. . .
F3(t-1) × T7(t-1)

verify our approach, we compared it with other feature
selection methods. As shown in Figure 10, NARX-SR
(NARMAX-SoftMax-RF) outperforms all other
methods, including NARX with L1 regularization and
NARX-SoftMax, which performed relatively poorly.
Random Forest (RF) and our proposed NARX-RF
also performed well, but NARX-SR showed the best
performance. NARX-SR excels in handling complex
time series data by combining the strengths of
parametric models (like NARX) and non-parametric
models (like RF). Parametric models may struggle
with complex patterns, while non-parametric models
handle non-linear relationships and high-dimensional
data effectively. By integrating both, NARX-SR
achieves optimal performance.

4.3 Case 3
This case is concerned with a dynamic multi-class
classification problem, where the time series
data contains dynamic relationships determined
by the underlying nonlinear patterns and
sequence-dependent properties. For such a multi-class
classification problem, we focus on the model accuracy
and its ability to utilize sequential information and
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Figure 10. A comparison of different methods in feature
selection (test set).

Table 7. Description of eye state dataset.
Attribute Details
Source Florida State University

Scalp Locations
19 locations (Fp1, Fp2, Fz, F3, F4, F7,
F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5,
T6, O1, O2)

System International 10-20 system
Equipment Biologic Systems Brain Atlas III Plus

workstation
Cerebral Lobes F: Frontal, C: Central, P: Parietal, O:

Occipital, T: Temporal
Groups A and C: Eyes open, B and D: Eyes

closed

Participants
Groups A and B: 24 healthy elderly
(Avg age 72, range 61-83), Groups
C and D: 24 probable AD patients
(Avg age 69, range 53-85)

Diagnosis Criteria NINCDS, ADRDA, DSM-III-R
EEG Segment Duration 8 seconds
Frequency Range 1-30 Hz
Sampling Frequency 128 Hz
Data Integrity Free from eye motion and blinking,

myogenic artifacts
Monitoring EEG technician present during

recordings

capture important characteristics. To this end, we
considered the EEG database provided by Florida
State University [20]; This dataset includes recordings
from 19 scalp locations using the International 10-20
system, with participants grouped into healthy
controls and probable AD patients. The details of this
EEG dataset are summarized in Table 7.
This dataset is particularly valuable for studying
Alzheimer’s Disease due to its comprehensive coverage
of both healthy and AD-affected participants, as
well as its detailed EEG recordings under controlled
conditions, which makes it ideal for time-series
analysis and model validation. EEG data from 8
elderly participants per group were used for training,
with the rest as the test set. The model classifies

Table 8. Results of case 3 (test set).
Methods Accuracy Precision Recall F1

NARX-SoftMax-RF 0.6966 0.6894 0.6920 0.6892
NARX-SoftMax 0.6143 0.6137 0.6233 0.6148

NARX-RF 0.6793 0.6790 0.6773 0.6765
SVM 0.4782 0.5540 0.4794 0.4768
KNN 0.5223 0.6062 0.5231 0.5129
RF 0.5517 0.5416 0.5458 0.5422
DT 0.4476 0.5045 0.4464 0.4359
CNN 0.6206 0.6189 0.6361 0.6203
LSTM 0.5967 0.5966 0.5980 0.5964

each sampling point, and the diagnosis is made based
on a majority voting scheme. The basic modelling
experimental settings are as follows: the maximum
input and output time lags were set to five, and the
degree of the nonlinearity of the NARX model was
chosen to be two. The prediction results with different
methods are shown in Table 8.

As shown in Table 8, the NARX-SR model achieved
the highest performance across all metrics with an
accuracy of 0.6966, precision of 0.6894, recall of 0.6920,
and an F1 score of 0.6892, making it the most effective
model for multi-class time series classification. Other
models like NARX-RF, NARX-SoftMax, CNN, and
LSTM also performed well, But slightly worse than
NARX-SR. Conversely, models such as SVM with L1
regularization and DT showed lower performance
across all metrics, indicating they are less suited for
this specific classification task. SVM-l1 may struggle
with complex decision boundaries, while DT may not
effectively capture temporal dependencies in the data.

