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Abstract

Accurate traffic flow prediction plays a critical role
in intelligent transportation systems, providing
essential support for urban planning, traffic
control, and congestion mitigation. To address
the challenges of spatial heterogeneity and
temporal dynamics inherent in traffic data, this
paper proposes AST-GNNFormer, an adaptive
spatio-temporal graph neural network that
integrates graph attention mechanisms with
temporal convolution. @ The model introduces
three key components to enhance predictive
accuracy and generalization: (1) a Layer-aware
Information Preservation mechanism that mitigates
over-smoothing in deep GNNs by retaining
original node features across layers; (2) an
Inter-Layer Attention Module that dynamically
selects and weights informative layer-wise
features to improve multi-layer fusion quality;
and (3) an Adaptive Graph Learning Module that
fuses prior adjacency knowledge with learnable
structures, enabling dynamic topology adaptation.
Additionally, a Temporal Convolution Module
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is incorporated to model multi-scale temporal
dependencies efficiently. Extensive experiments
on real-world benchmark datasets (PEMS04 and
PEMS08) demonstrate that AST-GNNFormer
significantly outperforms existing state-of-the-art
methods in both short-term and long-term traffic
forecasting tasks. Ablation studies further confirm
the effectiveness of each proposed component.

Keywords: graph neural network, traffic flow prediction,
adaptive graph learning, inter-layer attention mechanism.

1 Introduction

With the acceleration of urbanization, traffic congestion
and unexpected incidents occur more frequently.
Accurate traffic flow prediction can significantly
enhance traffic scheduling efficiency, reduce the
likelihood of accidents, lower economic and time
costs, and alleviate travel stress [1]. As one of
the core technologies of intelligent transportation
systems, traffic flow prediction aims to forecast
future traffic patterns based on historical observation
data, playing a crucial role in modern urban traffic
management. Moreover, prediction results can
support route planning, vehicle scheduling, zone
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development, and road siting, providing data-driven
insights to improve overall operational efficiency and
safety [2].

In the field of traffic prediction, a major challenge lies
in effectively modeling the complex spatiotemporal
dependencies inherent in traffic data. With the rapid
advancement of deep learning techniques, traffic flow
prediction models have made remarkable progress.
Early methods, for example, adopted convolutional
neural networks (CNNs) to extract spatial features and
combined them with long short-term memory (LSTM
[3]) networks to capture temporal dependencies,
forming hybrid architectures such as CNN-LSTM [4].
These methods laid a solid foundation for subsequent
research in spatiotemporal modeling. In recent years,
Graph Neural Networks (GNNs) have emerged as a
dominant approach due to their ability to explicitly
model the topological structure of road networks
and overcome the limitations of traditional CNNs
in handling non-Euclidean spatial data. GNNs are
also capable of dynamically capturing spatiotemporal
dependencies, making them particularly suitable for
traffic flow prediction tasks.

Despite the promising performance of GNNs in traffic
forecasting, their practical applications still face three
major challenges:

First, deep GNNSs tend to suffer from over-smoothing
and information loss. When stacking multiple layers
in a GNN, node representations become increasingly
similar due to repeated neighbor aggregation, leading
to reduced distinguishability between nodes—an issue
known as over-smoothing. Meanwhile, information
from distant nodes is gradually compressed through
the layers, causing long-range dependencies to be
inadequately propagated. This results in homogenized
node representations and the loss of long-distance
information, ultimately weakening the model’s ability
to represent complex graph structures.

Second, graph structures are often statically or
manually defined, making them less adaptable to
complex relational dynamics. Existing GNNs typically
rely on predefined adjacency matrices or learnable
parameters to build graph structures, which limits
their ability to capture hidden or semantic spatial
relationships among nodes, thereby restricting their
expressiveness in modeling complex traffic networks.

Third, GNNs often exhibit limited capability in
temporal modeling. Traditional GNNs are not
well-equipped to capture dynamic patterns across
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the time dimension, making it difficult to model the
temporal evolution of traffic flows. This insufficiency
leads to error accumulation in multi-step forecasting,
particularly when dealing with traffic data that exhibits
strong temporal dependencies.

To address the above challenges, this paper proposes
an Adaptive Spatio-Temporal Graph Neural Network
with Layer-Aware Preservation model, referred to as
AST-GNNFormer. This model integrates a cross-layer
information preservation mechanism, an adaptive
graph structure learning strategy, and a temporal
convolution module to jointly enhance modeling
accuracy and generalization ability for complex
spatiotemporal prediction tasks. Firstly, as a core
technical contribution, to mitigate the over-smoothing
and feature degradation issues caused by deep GNN
stacking, we introduce a Layer-aware Information
Preservation (LIP) mechanism. This mechanism
employs residual connections to explicitly preserve
original node features during message passing.
Additionally, a Cross-layer Dynamic Gating strategy
based on attention weights is proposed to selectively
transfer inter-layer information, thereby alleviating
over-smoothing effectively. Secondly, to overcome
the reliance on prior adjacency matrices, we further
propose a hybrid approach that combines prior spatial
knowledge with learnable parameters for adaptive
graph structure generation. This method retains
known spatial relationships while introducing a
structure optimization module to model potential
high-order dependencies and semantic correlations.
It enables dynamic adjustment and adaptive
representation of graph structures, thus improving
the model’s expressiveness and generalizability in
complex traffic scenarios. Finally, to compensate for
the limited temporal modeling capacity of GNNSs,
we incorporate a 1D convolution-based temporal
modeling module that captures local dependencies
and evolution patterns in the time series input. By
modeling dynamic changes across time steps, this
module enhances the model’s sensitivity to temporal
patterns, thereby boosting prediction accuracy in
complex traffic flow forecasting tasks.

