
ICCK Transactions on Emerging Topics in Artificial Intelligence
http://dx.doi.org/10.62762/TETAI.2025.125348

RESEARCH ARTICLE

Performance Evaluation of ETo Prediction Methods:
Dispersion Analysis and Accuracy Criteria Across Time
Intervals

Mostafa Sadeghzadeh1,*, Jalal Shiri 1,2 and Sepideh Karimi 1

1Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2Water Engineering and Science Research Institute (WESRI), University of Tabriz, Tabriz, Iran

Abstract
Accurate forecasting of reference
evapotranspiration (ETo) is crucial for sustainable
water resource management and precision
agriculture. The present study evaluates three ETo

predictionmethods: RandomForest (RF), Cartesian
Genetic Programming (CGP), and Convolutional
Neural Network-Graphics Processing Unit
(CNN-GPU) across time intervals of 1 to 364 days.
Using dispersion analysis (scatter/violin plots) and
accuracy metrics (RMSE, MAE, R2, SI), it was seen
that the RF and CNN-GPU models consistently
outperform CGP, particularly at extended horizons.
At 364 days, CNN-GPU achieved the highest
accuracy (RMSE: 0.678 mm/day, R2: 0.874), while
RF maintained robust performance (RMSE: 0.683
mm/day, R2: 0.872) and minimal dispersion (SI:
0.244–0.278). In contrast, CGP exhibited slightly
higher error indices (RMSE: 0.702mm/day) and
greater variability. Statistical validation via t-tests,
F-tests, and ANOVA revealed significant differences
in performance, especially at longer lags (p < 0.05),
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with CNN-GPU often showing superior accuracy.
Time-series analyses further confirmed that RF and
CNN-GPU effectively capture seasonal ETo trends,
while CGP struggles with increased lag.
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genetic programming, dispersion analysis, time intervals.

1 Introduction
Reference evapotranspiration (ETo), an important
parameter in agricultural water management,
represents the evaporative demand of the atmosphere
independent of crop type, growth stage, or
management practices. Allen et al. [2] argued
that the Penman-Monteith equation adopted by FAO
can serve as a reference standard formula for ETo

estimation under wide climatic conditions. This model
closely aligns with spatial and temporal climatic
patterns in regions with varying elevations and
climates, emphasizing its adaptability [22]. Accurate
ETo prediction is critical for irrigation planning, water
resource allocation, and sustainable agricultural
practices, especially in regions with limited water
resources [6, 23]. Given the impact of climate change
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on precipitation patterns and increasing temperatures,
accurate ETo prediction is becoming increasingly
important to mitigate drought impacts and ensure
food security [21].
Traditional methods such as the Penman-Monteith
equation require extensive meteorological data that
are not always available. So, various models relying
on fewer input variables have been developed for
ETo calculation. In recent years, machine learning
(ML)-based techniques have gained popularity for
hydrological parameters simulation due to their ability
to model complex nonlinear phenomena without
requiring explicit knowledge of the governing physical
processes [13, 16]. Among these methods, genetic
programming (GP) and random forest have shown
promising results and have been widely applied in this
context [11, 24]. Further, deep learning techniques,
especially convolutional networks (CNNs), have been
employed for predicting ETo with limited input data [7,
8].
Genetic programming evolves computer programs to
perform user-defined tasks [14]. In the context of ETo

prediction, GP has been used to develop empirical
models that relate meteorological variables to ET0 [13,
24]. Different variants of GP, such as grammatical
evolution (GE), Cartesian genetic programming
(CGP), and multi-objective genetic programming
(MOGP), have been investigated to improve prediction
accuracy and model interpretability [9, 12]. For
example, gene expression programming (GEP) has
been successful in predicting ET0 under different
climate conditions due to its ability to produce simple
and accurate models [25].
Random forest (RF) is an ensemble learning method
that builds multiple decision trees and combines
their predictions to improve accuracy and reduce
overfitting [4]. The ability of RF to handle large
datasets and capture complex interactions makes it
particularly suitable for time series forecasting tasks [3,
10].
Despite significant progress in ML-based models
for ETo prediction, comprehensive comparisons
across diverse forecasting horizons remain limited,
particularly for long-term predictions. Existing
research has predominantly focused on short-term
forecasts, often overlooking the accuracy and reliability
of models over extended timescales. Moreover,
the performance of GP variants, such as Cartesian
GP (CGP), has not been thoroughly benchmarked
against established ML-based techniques. This

study addresses these gaps by evaluating three ETo

prediction methods, namely, RF, CGP, and CNN-GPU
across timescales ranging from 1 to 364 days. Through
dispersion analysis (scatter and violin plots), accuracy
metrics (RMSE, MAE, R2, SI), statistical validation
(t-tests, F-tests, ANOVA), and time-series analysis, a
detailed assessment of the models’ performances were
provided, with a particular emphasis on long-term
forecasting capabilities.