In Case 3, our model continues to demonstrate
robust data exploration and feature detection ability.
Figure 11 shows the accuracy plot of NARX-SR,
achieving an accuracy of 0.6966 with 43 features.
This indicates that the model effectively utilizes
the selected feature subset to enhance performance.
Figure 12 presents the confusion matrix for NARX-SR
predictions, illustrating the detailed classification
results across multiple classes. The matrix shows that
the model performs well in distinguishing between
different classes, with a significant number of true
positives in each category. Table 9 briefly lists the
important feature combinations selected for Case
3. These interactions reveal the underlying patterns
and relationships within the data, further validating
the model’s ability to handle complex multi-class
classification tasks.

In Table 9, O1(t) × O1(t) indicates the squared value
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Figure 11. The Accuracy plot of NARX-SR (test set).

Figure 12. Confusion matrix of the NARX-SR’s predictions
(test set).

of the signal at the O1 electrode, and O1(t-3) ×
O1(t-3) refers to the squared value of the O1 signal
from three-time steps earlier. Similarly, T3(t-2) ×
T4(t-2) captures the interaction between signals from
the T3 and T4 electrodes, both delayed by two-time
steps. These interactions are crucial for capturing both
temporal and spatial relationships in the EEG data.
For multi-class classification of time series
datasets, extracting useful information efficiently
is crucial. As shown in Figure 13, NARX-SR
(NARMAX-SoftMax-RF) outperforms NARX-RF,

Table 9. Selected important feature subset (Channels and
Sampling Points) of case 3 ((From top to bottom, the

importance of features decreases).
Features’ ID
O1(t) × O1(t)

O1(t-3) × O1(t-3)
. . .
. . .
. . .

T3(t-2) × T4(t-2)

achieving optimal performance with 40 features,
while NARX-SoftMax reaches only 69% accuracy.
RF and SVM with L1 regularization perform poorly
due to their inability to capture complex temporal
dependencies and nonlinear features. RF handles
nonlinear relationships well but falls short in temporal
dependencies, and SVM-L1 struggles with complex
decision boundaries.

Figure 13. Comparison of different methods in feature
selection (test set).

4.4 Computational Complexity and Experimental
Fairness

All comparative experiments in this study were
implemented and executed by the authors to
ensure fairness and reproducibility. For each
baseline method, the same training–testing splits,
preprocessing procedures, and parameter tuning
strategies were applied as those used for the proposed
model, ensuring that performance differences arise
solely from the modelling approaches.

The complete pipelines — including feature selection
using the FOSS algorithm, feature generation via
the NARX model, 10-fold cross-validation, and
evaluations across all baseline models — were
executed on the same three datasets in this study. On
a workstation equipped with an Intel i7 CPU, 32 GB
RAM, and an RTX 4070 Ti GPU, the total running time
for the simpler static datasets was at the second level,
while the largest and most complex EEG dataset was
completed at the minute level, with all runs taking no
more than 10 minutes. These results demonstrate that
the proposed approach is computationally efficient
and suitable for practical medical data analysis. For
substantially larger datasets, the running time may
increase, but the method remains scalable due to its
modular and parallelizable design.
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4.5 Discussions
4.5.1 The advantages of the proposed methods
Three different types of case studies were conducted
to evaluate the performance of the proposed methods,
by comparing them against several common classifiers
widely applied within the medical field. The findings
demonstrate that our models showcased superior
performance and a degree of interpretability across
all cases. In essence, these models are not only
adept at handling static classification tasks efficiently
but also excel in managing multi-class classification
issues in medical data characterized by complex
temporal dynamics, such as EEGs or ECGs. This
innovative framework is designed to learn nonlinear
relationships from data and the framework enhances
feature understandability and model interpretability
by computing contributions and selecting features after
polynomial combinations through forward orthogonal
selection.
Furthermore, by integrating the SoftMax classifier
and Random Forest using the soft voting method, we
can leverage the strengths of both methods. Such an
approach provides several benefits in the context of
medical dataset, which can be briefly summarised as
follows.
Combining Strengths of SoftMax and Random Forest.
The SoftMax classifier is excellent for handling
linear relationships and providing probabilistic
interpretations of class membership. On the
other hand, Random Forest is strong in capturing
complex, non-linear relationships and handling
high-dimensional data with robustness to overfitting.
Soft voting works by averaging the predicted
probabilities from both the SoftMax and Random
Forest models. Thismethod enhances the classification
performance by taking advantage of the strengths of
each model. In medical data analysis, this leads to
better prediction accuracy, which is critical for reliable
diagnostic and prognostic outcomes.
Feature Selection and Ranking. Using forward feature
selection ensures that the most significant features are
included in the modelling process in a step-forward
manner. This enhances both the performance and
interpretability of the model. In the medical domain,
understanding the influence of each feature is crucial,
and this method helps in identifying the key variables
that impact patient outcomes.
Transparency and Interpretability. The explicit structure
of the NARX model allows for clear tracking of the
relationships between inputs and outputs. When