The structure of this paper is organized as follows:
Section 2 summarizes recent advances in graph
neural networks for temporal forecasting and
traffic flow prediction, covering static and dynamic
graph modeling, attention-based mechanisms, and
multi-scale feature fusion. Section 3 presents the
architecture of AST-GNNFormer in detail, including
the Graph Multi-Head Attention Mechanism,
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Information Retention Module, Inter-Layer Attention
Module, Adaptive Graph Learning Module, and
Temporal Convolution Module, highlighting
their roles in capturing complex spatiotemporal
dependencies. Section 4 introduces the datasets,
evaluation metrics, and baseline methods. It reports
performance comparisons and ablation studies
to validate the effectiveness of each component
in AST-GNNFormer.  Section 5 concludes the
contributions of the paper and discusses potential
future directions, such as lightweight model
deployment and robust traffic anomaly detection.

2 Related Work

2.1 Graph Neural Networks for Forecasting

In recent years, Graph Neural Networks (GNNs)
have demonstrated powerful modeling capabilities
in handling structured data, particularly in temporal
prediction tasks that require the joint modeling of
spatial dependencies and temporal dynamics. GNNs
have emerged as a significant branch of deep learning
research. Traditional temporal modeling methods,
such as Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM [3]) networks, and 1D
Convolutional Neural Networks (1D-CNNs [5]),
are adept at capturing the dynamic evolution of
time series data. However, they often struggle
to effectively integrate complex spatial structural
information. This limitation is especially evident
in applications like traffic forecasting, power load
prediction, environmental monitoring, and social
network analysis, where the data exhibit not only
strong temporal correlations but also pronounced
spatial dependencies. These spatial relations are
typically non-Euclidean and thus cannot be directly
processed by conventional models, which limits the
potential accuracy of predictions.

To address this challenge, Graph Neural Networks
have been incorporated into temporal modeling
frameworks. GNNs leverage graph structures to
represent irregular relationships between entities and
combine them with temporal modeling mechanisms
to achieve joint spatiotemporal dependency learning.
A representative model is the Diffusion Convolutional
Recurrent Neural Network (DCRNN [6]), which
introduced diffusion processes into graph structure
modeling and embedded them into recurrent units to
simulate traffic flow propagation over road networks.
DCRNN [6] achieved superior performance compared
to traditional temporal models and pioneered the
integrated modeling of graph structures and time

series.

Building upon this, Spatio-Temporal Graph
Convolutional Networks (ST-GCN [7]) further
enhanced the capability of modeling dynamic
sequences by incorporating temporal convolutions
into graph convolutional networks. Though originally
designed for action recognition, the spatiotemporal
decoupling strategy of ST-GCN [8] has been widely
adopted in various domains, including traffic,
meteorology, and energy systems.

Building on this foundation, researchers started
incorporating attention mechanisms into GNNs to
assign different levels of importance to nodes and
time steps, enhancing the model’s ability to adapt
to dynamic environments. The Attention-based
Spatio-Temporal Graph Convolutional Network
(ASTGCN [9]) added spatial and temporal
attention modules to dynamically modify the
weight relationships between nodes at each time
step, effectively overcoming the limitations of
static graph structures in time-varying scenarios.
Similarly, the Graph Multi-Attention Network
(GMAN [10]) used multiple attention mechanisms
to combine information across various nodes and
time steps, allowing for flexible modeling of diverse
spatiotemporal relationships. Additionally, Graph
WaveNet (GWN [11]) employed a gated temporal
convolutional network for sequence modeling and
a hybrid graph convolution framework to manage
both static and adaptive graph structures, greatly
improving stability and generalization in multi-step
forecasting tasks.

Another notable direction is the learning of implicit
graph structures and dynamic graph learning. For
instance, the Multivariate Time-Series Graph Neural
Network (MTGNN [12]) eliminates the need for
predefined graph structures by automatically learning
latent graph connections from multivariate time
series data. It integrates graph convolution with
gated convolution to enable end-to-end training,
dynamically optimizing node relationships during
training rather than relying on manually constructed
adjacency matrices. This substantially enhances the
model’s ability to adapt to complex dynamic systems.
Furthermore, the Adaptive Graph Convolutional
Recurrent Network (AGCRN [13]) introduced a
node-specific adaptive graph construction mechanism,
allowing each node to learn a personalized graph
structure and thereby overcoming the performance
bottlenecks caused by using a shared graph for
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heterogeneous nodes.

Despite substantial progress, the application of GNNs
in temporal prediction still faces several challenges.
First, most models rely on fixed topologies, which
limits their ability to capture evolving inter-node
relationships in dynamic systems. Second, deep GNNs
often suffer from the over-smoothing problem, where
node representations become indistinguishable as
more convolution layers are stacked, thus reducing
discriminative power. Additional challenges include
maintaining computational efficiency in large-scale
graphs, effectively integrating multi-scale temporal
features, and improving model robustness against
anomalous fluctuations.

To tackle these issues, various innovative approaches
have emerged in recent years. Dynamic Graph Neural
Networks (DGNNSs [14]) have been introduced into
temporal prediction tasks by modeling temporal
graph evolution through sliding windows, dynamic
adjacency matrix learning, and structure evolution
mechanisms. Meanwhile, some studies have
integrated self-supervised learning with graph
modeling by designing pretext tasks such as adjacency
prediction and masked reconstruction, thereby
enhancing the model’s structural understanding
and generalization in low-resource or long-horizon
prediction scenarios. Techniques such as residual
connections, skip-layer aggregation, and graph
pooling have also been widely employed to alleviate
over-smoothing and vanishing gradients, thereby
improving the stability and representational power of
deep GNNSs.

2.2 Applications of Graph Neural Networks in
Traffic Flow

With the rapid development of urban transportation
systems, accurately predicting future traffic flow states
has become a critical issue in intelligent transportation
systems (ITS). Traditional traffic flow forecasting
methods mainly rely on time series models (e.g.,
ARIMA), machine learning algorithms (e.g., SVR,
RF), or deep learning architectures such as RNNs
and CNNs. Although these methods have achieved
success in modeling temporal dependencies, they
often overlook the inherent non-Euclidean spatial
relationships in road networks and fail to effectively
capture complex topological dependencies between
nodes, resulting in limited prediction performance.

