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Abstract

The growing prominence of prompt engineering
as a means of controlling large language models
has given rise to a diverse set of methods, ranging
from handcrafted templates to embedding-level
tuning. Yet, as prompts increasingly serve not
merely as input scaffolds but as adaptive interfaces
between users and models, the question of
how to systematically optimize them remains
unresolved. = Reinforcement learning, with its
capacity for sequential decision-making and
reward-driven adaptation, has been proposed as
a possible framework for discovering effective
prompting strategies. This survey explores
the emerging intersection of RL and prompt
engineering, organizing existing research along
three interdependent axes: the representation of
prompts (symbolic, soft, and hybrid), the design
of RL-based optimization mechanisms, and the
challenges of evaluating and generalizing learned
prompt policies. Rather than presenting a single
unified framework, the discussion reflects the
fragmented, often experimental nature of current
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approaches, many of which remain constrained by
unstable reward signals, limited generalizability,
and a lack of reproducible evaluation standards. By
analyzing methodological innovations and points
of friction alike, this work aims to foster a more
critical and reflective understanding of what it
means to "learn to prompt" in complex, real-world
language modeling contexts.

Keywords: prompt engineering, reinforcement learning,
language models, prompt optimization, reward design,
prompt representation.

1 Introduction

As large language models continue to permeate a
wide range of natural language processing tasks, from
open-domain question answering to domain-specific
summarization, the role of prompt engineering has
grown from a peripheral concern into a central design
problem. Unlike traditional supervised learning
pipelines, where fine-tuned parameters dictate model
behavior, prompting relies on manipulating the input
context to elicit desired outputs from largely frozen
architectures [1]. This seemingly superficial layer
of control—composed of instructions, examples, or

Citation

Liu, Z. (2025). Reinforcement Learning for Prompt Optimization
in Language Models: A Comprehensive Survey of Methods,
Representations, and Evaluation Challenges. ICCK Transactions on

Emerging Topics in Artificial Intelligence, 2(4), 173-181.

© 2025 by the Author. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

173


http://dx.doi.org/10.62762/TETAI.2025.790504
http://crossmark.crossref.org/dialog/?doi=10.62762/TETAI.2025.790504&domain=pdf
https://orcid.org/0009-0001-8062-3069
http://dx.doi.org/10.62762/TETAI.2025.790504
mailto:15322274141@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ICCK Transactions on Emerging Topics in Artificial Intelligence

ICJK

stylistic cues—has proven surprisingly influential in
shaping model performance. Yet, it remains deeply
underformalized.

Despite a proliferation of prompting techniques (see
Figure 1 for a taxonomy), ranging from handcrafted
templates and instruction-based formats to soft
prompt tuning embedded in the model’s input
space, much of current practice is ad hoc and
task-specific. Manually composed prompts, though
interpretable and straightforward to implement, often
require extensive domain knowledge and iterative
human experimentation [2]. On the other hand,
embedding-based prompt tuning methods, while
automatable, suffer from a lack of transparency and
are difficult to generalize across tasks or models. The
field thus finds itself suspended between the need
for structured, explainable prompt systems and the
practical limitations of current design methodologies.

In recent work, reinforcement learning has emerged
as a potentially unifying paradigm for prompt
optimization. By treating prompt generation as a
sequential decision process—with actions modifying
prompt components, and rewards derived from
downstream model behavior—RL introduces a
feedback-driven mechanism to explore and refine
prompt strategies [3]. To some extent, this reframes
the prompt not merely as an input artifact but as a
dynamic, learnable policy interface. However, such
integration is far from resolved; RL-based prompting
remains fragmented, methodologically diverse, and
empirically unstable, partly due to reward sparsity,
model stochasticity, and a lack of standardized
evaluation frameworks.

This survey aims to provide a structured examination
of the emerging intersection between reinforcement
learning and prompt engineering. The discussion is
organized around three interrelated dimensions: the
representation of prompts and their associated action
spaces [4], the design and adaptation of reinforcement
learning algorithms for prompt optimization, and the
practical challenges associated with evaluating learned
prompt strategies across models and tasks [5]. Before
developing this taxonomy, Section 2 contextualizes
recent developments in prompt engineering and
RL-based NLP. Finally, Section 5 synthesizes the
findings and reflects on the open questions that
continue to shape this nascent but increasingly
consequential field.

