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Abstract
The rapid global deployment of solar photovoltaic
(PV) technology presents a significant and often
overlooked challenge: the effective management
of end-of-life (EoL) solar panels. This issue is
particularly acute in developing and emerging
economies, where established reverse logistics
infrastructure is often lacking. A critical
limitation in current academic literature is the
oversimplified forecasting of EoL waste streams,
which fails to account for the dynamic interplay
of socio-economic, policy, and environmental
variables. To bridge this gap, we propose a novel
decision support system (DSS) for the design of a
sustainable reverse logistics network. Our system
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uniquely integrates a hybrid, multi-factorial
forecasting model combining a SARIMAX
time series approach with a Gradient Boosting
Regressor to provide a robust prediction of waste
volume. The output of this predictive engine
dynamically informs a multi objective, mixed
integer linear programming (MILP) model, which
optimizes the network design to simultaneously
minimize economic costs and environmental
impacts. Our findings demonstrate that this
integrated framework provides a more realistic
and adaptable tool for strategic planning than
existing models. The research identifies a hybrid
network structure as the most viable solution,
offering superior performance in cost efficiency and
material recovery. Our study provides an actionable
blueprint for policymakers and industry leaders to
proactively build a resilient and circular economy
for a sustainable energy future.
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1 Introduction
The global energy transition, driven by an urgent need
to mitigate climate change and achieve national carbon
neutrality goals [1], has catalyzed an unprecedented
deployment of solar photovoltaic (PV) technology.
While this growth is a cornerstone of sustainable
development, it presents a critical, often overlooked
challenge: the management of end-of-life (EoL) solar
panels. With a typical operational lifespan of 25 to 30
years, a significant wave of panel decommissioning is
projected for the comingdecades, creating a substantial
and complex waste stream that contains both valuable
resources and potentially hazardous materials [2, 3].
This issue is particularly acute in developing and
emerging economies, which often lack the mature
regulatory frameworks and established recycling
infrastructure necessary to handle the impending
influx of EoL panels. This reality necessitates the
design of resilient and intelligent reverse logistics
networks [4], which can benefit from advanced
decision support frameworks to strategically guide
their implementation [5].
However, the increasing scale of renewable energy
investments also introduces significant financial and
operational risks that necessitate intelligent forecasting
and management strategies. Recent studies have
shown that trading volumes and investor sentiment
substantially influence market volatility and systemic
risk, underscoring the importance of data driven
decision frameworks for achieving cost efficient and
risk mitigated investments [6].
The design of a reverse logistics network for EoL
PV panels is a multi-objective problem, involving
decisions on the optimal locations and capacities
of facilities and the establishment of efficient
transportation routes that minimize both financial
costs and environmental impact [7]. Foundational
work, such as "Reverse LogisticsNetworkOptimization
for Retired BIPV Panels in Smart City Energy Systems"
by Zhou et al. [8], provides a valuable methodological
blueprint, demonstrating how a genetic algorithm
can effectively balance these competing objectives.
However, a significant limitation persists within the
existing literature, including this foundational work:
the oversimplified treatment of the EoL waste stream.
Current models frequently rely on fixed lifespan
assumptions or simplistic forecasting methods that

fail to capture the dynamic and multi-factorial nature
of waste generation [9].
In practice, panel retirement is influenced by a
complex interplay of variables. Decommissioning may
occur prematurely due to climate related degradation,
accidental breakage, or technological obsolescence
that incentivizes early replacement [12]. More
sophisticated forecasting models that utilize digital
twin technologies and machine learning offer a more
robust approach to handling such uncertainties [10,
11]. Furthermore, socio-economic factors such
as fluctuating energy policies, shifting recycling
incentives, urban development patterns [23, 24],
and power grid dynamics [19, 25] can significantly
alter the volume and timing of panels entering
the reverse logistics chain. The network design
must also account for the diverse capabilities of
various recycling technologies, from hydrothermal
leaching to thermal treatments [14–18]. While general
optimization methods for supply chain design are
well established [20–22], their specific application to
EoL PV networks with dynamic, multi-factorial waste
forecasting remains an underexplored area.
Our research aims to bridge this critical gap by
proposing a novel decision support system (DSS). Our
systemuniquely integrates amulti-factorial forecasting
model that accounts for a comprehensive range of
dynamic variables with a robust multi-objective
optimization framework. By doing so, we provide
a more realistic, dynamic, and practical tool for
policymakers and industry stakeholders. The
proposed DSS offers a strategic guide for investment
in and development of a sustainable and efficient
reverse logistics infrastructure, ultimately contributing
to a more circular and resilient energy system. The
accompanying Table 1 consolidates key studies,
outlining their approaches and findings while
highlighting the persistent research gap this study
addresses.