2 Material and methods
2.1 Climatic characteristics and ETo patterns of the

study area
Data from two counties of Meshkinshahr and Ahar,
located in Ardabil and East Azerbaijan provinces, Iran
were utilized to evaluate the proposed methodologies.
This region has a semi-arid and mountainous climate,
with an average annual rainfall of about 300 to 400
mm and an average annual temperature of 12◦C (see
Figure 1). The ETo series shown in Figure 1 represents
the average ETo calculated for the two study areas,
Meshkinshahr and Ahar. This series reflects the
mean ETo values of these two locations and is plotted
to provide a general overview of evapotranspiration
patterns in the study region.
Daily ETo data were collected from a meteorological
station for the period 1 January 2015 to 20 March
2023. The data included ETo values calculated using
the standard FAO Penman-Monteith method, derived
from meteorological variables e.g. air temperature,
relative humidity, wind speed and solar radiation [24].

ETo =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

In this formula, ETo stands for the reference
evapotranspiration (mmd−1) and Rn is the net solar
radiation at the vegetative surface (MJ m−2d−1). G is
the soil heat flux (MJ m−2d−1), T denotes the mean
air temperature (◦C), u2 shows the wind speed at two
meters above the ground (m/s), ea and es represent
the actual and saturated vapor pressures, respectively
(kPa), ∆ is the slope of the vapor pressure curve
(kPa/◦C), and γ shows the psychrometric constant
(kPa/◦C).

2.2 Overview of CGP, RF, and CNN-GPU
2.2.1 Cartesian Genetic Programming (CGP)
Cartesian Genetic Programming (CGP) employs a
straightforward integer-based genetic representation
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Figure 1. Study area and average ETo time series.

of programs, structured as directed graphs [18].
These graph-based representations are highly versatile,
supporting both cyclic and acyclic structures, and are
applicable to diverse domains. Numerous studies
have demonstrated that CGP outperforms other GP
techniques in efficiency, while its simplicity facilitates
its implementation [19, 20].

2.2.2 Random Forest (RF)
Random Forest (RF), a powerful ensemble learning
approach, amplifies the predictive capability of
multiple weak learners, such as single decision trees
or perceptrons, through a collective decision-making
process [1]. Introduced by Leo Breiman [4] in 2001,
RF generates a series of unpruned classification or
regression trees, each constructed from randomly
sampled training data and feature subsets. The
ensemble’s predictions are synthesized via majority
voting for classification tasks or averaging for
regression tasks. RF demonstrates remarkable efficacy
in datasets with a high number of variables relative
to observations, making it a versatile tool for diverse,
large-scale computational challenges. Its adaptability
to specialized learning tasks and its capacity to
evaluate variable significance further enhance its
utility [4, 5]. By integrating numerous randomized
decision trees and consolidating their outputs,

RF delivers exceptional accuracy and robustness,
establishing it as a cornerstone method in machine
learning research.

2.2.3 CNN-GPU model for ETo prediction
ETo prediction was performed using CNN and
accelerated by graphics processing units (GPU). The
CNN model was designed to process time series data,
especially meteorological [15] variables affecting ETo.
The architecture consisted ofmultiple one-dimensional
convolutional layers with ReLU activation and max
pooling layers to extract local features. The output
was passed to fully connected layers to produce the
final forecast. The model was trained with historical
data and the mean square error was minimized with
the Adam optimizer. Key equations involved in the
convolution operation:

yt = ReLU
(

k−1∑
i=0

wixt+i + b

)
Relu = max(0, x)

(2)

where yt is output at time t after applying the ReLU
activation function, ReLU is modified linear unit
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activation function, k is Kernel size (number of filter
weights), wi is weight of the filter in position, xt+i is
input value at time t + i and b is bias added to the
weighted sum. The CNN model was implemented
using the TensorFlow framework in Python with the
Keras API, and the computations were accelerated
on a GPU-accelerated system. The training process
for the entire dataset took approximately 15 minutes
at all time intervals. To quantify the performance
gain, the same training process was run on a standard
CPU. The CPU-based training took more than 60
minutes, indicating that GPU acceleration provides
a performance speedup of over 5 times.