2 Related Work

The intersection of reinforcement learning and prompt
engineering arises from two relatively independent
research trajectories that have only recently begun
to converge. On one hand, prompting has evolved
from a heuristic technique to a subject of technical
inquiry, with growing efforts toward systematic design
and automation [6]. On the other, reinforcement
learning has long served as a control mechanism
for adaptive behaviors in natural language tasks.
Recent attempts to combine these approaches reveal a
space of possibilities—but also of tensions—between
symbolic control, continuous optimization, and the
unpredictable behavior of large language models [7].
Understanding this intersection requires briefly
revisiting each trajectory before examining their
integration.

Prompt Engineering Approaches
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Figure 1. Taxonomy of prompt engineering approaches.
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2.1 Prompt Engineering Techniques

Prompting began as a manual craft, with static
templates tailored to elicit specific behaviors from
language models. Few-shot prompting extended this
by embedding task demonstrations in the prompt,
improving performance in some tasks but proving
highly sensitive to input order and style. In pursuit of
generality and efficiency, researchers introduced soft
prompting, in which trainable embeddings replace
discrete tokens. While such methods integrate
seamlessly into model architectures, they sacrifice
interpretability and offer limited structural control [8].

Subsequent methods like AutoPrompt and
Prefix-Tuning sought to automate prompt creation,
using gradient signals or tunable vectors. Although
they improved scalability, these approaches often
lacked adaptability across tasks and models [9].
More recent instruction-based prompting techniques,
such as those used in InstructGPT, attempt to align
model behavior with user goals via natural-language
directives [10]. Yet even these remain brittle under
distributional shifts, and rely on careful phrasing
and implicit human priors. Across this spectrum,
one recurring limitation persists: most prompt
optimization methods are static, context-agnostic,
and poorly suited to dynamic, feedback-driven
environments [11].

2.2 Reinforcement Learning in NLP and LLM
Alignment

Reinforcement learning has found wide application
in NLP scenarios requiring sequential decisions,
from dialogue management to summarization. Its
most prominent role in recent years has been in
reinforcement learning from human feedback (RLHF),
which fine-tunes LLMs based on learned reward
models aligned with human preferences [12].
However, RLHF primarily optimizes model
parameters, treating the prompt as fixed context [13].

Prompt optimization reframes this dynamic by
considering the prompt itself as a learnable object.
This leads to a natural analogy: if prompt formulation
is a policy, then RL becomes an appropriate tool
to train it [14]. The reward, in this case, is
not simply correctness, but task success, fluency,
or alignment with user goals [15]. Despite this
conceptual fit, applying RL at the prompt level poses
unique challenges—particularly in defining reliable
rewards and managing unstable policy updates in
high-dimensional, discrete action spaces.

2.3 RL-Based Prompt Optimization Methods

Several early-stage efforts have attempted to bring
reinforcement learning into prompt engineering.
PromptAgent casts prompt selection as a multi-step
decision process [16], learning to choose from
predefined templates. AdaPrompt applies PPO
to update prompt structures dynamically, with
some success in cross-task adaptation. RLPrompt,
by contrast, emphasizes symbolic prompt
editing—reordering terms, adjusting tone—and
optimizes these decisions using policy gradients [17].

Despite variation in formulation, these methods share
limitations. Exploration is often inefficient due to
the combinatorial nature of prompt structures [18].
Reward signals are noisy, delayed, or brittle,
especially when derived from unstable LLM outputs.
Generalization remains limited; strategies learned
on one task frequently fail to transfer. In aggregate,
these works form a fragmented but growing
subfield—ambitious in scope, but still searching for
theoretical clarity and empirical robustness [19]. A
comparative summary of these methods is provided
in Table 1.

3 Methodology

Efforts to optimize prompts using reinforcement
learning span a broad space of design choices, many
of which remain underexplored or only partially
formalized [20]. This section aims to synthesize
the field’s methodological diversity by categorizing
current approaches along four dimensions: the
representation of prompts, the construction of action
spaces and policies, the formulation of reward signals,
and the choice of reinforcement learning algorithms.
While these dimensions are conceptually separable,
they are in practice tightly coupled—representational
choices shape the available action space; reward
design constrains policy learning; and algorithmic
limitations feed back into how prompts are structured
and evaluated.

3.1 Prompt Representations

The representation of a prompt plays a central role in
determining the granularity and controllability of the
optimization process. Broadly, existing work can be
divided into three classes.

Symbolic prompts refer to discrete, human-readable
structures composed of lexical items, syntactic
frames, or stylistic markers. Symbolic formats offer
interpretability and facilitate human-in-the-loop
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Table 1. Summary of RL-based prompt optimization methods.