Graph Neural Networks (GNNs), as powerful tools
for modeling graph-structured data, have been widely
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introduced into traffic forecasting tasks in recent
years. GNNs naturally represent the connections
among traffic sensing nodes and model spatial
dependencies through information propagation over
graph structures. DCRNN [6] was the first to integrate
diffusion convolution with recurrent neural networks
to simulate the dynamic propagation of traffic flow
on graphs. It demonstrated significant performance
gains over traditional methods on datasets such as
METR-LA and PEMS-BAY. The success of DCRNN
[6] marked the establishment of a new prediction
paradigm combining graph structure with temporal
modeling.

To further enhance modeling flexibility, GWN [11],
employed a Gated Temporal Convolutional Network
(GTCN) for temporal modeling and introduced
adaptive adjacency matrices for learning graph
structures, thereby removing reliance on static prior
graphs. GMAN [10] introduced spatio-temporal
multi-head attention mechanisms to finely model
heterogeneous  spatiotemporal = dependencies,
significantly improving the model’s generalization
ability in complex scenarios.

Recently, dynamic graph modeling has become a
research focus. HTVGNN [15] (Hybrid Time-Varying
Graph Neural Network), utilized a time-varying
masked attention mechanism and coupled graph
structure learning to jointly model static and dynamic
graphs, enhancing the robustness of long-term
prediction. EG-NODE, introduced neural ordinary
differential equations (Neural ODEs) to enable
continuous-time modeling of graph topology, thereby
improving the representation of complex structural
changes. These models no longer rely on static graphs
but dynamically learn semantic associations between
nodes during prediction, making them more suitable
for the high-frequency variability of real-world road
networks.

Multi-scale spatiotemporal feature fusion has also
emerged as a key research direction in recent years.
MSTIFNet [16] (Multi-Scale Temporal Information
Fusion Network) enhances sensitivity to traffic
patterns at different temporal granularities through
multi-scale modeling. GFAGNN [17] (Gated Fusion
Adaptive Graph Neural Network) combines gated
convolution and graph attention mechanisms to
adaptively aggregate features of different road nodes
across time periods, making it well-suited for highly
dynamic urban scenarios.

Meanwhile, as sensor deployments expand and
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privacy concerns rise, self-supervised learning and
federated learning have become active research
frontiers for GNN-based forecasting. =~ FLAGCN
[18] (Federated Learning and Asynchronous Graph
Convolutional Network) integrates federated learning
with asynchronous graph convolution, safeguarding
user privacy while improving training efficiency. This
represents a promising direction for distributed traffic
forecasting systems. In the realm of self-supervised
graph learning, several studies have designed auxiliary
tasks such as graph reconstruction and adjacency
prediction to enhance the model’s understanding of
graph structure and alleviate the problem of limited
labeled traffic data.

Recently, Jiang [19] conducted a comprehensive
survey on the application of GNNs in traffic
flow forecasting and identified several ongoing
challenges, including dynamic graph representation
learning, modeling anomalous traffic conditions, and
heterogeneous graph fusion. In particular, existing
models often exhibit limited robustness in the presence
of unexpected events such as extreme weather or traffic
accidents. Furthermore, the computational bottlenecks
associated with large-scale graph processing pose
significant barriers to real-world deployment.

In conclusion, although existing studies have
made remarkable progress in graph structure
modeling, spatiotemporal feature fusion, and
federated learning, they still fall short in handling
sudden and abnormal traffic events (e.g., extreme
weather, traffic disruptions). Current models often
lack effective dynamic response mechanisms and
robust forecasting capabilities. ~Additionally, the
computational inefficiency associated with large-scale
graph modeling severely restricts the deployment and
practical application of these models. These challenges
form the core motivation of this study, which aims
to enhance the generalization and applicability of
GNNs in dynamic and noisy traffic environments by
introducing integrated techniques including dynamic
graph learning, multi-scale temporal modeling, and
multi-head graph attention mechanisms.

3 Methodology

To address the challenges of spatial heterogeneity
and temporal dynamics in graph-structured data
for traffic flow prediction, this paper proposes a
novel spatiotemporal graph neural network model
named AST-GNNFormer. The overall architecture of
AST-GNNFormer is illustrated in Figure 1. The model
is designed to enhance the capability of capturing both

short-term and long-term dependencies as well as
spatiotemporal coupling patterns in time series data.

In terms of architecture, AST-GNNFormer
innovatively integrates GNNs with temporal
convolutional networks (TCNs [20]). Along the
spatial dimension, the model adopts a multi-layer
graph attention structure to capture heterogeneous
dependencies among nodes. Along the temporal
dimension, convolutional operations are introduced
to improve sensitivity to long-term trends and
periodic fluctuations, thereby enhancing the model’s
generalization ability in complex spatiotemporal
environments. By combining a spatial multi-head
attention mechanism with a temporal feature
extraction module, the model adaptively captures
relationships among different nodes in the graph
while simultaneously modeling the evolution.

3.1 Graph Multi-Head Attention Mechanism

To more effectively capture the spatial dependencies
and contextual interactions between nodes in the
graph, this paper introduces a Graph Multi-Head
Attention (GMHA) mechanism to replace traditional
graph convolution methods based on fixed adjacency
structures. This mechanism learns attention
weights between nodes and dynamically adjusts the
aggregation ratio of neighboring node information,
thereby enhancing the model’s capability to represent
spatially heterogeneous structures and improving
its expressive flexibility. Figure 2a and Figure 2b
illustrate the structure of the graph attention layer.

In the single-head graph attention mechanism, the
model first applies a linear transformation to the input
features of each node and then computes attention
coefficients between the node and its neighbors. These
coefficients reflect the relative importance of each
neighboring node to the target node. Specifically, the
attention score between node 7 and its neighboring
node j can be expressed as:

eij = a(Whq || Why) - A (1)
where W is the learnable weight matrix, || denotes
feature concatenation, a(-) is the feed-forward neural
network function, and A is the adjacency matrix
of the graph, which controls the scope of attention
computation. This score is further normalized via
the softmax function to obtain standardized attention
weights:

B exp(LeakyReLU/(e;;))
"~ Ypen: exp(LeakyReLU(es))

(2)

Oéij
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Figure 1. The overall framework of AST-GNNFormer, which integrates an Adaptive Graph Learning Module with
multiple spatio-temporal layers, each consisting of temporal convolution (T-conv) and graph multi-attention (GMAT)
modules, to capture both spatial and temporal dependencies.