2.3 Evaluation Criteria
The performances of the applied models were
evaluated using the following indices:

RMSE =

√√√√ 1

N

N∑
i=1

(
ET observed

o,i − ET predicted
o,i

)2
(3)

RMSE =

√√√√ 1

n

n∑
i=1

(ETopredicted,i − EToobserved,i)2

(4)

MAE =
1

n

n∑
i=1

|ETopredicted,i − EToobserved,i| (5)

SI =
RMSE
ET o

(6)

where ET observed
o and ET predicted

o are the observed and
predicted values, respectively and ET o is average ETo

value over the study period.

2.4 Model development
The data were split into training and test sets in a
ratio of 80-20. For each forecast interval (lags 1,
11, 22, 91, 181, and 364 days), input matrices were
constructed using ETo values at times past the specified
lag. Specifically, for a lag i, the input variables
consisted of ETo values at times t−kwhere k ≤ i. Each
method was trained on the training set and evaluated
on the test set. To ensure the robustness of the results,
Monte Carlo simulations with 1000 iterations were
performed to estimate 95% confidence intervals [17].

2.5 Statistical analyses
To examine statistical differences between methods,
two-sample t-tests and F-tests were performed to
compare means and variances of predictions in
pairs [26]. Also, analysis of variance (ANOVA)
was performed to assess overall differences between
methods at each lag. These tests were performed
at a significance level of 0.05 to identify significant
differences. Figure 2 presents the schematic flowchart
of the present research.

Figure 2. Schematic diagram of research stages.

3 Results and discussion
3.1 Performance evaluation of ETo prediction

methods: dispersion analysis and accuracy
criteria in different time intervals

The evaluation results are presented in Figure 3 and
Table 1. Figure 3 shows scatter plots of predicted and
target ETo values for the adopted time intervals (1,
11, 22, 91, 181, and 364 days). To provide context for
the model configurations, a network with 100 nodes
and up to 10 levels of recurrence, with a population of
500 and 50 generations was used for the CGP model.
Further, RF regressor in the scikit-learn library was
used with 100 trees (n_estimators=100) and a random
seed of 42 for repeatability.
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Figure 3. Scatter plots of ETo forecasts over different time periods.

In Figure 3, each chart is plotted with a 1:1 reference
line (solid line); points positioned nearer to this line
represent more accurate predictions. At shorter lags
(1, 11, and 22 days), the points for all methods are
generally close to the 1:1 line with minimal scatter.
CNN-GPU (turquoise) and RF show slightly tighter
clustering compared to CGP at these lags, with
CNN-GPU appearing to have the least scatter at lag
1 day. As the lag increases to 91, 181, and 364 days,
the scatter of points increases slightly for all methods,
but they remain relatively close to the 1:1 line. At
longer lags, RF and CNN-GPU continue to show less
deviation compared to CGP, which exhibits slightly
more scatter, especially at 364 days interval.

Table 1 summarizes the evaluation metrics (RMSE,
MAE, R2, and SI) for each method across different
prediction intervals. For the 1-day prediction,
CNN-GPU achieves the best performance with an
RMSE of 0.706 and R2 of 0.872, whereas RF yields
a higher RMSE of 0.803 and R2 of 0.835. At 11
days, CNN-GPU again outperforms other methods
with an RMSE of 0.694 and R2 of 0.876, while RF
records an RMSE of 0.735. For the 22-day horizon,
RF and CNN-GPU produce nearly identical results,
with RMSE values of 0.711 and 0.710, respectively. In

contrast, at 91 days, RF delivers the most accurate
predictions, achieving an RMSE of 0.687 and R2 of
0.875, compared to CGP with an RMSE of 0.701.
At 181 days, RF continues to lead with an RMSE
of 0.688 and R2 of 0.868, while CNN-GPU shows a
slightly higher RMSE of 0.707. Finally, for the 364-day
interval, CNN-GPU provides the best performance
with an RMSE of 0.678 and R2 of 0.874, whereas CGP
records the highest RMSE of 0.702. The SI metric
further indicates that all methods exhibit low relative
dispersion, with CNN-GPU achieving the lowest SI
at shorter horizons (e.g., 0.241 at 11 days) and RF
maintaining lower dispersion at longer horizons (e.g.,
0.244 at 91 days).