Method Prompt

Primary Tasks /

(Citation) RL Algorithm Representation Action Space Reward Signal Datasets Notes
Policy Task success
gradient / (accuracy Classification, Early RL framing of
. . Choose among . 2
selection Symbolic - o/ EM); QA (reported  prompt selection; limited
PromptAgent [9] (reported as templates predefined templates; LM-based toy-to-medium structural edits; depends
context-aware switching . ’
RL template proxies  (as scale) on template pool
selection) reported)
Symbolic Task metrics + Classification Adaptive updates per
AdaPrompt [10] PPO (policy structure with Token/segment edits; optional LM (SST-2,  MNILI) task; sensitivity to reward
P gradient) learnable structure toggles confidence QA . ’ shaping and decoding
parameters (dense) settings
Universal Policy . . Mixed: task Classification Aims Afor cross—tz?sk
Prompt ; Soft / hybrid Edit / compose prompt . generality; transfer gains
L gradient - . scores, LM & generation .
Optimization (reported) (task-conditioned) embeddings and slots sionals (various) modest;  tuning cost
(UPO-RL) [13] p & remains
Supervised . -
Prefix-Tuning [5] —  (non-RL Soft . N/A (learned prefix loss / Generation Parameter-efficient I?Ut
. . (continuous . tasks (e.g., opaque; strong baseline
(baseline) baseline) . vectors) generation o
prefix) - summarization) for RL methods
objective
Proxy Interpretable  triggers;
AutoPrompt [4] —  (non-RL  Symbolic Token-level insertions via ~ gradients Classification brittll: and taskes i%iﬁci
(baseline) baseline) (trigger tokens)  gradient heuristics (MLM/LM (cloze-style) P ’

objectives) useful comparison point

adjustment [21]. However, the space of meaningful
symbolic variations is vast and sparsely populated
with effective configurations, making automated
search both computationally intensive and
sample-inefficient.

In contrast, soft prompts are represented as learned
continuous embeddings injected into the model’s input
layer. These vectors are typically initialized randomly
or derived from existing tokens, and optimized via
gradient descent or reinforcement feedback. Soft
prompts, as seen in methods like P-tuning or Prompt
Tuning, excel in parameter efficiency and can be trained
quickly. Yet their lack of linguistic transparency makes
debugging difficult, and generalization to new tasks
or models is not guaranteed [22].

Some recent systems explore hybrid representations,
which attempt to combine the structure and
interpretability of symbolic prompts with the
learning flexibility of soft embeddings. These
may involve composing symbolic templates whose
components are parameterized by learned vectors,
or applying embedding-level tuning to prompts that
follow a fixed grammar. Such representations could,
in principle, support more robust and generalizable
optimization—but their effectiveness remains
speculative and empirically inconsistent.
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3.2 Action Space and Policy Design

The design of the action space defines what the RL
agent can do to a prompt. At one end of the spectrum
are token-level operations, including the replacement,
insertion, or deletion of individual tokens. These
fine-grained actions allow for detailed edits, and are
well-suited to symbolic prompts [23]. However, their
combinatorial nature poses significant challenges for
credit assignment and policy convergence, especially
in sparse-reward settings.

At a higher level, structure-level actions manipulate
larger prompt components, such as switching between
predefined templates, toggling stylistic attributes, or
altering sentence order. These actions offer greater
abstraction and can reduce the size of the decision
space. Yet they often rely on rigid schema definitions,
which limit expressiveness, and may require extensive
predefinition by human experts.

Policy design further complicates this space. Some
systems adopt deterministic policies optimized via
policy gradients, while others explore stochastic or
hierarchical approaches that select actions in stages.
The choice of granularity influences not only learning
dynamics but also interpretability—coarse policies
may generalize better, but at the cost of transparency
and editability. One example of a fine-grained action
space and policy architecture is illustrated in Figure 2.
To date, there exists no consensus on the optimal level
of abstraction, and trade-offs are often task-dependent.
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Figure 2. RLPrompt action space and policy architecture.

3.3 Reward Formulation

The reward function is arguably the most
consequential and least standardized component
in RL-based prompt optimization. One common
approach uses task-based metrics such as accuracy,
BLEU or ROUGE scores, or exact match. While these
metrics align with downstream evaluation, they tend
to be sparse and may not provide sufficient gradient
signal for prompt refinement, particularly early in
training.

Alternatively, some methods utilize language model
confidence signals, such as token log-probabilities,
perplexity scores, or the entropy of generated
distributions [24]. These signals are dense and easier
to compute, but may correlate weakly with actual task
success or user satisfaction. Moreover, LLMs often
assign high probability to generic or evasive responses,
which can confound optimization.