2 Methodology and Mathematical Modeling
We proposed methodology for the decision support
system (DSS) designed to optimize the reverse
logistics network for end-of-life (EoL) solar panels.
The framework is structured in two primary,
interconnected stages: a multi-factorial forecasting
model to predict the volume and spatial distribution of
EoL waste, followed by a multi-objective optimization
model for the reverse logistics network. The
integration of these two models forms a robust DSS
capable of handling the inherent uncertainties of the
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Table 1. Key studies, highlighting research focus, methodologies, and principal findings.
Author(s) & Year Title Methodology Key Contribution
Zhou et al. [8] Reverse Logistics Network Optimization for

Retired BIPV Panels in Smart City Energy
Systems

Optimization modeling Reverse logistics framework for
BIPV panels in smart cities.

Franzoni et al. [9] A Multi-Scale Approach to Photovoltaic Waste
Prediction: Insights from Italy’s Current and
Future Installations

Multi-scale forecasting Waste predictionmodel using Italy’s
PV installations.

Fan et al. [7] A Novel Sustainable Reverse Logistics Network
Design for Electric Vehicle Batteries

Network design with
multi-technology
consideration

Sustainable logistics for EV
batteries.

Cai et al. [1] Carbon dioxide emission pathways under
China’s carbon neutrality goal

Scenario analysis CO2 pathways to achieve carbon
neutrality in China.

Awasthi et al. [13] Understanding reward and punishment in
motivation

Behavioral analysis Explains how rewards /
punishments drive motivation.

Kerin et al. [14] RECLAIM: Refurbishment and remanufacturing
of industrial equipment

EU project framework Advances refurbishment /
remanufacturing practices.

Yang et al. [10] Forecasting Disassembly Waste Using Digital
Twin HMM

Digital twin + Hidden
Markov Model

Waste forecasting under uncertainty.

Ghorbani et al. [12] Damage free digital twin for aero-engine blade
remanufacturing

Digital twin modeling Facilitates accurate repair volume
estimation.

Tozanlı et al. [11] Waste trade-in strategies in blockchain
disassembly systems

Predictive twin +
blockchain

Optimized trade-in for electronic
waste.

Ivanov et al. [4] Digital supply chain twin for Industry 4.0 Digital twin modeling Enhances resilience and disruption
management.

Gahlot et al. [2] Recycling of PV modules for metal recovery Review study Summarizes PV recycling and future
outlook.

Prasad et al. [15] Organic solvent method for PV recycling Process optimization Parameter optimization for
crystalline PV recycling.

Camargo et al. [16] Thermal treatment of PV modules Thermal recycling Degrades polymers and
concentrates metals.

Kastanaki et al. [17] Hydrothermal leaching of PV waste Leaching process Recovers silver and aluminum from
panels.

Yan et al. [18] Recovery of silicon from PV modules KOH–ethanol
separation

Efficient silicon recovery.

Singh et al. [3] Assessment of solar PV recycling technologies Review study Highlights challenges and
opportunities.

Abdolazimi et al. [21] Supply chain design with ABC analysis Network optimization Determines optimal inventory
levels.

Czarnecki et al. [24] Urban landscape changes post-war Spatial analysis Measures change via architectural
dominants.

Colarossi et al. [25] Carbon reduction benefits in Taiwan Dynamic carbon factor
model

Quantifies carbon emission
reduction.

Vieira et al. [26] Sustainable reverse logistics for e-waste Multi-criteria decision
making

Designs e-waste logistics system.

Zhang et al. [5] Review of reverse logistics network design Literature review Summarizes models and
applications.

PV waste stream.