combined with the interpretability of Random Forest
feature importance and the probabilistic outputs of
SoftMax, the resulting model is both transparent and
understandable. This transparency is vital in medical
data analysis, wheremodel interpretability can directly
influence clinical decision-making.
Robustness to Data Variability. The integration approach
ensures that both static and dynamic aspects of
the data are effectively analysed. The polynomial
NARX model helps in capturing nonlinear temporal
dependencies within the data, while the Random
Forest and SoftMax classifiers address various static
features. This combination makes the model robust
to the variability and complexity inherent in medical
datasets.

4.5.2 Limitation and Challenges
Despite the significant progress and strategic
advantages of usingNARX-basedmodels in healthcare
analytics for various classification tasks, challenges
remain that require further investigation and
development, for example:
Feature Selection and Feature Engineering. A major
challenge in healthcare analytics involves the
scalability and computational efficiency of models as
they are applied to increasingly large and complex
patient datasets. Traditional ANOVA-based feature
selection methods are effective for medium-sized
datasets, may struggle with processing speed and
scalability as the volume and dimensionality of data
grow. This limitation is critical in clinical settings
where rapid processing and timely model updates
are essential. Moreover, the reliance on ANOVA’s
statistical assumptions may not always be valid in
medical datasets, because it assumes data follows
a normal distribution and equal variances across
groups, which may not hold true for all datasets,
limiting its applicability. Potentially impacting the
model’s effectiveness and its applicability across
different types of patient data. This highlights the
need for more adaptable feature selection techniques
that can handle the non-linear and heteroscedastic
nature of medical data.
Trustworthy in Decision Making. The benefits of model
interpretability and transparency are crucial in a
medical context. However, as models and feature
selection processes become more complex, creating
intuitive visualizations and explanations to demystify
model decisions for non-experts is increasingly vital.
This is essential for encouraging the adoption and
trust in machine learning solutions within healthcare
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settings.
Addressing these challenges requires a multi-faceted
approach, including the development of more scalable
and adaptive feature selection methods, exploration
of hybrid models that combine the strengths
of parametric and non-parametric approaches,
and advances in interpretability tools to bridge
the gap between complex model outputs and
user comprehension. Such efforts are crucial for
maximizing the potential of NARX based models in
healthcare, leading to more effective, efficient, and
user-friendly machine learning applications in patient
care and medical research.

5 Conclusion
In this paper, we developed a lightweight ensemble
classification framework based on the NARX model,
integrating a parameterized SoftMax regression and
a non-parametric Random Forest using a soft voting
mechanism. This approach effectively handles
both static data (e.g., patient demographics and
EHR) and dynamic time series data (e.g., EEG)
in medical applications. Combined with forward
orthogonal search and selection (FOSS) algorithm
for feature selection, our method has ability to
select the most relevant features and the nonlinear
combination relationship of deep mining features,
reducing computational complexity while maintaining
high classification accuracy.
Our method demonstrated robust predictive
performance, efficient feature selection, and improved
interpretability across the static and dynamic datasets
used in the three case studies. The ensemble
model showed strong adaptability and efficiency,
enhancing classification accuracy while providing
richer interpretive insights into both static datasets,
such as patient records, and dynamic datasets, like
time-series signals. These properties are crucial for
understanding complex medical scenarios, supporting
early diagnosis and treatment decisions.
One of our feature plans is to validate the proposed
method on larger and more heterogeneous real-world
datasets, including multi-center medical records,
imaging data, and time-series physiological signals.
This will enable us to assess the method’s robustness
and generalizability across various clinical settings
and data types. Additionally, we aim to tackle the
critical challenges discussed in this paper, ensuring
that the framework remains adaptable and efficient
across diverse and complex environments.
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