Using the normalized attention weights, the feature
representation of node 7 is updated as the weighted
sum of its neighboring nodes’ features:

h; =0 Z Oéz'jWhj

JEN;

(3)

Formally, let o(-) denote a nonlinear activation
function, and let V; represent the neighborhood of
node .

To enhance both the representational capacity
and training stability of the model, we extend the
single-head attention mechanism to a multi-head
attention framework.  Specifically, we employ
K independent attention heads operating in
parallel, enabling the model to jointly attend to
information from different representation subspaces
and capture diverse relational patterns. The final
node representation is obtained by concatenating the
outputs from all attention heads:

K k ik
hi = =10 Zaijw h;j (4)
JEN;
To reduce model complexity and streamline
computational processes, particularly during

the prediction phase, this study further modifies
the output of multi-head attention by replacing
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concatenation with averaging. This approach yields a
more stable and compact representation:

K
W, =o %Z > afwkh,
k=1 jeN;

(5)

This design not only simplifies the model architecture
but also enhances generalization capability and
prediction stability, making it particularly suitable
for traffic flow forecasting scenarios where sensitivity
to mid- and short-term graph structural features is
crucial.

3.2 Information Retention Module and Inter-layer
Attention Module

Graph Neural Networks (GNNs) effectively
capture spatial correlations between nodes by
propagating node features and aggregating neighbor
information within the graph structure. However,
as the number of network layers increases, node
representations gradually become more similar during
layer-wise propagation, leading to degraded feature
representation capability - a phenomenon known
as “over-smoothing.”  Furthermore, information
captured at different graph layers exhibits distinct
characteristics, and directly stacking them without
differential processing may introduce redundant or
even invalid information. Therefore, to enhance the
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Figure 2. Schematic illustration of the Graph Multi-Head
Attention mechanism architecture.

model’s robustness and expressive power in deep
architectures, this paper introduces two key modules
into the graph attention network: the Information
Retention Module and the Inter-Layer Attention
Module.

3.2.1 Information Preservation Module

In conventional graph neural networks, node
embeddings undergo iterative updates through
multi-layer propagation. =~ While this updating
mechanism progressively aggregates neighborhood
information, it inevitably dilutes the original node
features—particularly in deep networks, where node
representations often suffer from vanishing gradients
or loss of discriminative power, ultimately degrading

model performance.

To mitigate these issues, we propose an Information
Preservation Module (as illustrated in Figure 3)
that selectively retains partial input features during
each propagation layer. The core innovation lies
in introducing a controllable “residual connection”
during node updates: by adaptively fusing a node’s
initial features with the current layer’s output through
learnable weighting, the module achieves dynamic
information equilibrium and residual propagation.

Specifically, in the S-th layer of the graph neural
network, the feature update for node ¢ is defined as
follows:

(1— B)h (6)

where h{" denotes the original input feature of node
i, and hf represents the output after propagation
through the S-th layer. The parameter 5 € [0, 1]
is a hyperparameter that controls the proportion of
the original information to be retained. A larger j3
helps preserve the individual characteristics of the
node and mitigates over-smoothing, while a smaller 3
allows more information from neighboring nodes to
be integrated, enhancing contextual fusion.

S)’ — 5h2n +

The introduction of this module offers three key
advantages: (1) Enhanced Feature Stability, which
ensures the preservation of original structural features
even in deep networks, thereby mitigating information
degradation risks; (2) Improved Gradient Flow,
facilitated by a residual structure that optimizes
gradient propagation efficiency during training;
and (3) Balanced Local-Global Information Fusion,
enabling the simultaneous retention of node-specific
features and structural context, which significantly
benefits downstream tasks such as classification and
regression.

3.2.2 Inter-Layer Attention Module

Although deep graph networks can extract multi-level
spatial information, there exist significant differences
in feature representations across layers: shallow layers
focus more on local neighborhoods, while deeper
layers integrate more global information from the
entire graph. If features from different layers are
simply concatenated in the model, this may introduce
excessive noise and redundant information, potentially
hindering the learning of critical node features. To
address this issue, we propose an attention-based
inter-layer feature selection module, namely the
Inter-Layer Attention Module.

The core objective of this module is to leverage an

209
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Figure 3. Illustration of the information retention and residual propagation mechanism in Multi-layer GAT.

attention mechanism to dynamically identify the most
task-relevant features from multiple GAT layers and
assign higher weights accordingly, thereby improving

the quality and efficiency of multi-layer feature fusion.

Specifically, the representations of each node from
different layers are concatenated and integrated to
form a cross-layer node representation:

— im0 (1Y) (7)

where S denotes the total number of layers, hgs) the
embedding of node i at the s-th layer, o(-) represents

an activation function, and || denotes concatenation.

This representation retains the structural features from
each layer but does not differentiate their relative
importance.

To select effective information from these multi-layer
features, an inter-layer attention mechanism is
introduced. The attention coefficients are computed
based on the similarity between features across
different layers:

Cij = (Whi)(Why)T A (8)
where W is a learnable weight matrix, and A is the

adjacency matrix used to constrain the computation
range. To enhance discriminability, we apply a softmax
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normalization to the coefficients:

exp(LeakyReLU(C;))
Zke/\/} exp(LeakyReLU(Cjx))

Cij = 9)

Finally, the fused features are aggregated using
the attention weights and passed through a linear
transformation to obtain the final node representation:

h" = o (Ci;Wh;) (10)

By incorporating this module, the model can
explicitly model inter-layer dependencies during
fusion and adaptively assign different attention
weights to different layers, thereby avoiding the
feature contamination caused by naive equal-weight
concatenation.