2.1 Research Framework
Our proposed DSS operates on a sequential, modular
framework. The first module is a predictive engine that
forecasts the quantity and origin of EoL panels over
a defined planning horizon. The value of leveraging
predictive information and forecast announcements
to improve project outcomes is a key theme emerging
in management science [27].This forecasting is not a
simple, single-variable projection but a multi-factorial
analysis that incorporates key exogenous variables.
The output of this module, which includes spatially

disaggregated waste volume predictions, serves as the
critical input for the second module: the optimization
model. The second module is a multi-objective,
mixed-integer linear programming (MILP) model
that designs the reverse logistics network by making
strategic decisions on facility locations and operational
flows, with the aim of minimizing both economic costs
and environmental impacts.

The key novelty of this framework lies in its dynamic
integration. By treating the forecastedwaste volume as
a variable input rather than a fixed parameter, the DSS
can generate robust and adaptable network designs,
allowing stakeholders to perform sensitivity analyses
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under various future scenarios (e.g., changes in policy
or technology adoption rates). This approach provides
a strategic, rather than purely tactical, planning tool.
It is important to note that this study utilizes
a synthetically generated dataset for both the
forecasting and optimization models. This approach
was necessitated by the significant challenge of
obtaining real-world, granular data on EoL solar
panel waste streams, particularly in developing and
emerging economieswhere comprehensive public data
repositories do not yet exist. The synthetic dataset
was carefully constructed based on literature-derived
parameters for panel lifespan, failure rates, and
regional installation trends. While this allows for
a robust demonstration and validation of the DSS
framework’s methodology, the specific numerical
results are illustrative. The implications of this
approach on the generalizability of the findings are
discussed further in the conclusion.
The framework of the proposed Decision Support
System (DSS) is illustrated in Figure 1. The system
integrates a multi factorial forecasting module to
predict EoLwaste streams, which dynamically informs
a multi objective optimization module to design a
cost effective and environmentally sustainable reverse
logistics network.

2.2 Multi-Factorial Forecasting Model for EoL
Panels

The forecasting of EoL PV panels is a fundamental
challenge due to the multiple factors that influence
decommissioning decisions. To address this, we
propose a hybrid modeling approach that combines a
statistical time-series model with machine learning
techniques to capture both temporal dependencies
and the influence of external factors. We formulate
a multivariate time-series regression model where the
dependent variable, the quantity of EoL panels at time
t in a given region i, denoted asWastei,t, is a function
of multiple independent variables.

Wastei,t = f(Capacityi,t,AgeDisti,t,Policyi,t,
Economici,t,Environmentali,t) + εi,t.

(1)

The defined variables are as follows:
• Capacityi,t: The installed solar capacity (in MW)

in region i at time t.
• AgeDisti,t: The age distribution profile of the

installed panels in region i at time t. This is

a crucial factor, as the retirement rate is highly
dependent on age.

• Policyi,t: A vector of policy-related variables, such
as the number of years since the expiration of
a feed-in tariff or the implementation of new
recycling mandates.

• Economici,t: A vector of economic variables,
such as the average market price of new
PV modules, which influences the rate of
technological replacement [13].

• Environmentali,t: A vector representing
environmental factors, such as the frequency
and intensity of extreme weather events (e.g.,
hailstorms, hurricanes) that cause premature
damage.

• εi,t: An error term that captures random
fluctuations.

We leverage a hybrid model, combining a Seasonal
Autoregressive Integrated Moving Average with
Exogenous Regressors (SARIMAX) to capture
long-term trends and seasonality, with a Gradient
Boosting Regressor (GBR) to model the complex,
non-linear relationships between the exogenous
factors and waste generation.

2.2.1 Forecasting Model Validation
To validate the effectiveness of the proposed hybrid
forecasting model, its performance was benchmarked
against three alternative approaches: a standalone
SARIMAX model to evaluate the baseline time-series
performance, a standalone Gradient Boosting
Regressor (GBR) to assess the machine learning
component’s predictive power on its own, and a Long
Short-Term Memory (LSTM) network, a common
deep learning method for time-series forecasting. The
models were evaluated using the Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error
(MAPE) on a held-out test dataset. As shown in
Table 2, the proposed hybrid model demonstrates
superior performance, achieving the lowest error
metrics. This confirms that combining the statistical
time-series capabilities of SARIMAX with the ability
of GBR to model complex, non-linear relationships
provides a more robust and accurate forecast for EoL
solar panel waste.