A third category employs human-aligned reward
models, either via preference learning or proxy scorers
like GPTScore. These can reflect nuanced quality
judgments—fluency, helpfulness, coherence—but
introduce additional complexity in training and
evaluation. Furthermore, reward models are
themselves imperfect and may encode hidden biases
from training data.

Many current studies combine multiple reward
sources, either through weighted sums or staged
objectives. However, tuning such multi-objective
formulations remains more art than science, and the

interaction effects between different reward types
are poorly understood. This opens space for future
exploration, including adaptive reward shaping,
task-conditioned weighting, and curriculum-style
training regimes.

3.4 RL Algorithms for Prompt Learning

The choice of reinforcement learning algorithm
shapes the learning dynamics of prompt optimization,
often constraining what representations and reward
functions are tractable. The majority of existing
work employs policy gradient methods, particularly
REINFORCE and PPO, due to their compatibility with
high-dimensional, non-differentiable action spaces.
While these methods support flexible exploration, they
are sensitive to reward variance and require careful
baseline estimation to reduce gradient noise.

Value-based methods like Q-learning are less
commonly used, in part because of their difficulty in
handling large or continuous prompt spaces. However,
some hybrid approaches attempt to combine policy
and value learning through actor-critic architectures,
though empirical results remain mixed.

Several practical challenges arise across algorithmic
choices. Reward sparsity limits learning signal in early
episodes, especially when the initial prompts perform
poorly. Policy instability—amplified by noisy rewards
and sensitive model outputs—can lead to oscillatory or
brittle behavior [25]. Moreover, most systems do not
support prompt transfer across tasks, making training
expensive and use-case specific.

Emerging directions include meta-reinforcement
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learning, which aims to train agents capable of
few-shot prompt adaptation, and multi-objective
optimization, which balances task success with
auxiliary criteria such as robustness, interpretability,
or user satisfaction. However, these remain largely
theoretical or preliminary in implementation.

4 Experiments

This section surveys the current experimental practices
in reinforcement learning—based prompt optimization,
focusing not only on task types and model platforms
but also on how evaluation metrics and generalization
protocols affect the credibility and interpretability
of findings [26]. While RLPrompt systems have
shown promising results in improving task-specific
performance, substantial variance remains in how
experiments are designed, evaluated, and reported.
These inconsistencies pose challenges to meaningful
comparison and generalization, and to some extent,
they also reflect the immaturity of the field.

4.1 Task Settings and Models

The empirical evaluation of RL-based prompt
learning methods has predominantly centered
around classification and generation tasks, often with
relatively narrow scope. Classification settings such
as sentiment analysis, natural language inference
(MNLI), and topic classification are commonly
used due to their well-defined output space and
ease of accuracy-based evaluation. Meanwhile, text
generation tasks such as summarization, open-domain
question answering, and even dialogue generation
(e.g., MultiWOZ, PersonaChat) have emerged as
testbeds for more complex prompt control.

However, these tasks differ not only in structure
but in how reward signals are defined and how
model sensitivity manifests, which complicates direct
performance comparisons across studies. Some
prompt optimization methods perform well in
classification but fail to show stable improvements in
free-form generation tasks, where output evaluation
is inherently noisier and often model-dependent [27].

The choice of underlying language model also
introduces significant variation. Most existing studies
rely on commercial or open-access models like GPT-3,
GPT-3.5, T5, or LLaMA-2, though the specific version
used is not always disclosed or consistent. This
lack of transparency can obscure how much of a
method’s success stems from the prompt policy itself
versus the inherent robustness of the LLM being
used. Moreover, model versioning affects prompt
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behavior in subtle and sometimes unpredictable ways,
meaning a prompt optimized for GPT-3 may perform
poorly when transferred to GPT-3.5 or GPT-4. These
platform dependencies raise concerns regarding both
reproducibility and the long-term relevance of learned
prompt strategies.

4.2 Evaluation Metrics

The evaluation of RLPrompt methods hinges on
how reward and success are operationalized, yet
there is currently no unified metric framework. For
classification tasks, accuracy remains the dominant
measure. For generation tasks, researchers typically
report BLEU, ROUGE, or METEOR, though the
correlation between these metrics and perceived
output quality—especially in instruction-following
settings—is often weak. In response to this, some have
introduced language model-based scorers, such as
log-probabilities, perplexity, or GPTScore, to serve as
dense reward signals or post-hoc evaluation tools.

Nevertheless, each metric brings its own biases
and limitations. Token-level metrics like BLEU
may reward surface-level similarity while ignoring
semantic relevance. Perplexity may favor fluent
but vacuous outputs. Human evaluations are
arguably more reliable but are costly, inconsistent, and
difficult to scale. Moreover, when used as reward
functions, these metrics may skew the optimization
process, leading to degenerate prompt strategies that
exploit quirks in scoring algorithms rather than truly
improving task performance.