3.3 Adaptive Graph Learning Module

The construction of graph structures plays a crucial
role in Graph Neural Networks (GNNs). Traditional
methods typically rely on predefined adjacency
matrices, which are often based on spatial distance,
static correlations, or domain knowledge. However,
such static graph structures often fail to accurately
capture the potential dependencies or complex
semantic relationships between nodes, especially in
scenarios with heterogeneity or dynamic changes.
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Figure 4. Adaptive Graph Learning Module for dynamic topology construction.

To enhance the model’s capability of constructing
graph structures, we propose an Adaptive Graph
Learning Module (as illustrated in Figure 4),
which integrates explicit structural information
with learnable feature relationships, enabling the
construction of graph topologies with stronger
representational power and generalization ability.

This module mainly consists of three substructures,
each modeling the graph structure from a different
perspective.

3.3.1 Graph Structure Construction Based on Prior
Knowledge

First, we consider prior spatial location information,
topological structures, or other domain-specific
knowledge available in real-world scenarios to
construct a predefined graph structure as the initial
adjacency matrix Ag. This structure can be derived
from distance or correlation functions and then
normalized or transformed. A typical construction
approach uses a Gaussian kernel function based on
Euclidean distance:

__geo

e S pee
Aoliyj) = Xp( ) i

0, otherwise

>

(11)

where Digjeo is the spatial distance between ¢ and j,
o is a scaling hyperparameter, and ¢ is the distance

threshold.

In addition to distance-based information, we can also
use correlation metrics between node attributes, such
as Pearson correlation or covariance, to build a graph
structure based on attribute similarity:

Cov(i,5) Cov(i,5)
Aoli,§) = { VPODG)'  /DGHDG) ~ (12)
0, otherwise

This approach is particularly suitable for scenarios
with clear physical or spatial priors and serves as
an initialization guide for subsequent adaptive graph
learning.

3.3.2 Graph Structure Construction Based on Trainable
Node Embeddings

Considering the lack of reliable prior information
in some applications, this paper further proposes a
method for constructing graph structures based on
node embedding features. This method inputs node
embeddings M; and M> into a neural network to learn
structural correlations between nodes. The typical
structures are as follows:

A,, = Softmax (ReLU(M; My ) + Diag(€))  (13)

or
A, = Softmax (ReLU(M; My — MyM;" + Diag(€)))
(14)
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where M;, M, are node embeddings and FE is
the identity matrix. = By performing nonlinear
normalization on the structural similarity, data-driven
neighborhood relationships can be learned.

3.3.3 Graph Structure Construction by Fusing Prior
Knowledge and Embedding Information

To simultaneously leverage explicit prior structural
information and implicit feature relationships learned
from data, this paper proposes a fused graph learning
mechanism. This mechanism introduces a gating
strategy to balance the predefined graph A and the
self-learned graph A, forming the final fused graph
structure A,:

S = Sigmoid (h(Ag, 4,)) (15)

Ap=S®A4+(1-95®A4, (16)

where ) is a selection weight learned via lightweight
convolutional networks or attention mechanisms to
control the contribution ratio between the two.

To enhance model robustness, we further introduce
sparsity regularization and weighted normalization
mechanisms into A,,, enhancing the graph’s stability
under dynamic scenarios. The final structure between
nodes is calculated as:

o

Il
i

. 1 1 1 1
D= A9 AL, = ReLU (D*EA,,LD*E - s) Af =D2A,, D2 (17)

7
This design ensures unified and regularized processing
of the graph structure, maintaining its expressive
power while suppressing redundancy. It improves
the adaptability to both local and global structural
contexts. In summary, the self-supervised graph
learning module effectively fuses static prior and
dynamic features, providing a flexible, expressive, and
robust structure learning framework for graph neural
networks.

3.4 Temporal Convolution Module

To fully capture temporal evolution patterns in
sequential data such as traffic, this paper introduces a
temporal convolutional network (TCN [20]) module.
As a key component in the overall architecture,
the TCN module effectively captures both short-
and long-term temporal dependencies to improve
forecasting accuracy.

Originally proposed by Bai et al. [20], TCN
leverages a combination of causal convolution and
dilated convolution to construct deep temporal feature
extractors. Unlike RNN-based models, TCNs avoid
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Figure 5. Schematic illustration of the Temporal
Convolutional Network architecture.

issues such as gradient vanishing and sequential
dependency, allowing for efficient parallel processing
and improved stability.

As illustrated in Figure 5, the temporal convolution
process begins with a one-dimensional input sequence,
which is passed through multiple stacked 1D
convolutional layers (as shown in the Figure 6). Each
layer consists of several channels and is capable of
capturing temporal dependencies at different scales by
adjusting the kernel size and stride. To further extend
the receptive field without increasing parameter count,
dilated convolution is employed—sampling the input
in a skipping manner. This enables the model to
capture long-range patterns efficiently across time
steps.

Input signal

i 1D
| Convolution
X, 1D

|| — . Convolution

. A

—

Figure 6. Illustration of the 1D temporal convolution
process used in the TCN [20] module.

The standard convolution operation suffers from a
fixed receptive field, making it difficult to capture
long-range temporal dependencies. To address this
issue, this paper introduces a dilated convolution
mechanism.  Dilated convolutions sample the
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input sequence in a jump-like manner, significantly
expanding the convolution kernel’s receptive field
without explicitly increasing the number of model
parameters. The dilation rates are set to grow
exponentially, such as 1,3,6,7 allowing the model
to capture multi-scale temporal information from
short-term to long-term dependencies at different
layers.

In addition, to enhance the model’s ability to integrate
multi-scale temporal features, multiple convolution
paths with different dilation rates are executed in
parallel, and a gating mechanism is used to control
the fusion of information across these paths. The
gating mechanism consists of two parallel TCN layers
with different activation functions (tanh and sigmoid),
which together form a gate unit (see Figure 7).
The final output is obtained by combining through
point-wise multiplication, enhancing the model’s
selective capability for important temporal features.

Output

4

\ \\ >

Input
Figure 7. Gated Fusion Unit.