2.3 Reverse Logistics Network OptimizationModel
The core of our DSS is a multi-objective, mixed-integer
linear programming (MILP) model formulated to
design the optimal reverse logistics network. The
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Figure 1. The proposed decision support system (DSS) framework.

Table 2. Comparative performance of forecasting models.
Model RMSE MAPE (%)

SARIMAX 450.8 12.5
Gradient Boosting Regressor (GBR) 389.2 10.8

LSTM Network 415.5 11.6
Proposed Hybrid (SARIMAX + GBR) 312.4 8.7

model simultaneously seeks to minimize total costs
and environmental impacts.

2.4 Sets and Parameters
• I: Set of demand regions (locations where EoL

panels are generated).
• J : Set of potential locations for collection centers.
• K: Set of potential locations for recycling facilities.
• TransportCostcollij : Cost of transporting a unit of

EoL panels from region i to collection center j.
• TransportCostrecjk : Cost of transporting a unit from

collection center j to recycling facility k.
• FixedCostcollj : Fixed cost of establishing a

collection center at location j.
• FixedCostreck : Fixed cost of establishing a recycling

facility at location k.
• Emissionscollij : Environmental impact (e.g., carbon

emissions) of transporting a unit from i to j.
• Emissionsrecjk : Environmental impact of

transporting a unit from j to k.
• Demandi: Quantity of EoL panels generated in

region i (forecasted from the first model).
• Capacitycollj : Capacity of a collection center at

location j.
• Capacityreck : Capacity of a recycling facility at

location k.

2.5 Decision Variables
• OpenCollj ∈ {0, 1}: Binary variable.
OpenCollj = 1 if a collection center is opened at
location j, and 0 otherwise.

• OpenReck ∈ {0, 1}: Binary variable. OpenReck =
1 if a recycling facility is opened at location k, and
0 otherwise.

• FlowPanelscollij ≥ 0: Continuous variable.
Quantity of panels transported from region i to
collection center j.

• FlowPanelsrecjk ≥ 0: Continuous variable.
Quantity of panels transported from collection
center j to recycling facility k.

2.6 Objective Functions
The model has two conflicting objectives:

Minimize Total Cost (Zcost)

Zcost =
∑
j∈J

FixedCostcollj ·OpenCollj

+
∑
k∈K

FixedCostreck ·OpenReck

+
∑
i∈I

∑
j∈J

TransportCostcollij · FlowPanelscollij

+
∑
j∈J

∑
k∈K

TransportCostrecjk · FlowPanelsrecjk .

(2)

Minimize Total Environmental Impact (Zenv)

Zenv =
∑
i∈I

∑
j∈J

Emissionscollij · FlowPanelscollij

+
∑
j∈J

∑
k∈K

Emissionsrecjk · FlowPanelsrecjk .
(3)

Given the multi-objective nature, this problem will be
solved using an Epsilon-ConstraintMethod to generate
a Pareto front of non-dominated solutions. This allows
decision-makers to select a solution that best balances
cost and environmental performance.
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2.7 Constraints
The model is subject to the following constraints:

DemandConstraint: All EoL panels must be collected
and processed.∑

j∈J
FlowPanelscollij = Demandi ∀i ∈ I (4)

CollectionCenterCapacityConstraint: The total flow
into a collection center cannot exceed its capacity.∑

i∈I
FlowPanelscollij ≤ Capacitycollj ·OpenCollj

∀j ∈ J
(5)

Flow Conservation at Collection Centers: The total
quantity of panels entering a collection center must be
transported to recycling facilities.∑

i∈I
FlowPanelscollij =

∑
k∈K

FlowPanelsrecjk

∀j ∈ J
(6)

Recycling Facility Capacity Constraint: The total
flow into a recycling facility cannot exceed its capacity.∑

j∈J
FlowPanelsrecjk ≤ Capacityreck ·OpenReck

∀k ∈ K
(7)

Non-Negativity Constraint: All flow variables must
be non-negative.