Overall, RF andCNN-GPUperform consistently across
all prediction intervals, with CNN-GPU showing
a slight edge at shorter lags (1 and 11 days) and
RF performing better at intermediate lags (91 and
181 days). At the longest intervals (364 days),
CNN-GPU again outperforms the others. CGP
performs competitively but shows slightly more scatter
at longer prediction intervals (e.g., 364 days). These
results suggest that both RF andCNN-GPU are reliable
for ETo prediction across various time intervals, with
CNN-GPU being particularly effective at shorter and
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Figure 4. Comparing time series of ETo forecasts with actual values.

very long lags.

3.2 Comparison of ETo prediction time series for
different methods at different lags

Figure 4 shows the predicted versus target ETo values.
At shorter intervals (1, 11, and 22 days), all methods
closely follow the trend of the observed values, with
minimal deviation at the extreme points. CNN-GPU
and RF show slightly better alignment with the
observed data compared to CGP, especially at lag 1
day. As the intervals increase to 91, 181, and 364
days, the predictions of all methods remain relatively
close to the observed values, though slight deviations
become more noticeable at the extreme points. RF
and CNN-GPU continue to track the target data
more closely than CGP, which shows slightly larger
deviations at longer intervals, particularly at 364 days
interval.

3.3 Statistical analysis of significant differences in
the performance of ETo predictionmodels using
t and F tests

Figure 5 shows a bar graph of the statistical differences
between pairs of ETo prediction methods using t-tests
and F-tests. The statistics are displayed on the left
y-axis, and the p-values are shown in logarithmic

Figure 5. Results of t and F statistical tests for comparing
prediction models.

form (-log10) on the right y-axis. The significance
threshold line (p=0.05, equivalent to -log10(p)=1.3)
can be inferred for interpretation.

3.4 Overall evaluation of statistical analysis for ETo

models
Statistical analysis using t-tests, F-tests, and ANOVA
was conducted to assess significant differences in
the performance of RF, CGP, and CNN-GPU across
six prediction intervals (1, 11, 22, 91, 181, and
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Figure 6. Violin diagrams of the distribution of forecast errors over time intervals.

Table 1. Performance evaluation criteria for RF, CGP, and
CNN-GPU models.

Method Lag RMSE MAE R2 SI
RF 1 0.803 0.577 0.835 0.278
CGP 1 0.708 0.494 0.872 0.245
CNN-GPU 1 0.706 0.502 0.872 0.244
RF 11 0.735 0.523 0.861 0.255
CGP 11 0.713 0.491 0.869 0.247
CNN-GPU 11 0.694 0.492 0.876 0.241
RF 22 0.711 0.502 0.870 0.247
CGP 22 0.704 0.486 0.873 0.244
CNN-GPU 22 0.710 0.525 0.871 0.246
RF 91 0.687 0.488 0.875 0.244
CGP 91 0.701 0.481 0.870 0.249
CNN-GPU 91 0.694 0.508 0.873 0.246
RF 181 0.688 0.489 0.868 0.253
CGP 181 0.704 0.482 0.862 0.259
CNN-GPU 181 0.707 0.535 0.861 0.260
RF 364 0.683 0.484 0.872 0.259
CGP 364 0.702 0.477 0.865 0.266
CNN-GPU 364 0.678 0.501 0.874 0.257

364 days). At shorter lags (1 and 11 days),
t-tests and F-tests revealed no significant differences

between the methods, with p-values consistently
above 0.05 (e.g., ANOVA p-values of 0.438 and 0.206,
respectively), indicating comparable performance and
variance among the models. However, starting at
22 days, significant differences emerged, particularly
involving CNN-GPU. For instance, at 22 days, t-tests
showed significant differences for RF vs. CNN-GPU
(p=0.0056) and CGP vs. CNN-GPU (p=0.0075), with
ANOVA confirming overall significance (p=0.0071).
This trend intensified at longer lags (91, 181, and
364 days), where CNN-GPU frequently outperformed
others, as evidenced by highly significant t-test results
(e.g., p=4.86E-07 for CGP vs. CNN-GPU at 181 days)
and ANOVA p-values as low as 1.18E-05 (91 days) and
2.02E-06 (181 days). Notably, RF vs. CGP showed no
significant differences across most lags (e.g., p=0.477
at 91 days), suggesting closer performance between
these two methods.