For dilated convolution, the effective receptive field R
is related to the kernel size k, the number of layers ¢,
and the dilation rate «. The calculation formula is:

(c=1g(k—-1)
(¢—1)
This design enables the model to reasonably configure
the receptive field size even under shallow structures,
thereby improving its ability to capture long-range

temporal dependencies.

By combining the TCN module with the GAT
module, the model not only captures structural

R=1+ (18)

dependencies in the spatial dimension but also
models multi-scale evolution patterns in the temporal
dimension. The combination of dilated convolution
and gating mechanism further enhances the model’s
ability to selectively represent temporal features with
different granularities, enabling the model to perform
more stably and predictively in tasks involving long
sequences, instability, or localized abrupt changes.

4 Experiments
4.1 Dataset

This paper conducts experimental evaluations using
commonly used traffic sensor datasets, specifically
PEMS04 and PEMSO08. These two datasets originate
from real highway traffic monitoring data provided
by the California Department of Transportation
(Caltrans) and were published by the UC Irvine
(University of California, Irvine) Transportation Data
Research Center. They are widely used to validate the
performance and generalization capabilities of graph
neural network-based traffic prediction models.

PEMS04

The PEMS04 dataset was collected from District 4
of the California highway network, covering 307
traffic monitoring stations (nodes). The data spans
from January 2018 to February 2018, with each
node collecting traffic information every 5 minutes,
including average speed, flow, and occupancy rate.
The final time series data is structured as a 3D tensor
RT*NxC where T denotes the number of time steps,
N = 307 represents the number of nodes, and C = 3
indicates traffic state variables (such as average speed,
flow, and occupancy rate).

PEMSO08

The PEMS08 dataset is larger in scale, covering 170
monitoring stations, and spans a longer time range,
from July 2016 to August 2016. The data is also
sampled every 5 minutes to build a time series with
a total duration of approximately 2 months. Like the
previous dataset, PEMS08 uses traffic state values as
prediction targets, which are crucial for evaluating the
model’s performance under different spatial structures
and data sparsity scenarios. Detailed information
about the datasets is summarized in Table 1.

4.2 Evaluation Metrics

In this study, to comprehensively evaluate the
prediction performance of the model, we selected
three commonly used error evaluation metrics: Mean
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Table 1. Detail information of PEMS04 & PEMS08.

Dataset Num of samples Num of nodes Num of features

Sampling frequency Inputlength Output length

PEMS04 16992 307 3
PEMS08 17856 170 3

5mins 12 12
5mins 12 12

Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE).
The formulas for these three metrics are as follows:

1. Mean Absolute Error (MAE):

1 n
MAE = — i — Ui 19
PIE (19)

MAE measures the average absolute difference
between the predicted value and the actual value,
regardless of direction. A smaller value indicates better
model performance. MAE is suitable for scenarios
where all errors are equally weighted, and it shares the
same unit as the original data.

2. Root Mean Square Error (RMSE):

1 ¢ )
RMSE =, |~ (i — §)° (20)
=1

RMSE computes the square of the errors and then takes
the square root of their average. It amplifies the impact
of larger errors and is highly sensitive to outliers. It
is suitable for scenarios where penalizing large errors
is important. A lower RMSE indicates higher model
prediction accuracy.

3. Mean Absolute Percentage Error (MAPE):

1 n
MAPE = — E
n
i=1

Yi — Ui

Yi

x 100 (21)

MAPE expresses the prediction error as a percentage
of the actual value. A lower MAPE indicates that the
prediction is closer to the actual value. Its advantage
lies in the comparability across different datasets and
domains. However, when the actual value approaches
zero, MAPE may produce large errors.

4.3 Baseline
1. HA [21] (Historical Average)

HA is the most basic forecasting method. Its
principle is to directly use the average value of
historical data at the same time point to predict
the target time point. Although this method does
not possess learning ability and cannot capture
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. STGCN  [7]

the dynamic changes in data, it still provides
certain reference value in traffic data with clear
periodicity and regularity, serving as a basic
baseline model.

. ARIMA [22] (AutoRegressive Integrated Moving

Average)

ARIMA is a classical statistical model for time
series forecasting, combining autoregressive,
integrated, and moving average components. It
excels at capturing linear trends and seasonality
in univariate data but struggles with multivariate
spatial dependencies in traffic networks.

. LSTM [3] (Long Short-Term Memory)

LSTM [3] is a variant of recurrent neural
networks (RNNs) designed to capture long-term
dependencies in sequential data by incorporating
memory cells and gating mechanisms. It
effectively addresses the vanishing gradient
problem in traditional RNNs. LSTM [3] is widely
used for time series forecasting but lacks the
capability to model spatial correlations between
traffic nodes.

. GCN [23] (Graph Convolutional Network)

GCN [23] is a foundational graph neural
network that performs convolutional operations
on graph-structured data by aggregating node
and neighborhood features. While powerful for
static graph representation learning, GCN [23]
lacks temporal modeling components, making
it less suitable for dynamic spatiotemporal
forecasting tasks.

(Spatio-Temporal
Convolutional Network)

Graph

STGCN [7] is one of the first deep learning
models to jointly consider spatial and temporal
dependencies in traffic networks. It integrates
spatial graph convolution with temporal
convolution, enabling effective modeling of
spatial relationships between road segments and
time-series dynamics. It is often used as a strong
baseline in spatiotemporal prediction.
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6.

10.

DCRNN [6] (Diffusion Convolutional Recurrent
Neural Network)

DCRNN [6] introduces diffusion convolution to
model spatial dependencies in road networks
and uses a GRU-based encoder-decoder structure
to model temporal dynamics. This model
captures both spatial and temporal correlations
effectively and is widely applied in large-scale
traffic forecasting tasks.

. ASTGCN [9] (Attention-Based Spatio-Temporal

Graph Convolutional Network)

ASTGCN [9] builds upon STGCN [7] by further
introducing attention mechanisms in both spatial
and temporal dimensions, allowing the model
to assign different weights to nodes and time
steps. This helps emphasize critical structures and
stable time dependencies while suppressing less
important ones, thus improving model prediction
accuracy and robustness.