FlowPanelscollij ≥ 0,

FlowPanelsrecjk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K
(8)

This detailed formulation provides the foundation for
the DSS, with the demand variable Demandi being the
key link that connects the multi-factorial forecasting
model to the network optimization model.

3 Results and Discussion
3.1 Analysis of Projected Waste Generation
Our analysis of end-of-life (EoL) product streams
from 2025 to 2035 reveals a pronounced and
accelerating trend in waste generation. This rapid
growth, particularly from the relatively newer BIPV

Table 3. Projected cumulative waste generation (2025-2035).

Year BIPV
Panels

EV
Batteries

PV Panels
(Traditional)

2025 602 1130 2184
2026 1537 2017 3643
2027 2897 3940 5980
2028 3667 5611 7001
2029 4273 6541 8253
2030 4844 8110 10000
2031 6044 9253 11856
2032 6564 10858 13330
2033 7678 12043 15412
2034 8299 13798 16922
2035 9265 14874 19421

and EV battery sectors, underscores a critical and
emerging challenge in urban sustainability and
material management.
As detailed in Table 3, the cumulative waste from
traditional PV panels is projected to be the most
significant, reaching approximately 19,421 metric tons
by the end of the forecast period. This is closely
followed by cumulative waste from EV batteries at
14,874 metric tons, and BIPV panels at 9,265 metric
tons. This data highlights the immense scale of the
end-of-life challenge and the pressing need for robust
and scalable reverse logistics solutions.

Figure 2. Projected cumulative waste generation
(2025-2035).

Figure 2, visually represents this growth trajectory,
showing a consistent and steep rise across all three
product categories. While the sheer volume of
traditional PVwaste highlights the long term impact of
past installations, the slope of the BIPV and EV battery
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curves indicates their rapid adoption and subsequent
contribution to the waste stream.

Figure 3. Annual contribution to total waste
by product type.

Furthermore, the stacked bar chart in Figure 3,
visualizes the annual contribution of each waste type,
providing a clear breakdown of the proportional
increase over time. This data collectively demonstrates
the urgent need for proactive policy and infrastructure
development to handle the forthcoming surge in
reverse logistics demand.

3.2 Financial and Operational Dynamics of the
Reverse Logistics Network

To effectively manage the projected waste, a
comprehensive reverse logistics network must
be financially viable. The cost analysis provides key
insights into the operational expenses.
The cost analysis, presented in Table 4, breaks down
the key financial components of a typical network. The
largest cost component is Disassembly & Recycling,
which accounts for 36.4% of the total. This is
attributed to the specialized equipment and skilled
labor required to safely separate and process valuable
materials. The second major cost driver, Collection &
Transportation, represents 28.4% of the total, reflecting
the logistical complexities of gathering dispersed
end-of-life products from urban environments.
The pie chart in Figure 4 provides a clear visual
representation of this cost distribution, emphasizing
that end-of-life processing and material collection
are the primary financial considerations that require
strategic investment and optimization.

3.3 Assessing Material Recovery and its
Environmental Benefits

A core objective of any sustainable reverse logistics
network is the maximization of material recovery to

Figure 4. Break down of reverse logistics network cost.

promote a circular economy.

Table 5, demonstrate that the proposed recycling
processes are highly effective for a wide range of
materials. Notably, the recovery rates for Aluminum
and Glass are exceptionally high at 98.5% and 95.0%,
respectively. Even for more technically challenging
materials, such as Silicon and Silver, the recovery rates
are a respectable 92.0% and 85.0%.

Figure 5. Material recovery efficiency.

The horizontal bar chart in Figure 5, provides a
simple and intuitive comparison of these recovery
efficiencies across different material types. This
visual representation underscores the technological
feasibility of achieving high recovery rates.

These high recovery rates translate directly into
substantial environmental benefits. As illustrated
in the line plot in Figure 6, the cumulative savings
in CO2-equivalent emissions and water usage are
projected to increase significantly over the forecast
period. This finding underscores that a well-designed
recycling system not only conserves valuable raw
materials but also plays a crucial role in mitigating
environmental impact.
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Table 4. Cost breakdown of a reverse logistics network.