Another issue that remains underdiscussed is output
variance. LLMs are inherently stochastic, and small
changes in prompt structure or model temperature
can yield drastically different outputs. Yet few
studies report confidence intervals or run multiple
seeds, making it difficult to assess whether observed
improvements are statistically meaningful or simply
artifacts of model volatility.

4.3 Generalization and Reproducibility

Beyond raw performance, a key concern for any
optimization method is whether it generalizes—across
tasks, across domains, and across models. Existing
RLPrompt systems, however, often show limited
transferability. A prompt policy trained on
sentiment classification rarely improves inference or
summarization tasks, and structural variations in task
instructions can significantly degrade performance.
These sensitivities suggest that current prompt
learning agents are overfitting to narrow behavioral



ICJK

ICCK Transactions on Emerging Topics in Artificial Intelligence

regimes rather than learning broadly applicable
prompting strategies. This limited generalization is
quantitatively evidenced in Figure 3, which shows
significant performance degradation across tasks.

(valﬁes normalized to in-domain baseline = 1.00)
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Figure 3. Cross-task generalization performance.

Reproducibility poses another fundamental challenge.
Many papers rely on proprietary APIs or closed-source
models, where internal updates to the model weights
or system instructions can silently invalidate earlier
results. Even in open models, non-determinism
in decoding, lack of seed control, and insufficient
hyperparameter reporting hinder replication. In
some cases, access to specific model checkpoints or
tokenization versions is no longer possible, limiting
the longevity of empirical findings [28].

Moreover, the field currently lacks standardized
evaluation benchmarks or testing suites tailored to
RL-based prompt learning. Without shared datasets,
evaluation scripts, and reproducibility checklists, it
is difficult to isolate algorithmic improvements from
dataset selection or prompt engineering heuristics.

Efforts to introduce prompt generalization tests,
such as cross-task transfer or robustness under
paraphrasing, remain limited in scope and largely
anecdotal. This limitation constrains the ability
to draw principled conclusions about what kinds
of prompts—or what forms of reinforcement
learning—yield reliably effective strategies.

5 Conclusion

The emergence of reinforcement learning as a
mechanism for optimizing prompts challenges the
long-standing assumption that prompts are static, fixed
inputs. Instead, as the surveyed literature suggests,
prompts may be more appropriately understood
as learnable control policies—entities that can be
adapted, shaped, and strategically deployed in
response to model behavior and task demands.
This shift in framing does not merely offer a
new methodological toolset [29]; it reflects a more
profound reconceptualization of the interface between
humans and language models, where control is
not imposed exogenously but learned endogenously
through feedback and exploration.

Within this new paradigm, reinforcement learning
provides a natural pathway for exploring the structure
space of prompt design. From token-level edits
to structural reconfigurations, from hand-crafted
templates to embedding-based representations, RL
allows systems to discover prompt policies that may
outperform handcrafted solutions, particularly in
non-obvious or high-dimensional contexts [30]. Yet,
the apparent promise of these systems must be
weighed against the methodological and theoretical
difficulties they continue to face.

Among these, the design of reward functions
remains particularly unsettled. = Whether based
on task-specific metrics, model-derived scores,
or human feedback, reward signals tend to be
noisy, brittle, and often misaligned with long-term
learning goals. Additionally, many of the prompt
optimization strategies surveyed demonstrate limited
generalizability—they work well within narrowly
defined tasks but struggle to transfer across domains,
models, or even slight variations in instruction
phrasing. Likewise, prompt representations remain an
open question: symbolic prompts offer interpretability
but are difficult to optimize, while soft prompts are
trainable but opaque and hard to control.

Considering these limitations, there is a growing need
for a more systematic, reproducible, and collaborative
research ecosystem around RL-based prompt
engineering [31]. This includes the development of
standardized benchmark tasks, shared evaluation
protocols, and open-source toolkits that support
transparent experimentation and ablation. Without
such shared infrastructure, meaningful progress risks
becoming fragmented and difficult to validate.

More broadly, this survey has aimed to map

179



ICCK Transactions on Emerging Topics in Artificial Intelligence

ICJK

the conceptual and methodological landscape of
RLPrompt systems without prematurely resolving

it.

Many of the assumptions underlying current

work—about what makes a good prompt, how
learning should occur, and what success looks
like—remain open to redefinition. Engaging with
these uncertainties is not a weakness of the field, but
perhaps its most valuable opportunity for theoretical
growth.
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