. AGCRN [13] (Adaptive Graph Convolutional

Recurrent Network)

AGCRN [13] addresses the challenge of acquiring
fixed adjacency matrices in real-world traffic
networks by learning dynamic node-specific
graph structures through adaptive learning. It
combines GRU for temporal modeling and
dynamically updates spatial structures with time.
AGCRN [13] allows the model to adapt to both
spatial and temporal structural variations, and is
a major representative of dynamic graph-based
prediction models.

. GMAN [10] (Graph Multi-Attention Network)

GMAN [10] utilizes multiple attention
mechanisms for dynamic spatiotemporal
modeling. It employs spatial and temporal
attention modules within an encoder-decoder
framework, dynamically learning graph
structures and time dependencies. nGMAN
[10] demonstrates strong performance across

various traffic datasets.

MTGNN][12] (Multivariate Time Series Graph
Neural Network)

MTGNN [12] combines graph convolution with
Causal Convolution and automatically learns a
graph structure to capture hidden dependencies
among multivariate time series. Unlike models
that rely on real-world geographic positions,

MTGNN [12] learns purely from data-driven
correlations, enabling good generalization and
flexibility.

11. STEGNN [24] (Spatiotemporal Fusion Graph

Neural Network)

STFGNN [24] fuses spatial graph convolutions
and temporal filter modules and extracts features
through multiple channels. It excels in modeling
hierarchical spatial structures and selective
long-term temporal dependencies. As a result, it
is a strong representative among recent advanced
spatiotemporal prediction models in the field of
traffic forecasting.

4.4 Hyperparameter Optimization Strategy

To enhance the model’s performance, this study To
improve model performance, this study employs
Bayesian Hyperparameter Optimization to fine-tune
key hyperparameters within the model. This method,
grounded in probabilistic inference theory, establishes
a mapping between hyperparameters and the target
objective function. By approximating the objective
function distribution using a surrogate model, it guides
the search process efficiently.

At each iteration, an acquisition function is utilized
to strategically select the next sampling point, aiming
to identify the near-optimal solution with relatively
few function evaluations. Compared with traditional
methods such as grid search and random search,
Bayesian optimization offers clear advantages in terms
of both search efficiency and result quality.

The hyperparameters optimized in this study include:
batch size, dilation factor, dropout rate, number of
training epochs, number of GMAT layers, number of
ST layers, learning rate, number of attention heads,
and the information retention coefficient. The final
hyperparameter configuration adopted in subsequent
experiments corresponds to the best result obtained
through the optimization process, as shown in Table 2.

4.5 Performance Comparison

To comprehensively evaluate the practical value and
generalization ability of the AST-GNNFormer model
in traffic forecasting tasks, we conduct systematic
experiments on two real-world urban traffic volume
datasets—PEMS04 and PEMS08.  This section
verifies AST-GNNFormer’s performance in short-term,
mid-term, and long-term prediction scenarios, and
compares it against mainstream spatiotemporal
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Table 2. Optimized Hyperparameters from Bayesian

Optimization.
Hyperparameter Optimized Value
Batch size 32
Dilation factor size 2
Dropout ratio of neurons 0.4
Number of training epochs 180
Number of GAT layers 8
Number of spatiotemporal layers 3
Learning rate 0.001
Number of attention heads 2
Original information retention ratio 0.05

modeling methods to validate the effectiveness of the
proposed model.

All models are trained under the same data splits
and hardware environment with consistent training
parameters (such as batch size, learning rate, optimizer,
etc.). We use a sliding window mechanism to construct
input sequences, and each model is trained 5 times to
reduce randomness. The final results are reported as
the average of the runs.

In addition, to better simulate real-world traffic
forecasting application requirements, we set prediction
lengths of 15, 30, and 60 minutes to evaluate
the model’s ability to handle both short-term and
long-term dependencies.

The comparison covers traditional statistical methods,
sequence-based models, graph-based neural networks,
and various attention-based hybrid structures.
Specifically:

e HA [21] (Historical Average) and ARIMA [22]:
Traditional statistical models serving as baseline
references;

e LSTM [3]: A standard deep sequence model;

e GCN [23],STGCN [7], DCRNN [6]: Graph-based
neural network models for traffic forecasting;

e ASTGCN [9], GMAN [10], AGCRN [13],
MTGNN [12], STEGNN [24]: Recently proposed
high-performance deep learning models
integrating attention mechanisms, gating
structures, graph topology learning, etc.;

o AST-GNNFormer (ours): The proposed model
integrates multi-head temporal-spatial attention
and gated skip connection mechanisms for
spatiotemporal modeling.

These models represent the mainstream research
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directions and modeling paradigms in the
field, showcasing strong representativeness and
comparative value.

The following table reports the MAE, RMSE, and
MAPE metrics of each model on the PEMS-04 dataset
under 15/30/60-minute prediction scenarios.

From Table 3, we can find that:
1. Overall Performance Superiority:

AST-GNNFormer achieves the best results
across all prediction time points and evaluation
metrics. Especially under long-term forecasting
scenarios (60 minutes), it reaches an RMSE of
41.92, significantly outperforming the current
best model STFGNN [24] (RMSE of 43.95),
demonstrating its stronger capability in capturing
long-range spatiotemporal dependencies.

2. Significant Improvement over Dynamic Models:

Although models such as GMAN [10] and
MTGNN [12] already consider spatial attention
and structural adaptiveness, AST-GNNFormer
further enhances prediction accuracy in complex
networks by simultaneously constructing
multi-head spatio-temporal attention and
combining it with a gating mechanism to
optimize information transmission paths.

3. Robust and Stable Performance:

As indicated by the MAPE metric,
AST-GNNFormer maintains stable prediction
accuracy even under scenarios with sharply
fluctuating traffic volumes or road segments with
abrupt changes. This is of practical value for
traffic management during urban peak hours.

4. Balanced Short- and Long-term Performance:

Traditional models (e.g., DCRNN [6]) often
perform better in the short term but exhibit
notable degradation over longer horizons.
AST-GNNFormer, on the other hand, performs
consistently well across all time intervals,
indicating that its architecture supports robust
modeling across multiple temporal scales.