The F-tests consistently indicated no significant
differences in variance across all lags (p-values > 0.05,
F-statistics near 1), implying similar dispersion in
predictions among the methods. The ANOVA results
highlighted that significant performance differences
among the three methods became more pronounced
at longer lags (22 days and beyond), representing the
impact of method selection on prediction accuracy for
extended forecasts. Overall, CNN-GPU demonstrated
a consistent edge at shorter (1 and 11 days) and very
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Figure 7. Average ETo forecasts and 95% confidence interval over a 364-day period.

long lags (364 days), while RF performed robustly at
intermediate lags (91 and 181 days). These findings
suggest that CNN-GPU and RF are reliable choices
for ETo prediction, with CNN-GPU being particularly
effective for short-term and long-term forecasts.

3.5 Analysis of the distribution of forecast errors at
different time intervals

Figure 6 presents violin plots illustrating the
distribution of forecast errors for the applied models.
The width of each violin reflects the error density,
while the central box plot indicates the median and
interquartile range (IQR).
RF demonstrated the most stable performance across
all intervals, with the smallest error ranges and
distributions consistently centered around zero,
making it the most reliable for predicting ETo.
CGP exhibited the greatest instability, with error
dispersion escalating at longer lags, reaching a range
of ±3.31 at Lag 364. CNN-GPU showed intermediate
performance, with wider errors than RF but less
variability than CGP. These findings highlight Random
Forest’s consistent stability for ETo forecasting across
various time horizons, particularly at intermediate lags,
and CNN-GPU’s strong performance at short and very
long lags, while CGP exhibits increasing inaccuracy at
extended timescales.

3.6 Performance analysis of ETo predictionmethods
at 364 delays

Figure 7 displays the mean forecasts and 95%
confidence intervals of the models for the period
from October 2021 to March 2023. All methods
exhibit similar seasonal patterns with a peak in

mid-2022. CGP has the highest mean forecast
(maximum 7.64 mm/day), followed closely by RF
(maximum 7.56 mm/day), while CNN-GPU has
a lower maximum mean forecast (6.88 mm/day).
However, RF demonstrates greater precision with a
confidence interval width of 2.68 mm/day, compared
to CGP’s wider interval of 2.74 mm/day, though
CNN-GPU has the narrowest interval at 2.61 mm/day.
All methods produce unrealistic negative values at
their lower bounds, with CGP showing the most
extreme negative value (-1.12 mm/day), followed by
RF (-0.92 mm/day), and CNN-GPU (-0.57 mm/day).
Despite CGP’s higher maximum forecast, RF strikes a
better balance between accuracy and lower uncertainty,
while CNN-GPU provides the tightest confidence
intervals, indicating the least variability in predictions.
Overall, RF offers a strong performance with high
accuracy and reasonable consistency, though all
methods struggle with physical consistency due to
negative lower bounds.

4 Conclusion
This study provides a comprehensive evaluation of ETo

forecasting methods, demonstrating the outstanding
performance of both RF and CNN-GPU across a range
of timescales, from short to long. While GP-based
models, such as CGP, show competitive accuracy
over shorter intervals, their errors and dispersion
increase significantly with longer forecasting horizons,
as evidenced by wider error distributions. RF
maintains exceptional stability with the tightest error
distributions across all timescales, whereas CNN-GPU
achieves superior accuracy at specific intervals, notably
the 364-day timescale with the lowest RMSE (0.678).
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Statistical analyses (t-tests, F-tests, ANOVA) confirm
significant performance differences, particularly
at longer timescales (p < 0.05), underscoring the
critical importance of method selection for extended
forecasts. RF’s ability to model complex nonlinear
relationships and seasonal patterns, supported by
narrow confidence intervals and strong alignment
with observations, highlights its reliability for practical
applications. However, all methods, including RF
and CNN-GPU, exhibit a standard limitation by
occasionally producing spurious negative values at
the prediction lower bound, indicating challenges
in ensuring physical consistency. CGP, while
promising for short-term use, proves inadequate
for long-term dependencies, generating unrealistic
outputs, such as negative ETo values, alongside
wider error distributions and high computational
complexity, which limits its utility in large-scale
water management. This physical inconsistency
could be addressed through post-processing (setting
negatives to zero) or by integrating constraints
directly into model architectures (e.g., ReLU/Softplus
activation functions). Future research should
enhance predictive accuracy and reliability by
exploring hybrid models like CNN-LSTM to capture
spatiotemporal dependencies and implementing
advanced uncertainty quantification techniques
(e.g., Bayesian deep learning, quantile regression) to
provide robust confidence intervals for improved risk
assessment in hydrology and precision agriculture.
Such advancements will solidify machine learning’s
role in addressing critical environmental challenges.
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