4.6 Ablation Study

To further validate the contribution of each core
module in the AST-GNNFormer model to its overall
performance, we designed a series of ablation
experiments. Specifically, we selectively removed or
replaced key components in the model and conducted
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Table 3. Performance Comparison of Different Models on PEMS-04 Dataset (15/30/60-minute Forecasting).

MAE (15/30/60 min) RMSE (15/30/60 min)

MAPE (15/30/60 min)

Model
HA [21] 38.12 / 41.92 / 45.87
ARIMA [22] 34.78 / 38.93 / 43.27
LSTM [3] 28.41 /31.25/34.84
GCN [23] 26.97 / 29.92 / 33.45
STGCN [7] 25.68 / 28.43 / 31.76
DCRNN [6] 2491 / 27.65 / 31.02
ASTGCN [9] 23.74 / 26.54 / 29.61
GMAN [10] 23.08 / 25.96 / 29.12
AGCRN [13] 22.87 /25.70 / 28.93
MTGNN [12] 22.63 / 25.43 / 28.62

STFGNN [24

22.41 /25.17 / 28.35

58.22 / 63.51 / 68.91
52.64 / 57.31 / 62.84
44.21 / 48.36 / 52.79
42.36 / 46.15 / 50.41
40.94 / 44.52 / 48.87
39.85 / 43.62 / 4791
38.67 / 41.53 / 45.38
37.92 / 40.78 / 44.92
37.56 / 40.43 / 44.62
37.33 /40.21 / 44.27
37.01 / 39.94 / 43.95

27.63% / 30.71% / 34.89%
23.54% / 26.88% / 30.62%
18.02% / 20.64% / 23.97%
16.58% / 19.21% / 22.45%
15.74% / 17.83% / 20.39%
14.93% / 17.05% / 19.64%
14.31% / 16.22% / 18.88%
13.76% / 15.63% / 18.25%
13.58% / 15.45% / 18.06%
13.42% / 15.28% / 17.88%
13.26% / 15.14% / 17.62%

]
AST-GNNFormer (ours) 21.68 /24.39 / 27.51

3397 /37.84 /4192  12.83% / 14.63% / 16.97%

Table 4. Ablation Study Results on PEMS04 and PEMS08 Datasets for 15-Minute Forecasting.

Model Variant PEMS04 MAE PEMS04 RMSE PEMS08 MAE PEMS08 RMSE
AST-GNNFormer (Full) 21.68 33.97 18.15 29.31
w/o LIP 22.41 35.12 18.74 30.19
w/oILA 22.79 35.88 19.05 30.74
w/o AGL 23.14 36.72 19.62 31.45

comparative analyses on both PEMS04 and PEMS08
datasets to assess how different modules impact the
model’s predictive performance.

We focus on three key modules: (1) Layer-aware
Information Preservation (LIP), which mitigates
over-smoothing; (2) Inter-Layer Attention (ILA),
for dynamic layer fusion; and (3) Adaptive Graph
Learning (AGL), for dynamic topology. The ablation
variants are:

1. w/o LIP: Removes the information preservation
module;

2. w/o ILA: Removes the inter-layer attention
module;

3. w/o AGL: Removes the adaptive graph learning
module;

4. AST-GNNFormer (Full Model):
modules.

Includes all

The results shown in Table 4 reveal the critical
importance of each module in the model’s architecture.
Removing the AGL module causes the most severe
performance degradation, with the PEMS04 dataset
showing an MAE increase of approximately 1.46. This
demonstrates that traffic flow prediction heavily relies
on capturing spatial dependencies, and failing to

model these relationships significantly impairs the
model’s predictive ability. Similarly, the inter-layer
attention (ILA) module proves essential, particularly
in datasets like PEMS08 where multi-layer fusion is
crucial. Its absence weakens the model’s capacity
to integrate features across layers, leading to notably
higher prediction errors and underscoring the value of
dynamic layer-wise processing. While the layer-aware
information preservation (LIP) module’s removal
results in comparatively milder performance drops,
its contribution remains vital. Though not a primary
spatial extractor, LIP enhances training stability by
addressing over-smoothing issues, thereby improving
both training controllability and the model’s eventual
generalization performance. Together, these findings
emphasize how each component—whether directly
responsible for feature extraction or supporting
training dynamics—plays an indispensable role in the
model’s overall effectiveness.

5 Conclusion

This paper addresses the problem of time series
prediction in complex spatial structures and proposes
a deep prediction model called AST-GNNFormer,
which is based on adaptive spatial multi-attention
graph networks. = The motivation behind this
work is to tackle issues in traditional GNN-based
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spatial modeling, such as inaccurate spatial structure
modeling, over-smoothing, and information loss in
deep stacking, and insufficient temporal modeling
capabilities. The goal is to improve both the predictive
performance and the generalization ability of the
model.

To this end, we design the Graph Multi-Attention
Network (GMAT), which incorporates information
retention modules and spatial attention modules
across layers. This effectively alleviates the information
over-smoothing and loss problems commonly seen in
traditional deep neural networks, thereby enhancing
the model’s expressive capacity for spatial structures.

The proposed model makes significant contributions
through three pivotal innovations. First, an
adaptive graph structure learning mechanism
dynamically captures spatial dependencies by
synergizing predefined topological knowledge
with data-driven node relationships, overcoming
limitations of static graph constructions. Second, the
integration of temporal convolution modules enables
precise modeling of nonlinear temporal variations,
forming a core component of the AST-GNNFormer
framework’s time-aware processing capability. These
technical advances are rigorously validated through
comprehensive experiments on real-world traffic and
meteorological datasets, where the model consistently
demonstrates performance advantages across various
metrics. Notably, systematic ablation studies provide
empirical evidence for each component’s contribution,
confirming the graph learning module’s effectiveness
in spatial modeling, the temporal modules’ role in
sequence processing, and the overall architecture’s
design coherence. The combined results establish a
new state-of-the-art in spatio-temporal forecasting
while offering practical insights for intelligent
transportation and environmental monitoring
applications.
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