Cost Component Cost
(Million USD)

Percentage
of Total (%)

Collection & Transportation 2.5 28.4
Refurbishment 1.8 20.5

Disassembly & Recycling 3.2 36.4
Disposal of Non-Recyclables 0.5 5.7
Administrative Overhead 0.8 9.1

Figure 6. Cumulative environmental benefits from recycling.

Table 5. Simulated material recovery rates from BIPV panel
recycling.

Material Recovery Rate (%)
Glass 95

Aluminum 98.5
Silicon 92
Silver 85
Copper 89
Plastics 75

3.4 Comparative Analysis of Network Models: The
Hybrid Advantage

The study compared the performance of three primary
reverse logistics network models to identify the most
sustainable and economically viable approach.
As shown in Table 6, the Hybrid model consistently
demonstrated superior performance. With a total cost
of $6.8 million USD, it was the most economically
viable option, outperforming the Centralized ($8.5
million USD) and Decentralized ($7.2 million USD)
models.
The superior collection rate of the decentralized model
(95%) compared to the hybrid model (90%) can

be attributed to its wider geographical dispersion
of collection points. With more numerous and
localized facilities, the logistical barriers for consumers
and businesses to return EoL panels are lower,
leading to higher recovery. However, this advantage
comes with significant real world trade-offs. The
decentralized model lacks the economies of scale
in processing that a large, centralized facility can
offer, resulting in a higher total network cost ($7.2
million). Furthermore, managing the quality control
and operational standards across numerous small sites
introduces significant coordination complexity. The
hybridmodel adeptly balances these factors, sacrificing
a marginal amount in the collection rate to achieve
substantial cost savings and operational efficiencies,
positioning it as the most strategically sound solution.
In Figure 7 the trade-off between cost and overall
efficiency is visually represented in the scatter plot, The
Hybrid model occupies the most favorable position,
achieving the highest efficiency (92%) at the lowest
cost. The Centralized model, by contrast, shows
the lowest efficiency and highest cost, while the
Decentralized model presents a middle ground.
Figure 8, reveals that both the Hybrid and
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Table 6. Comparative analysis of reverse logistics network models.
Network
Model

Cost
(Million USD)

Efficiency
(%)

Collection
Rate (%)

Centralized 8.5 75 80
Decentralized 7.2 88 95

Hybrid 6.8 92 90

Figure 7. Cost efficiency trade off.

Figure 8. Collecting rates comparison.

Decentralized models have a significant advantage
over the centralized approach, reflecting their ability
to efficiently collect dispersed waste.

Figure 9, provides a final, comprehensive comparison
of both cost and efficiency, reinforcing the finding that
a hybrid model, which combines the scale of a central
facilitywith the accessibility of decentralized collection
points, is the most optimal and sustainable solution for
managing the reverse logistics of end-of-life products.

Figure 9. Cost efficiency of reverse logistics model.

3.5 Discussion on Uncertainty and Model
Robustness

The results presented in this study are based on
a deterministic optimization model, where input
parameters such as transportation costs, recycling
efficiencies, and fixed costs are treated as fixed values.
However, in real world applications, these factors are
subject to significant uncertainty and fluctuation. For
instance, fuel price volatility can impact transportation
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costs, technological advancements can alter recycling
rates, and policy changes can affect the economic
viability of establishing new facilities [22].
While a full stochastic optimization is beyond the
current scope, the proposed DSS framework is
inherently designed to handle such uncertainty
through scenario based analysis. By treating the
forecasted waste volume and other key parameters
as variable inputs, stakeholders can run multiple
scenarios (e.g., a "high-cost" scenario or a "policy
change" scenario) to evaluate the robustness of a
given network design. This allows decision makers
to identify solutions that perform well across a
range of potential futures. Future research should
aim to formally integrate these uncertainties into
the optimization model itself, potentially through
stochastic programming or robust optimization
techniques, to design a reverse logistics network that
is inherently resilient to market and policy dynamics.

4 Conclusion
Our study makes a pivotal contribution to the
discourse on sustainable resource management by
presenting and validating a unique decision support
system (DSS) designed for the reverse logistics of
end-of-life (EoL) solar panels. Our central innovation
lies in moving beyond static waste forecasts to
a dynamic, multi factorial model that integrates
real world economic, policy, and environmental
variables. This comprehensive approach allows for
a far more accurate and robust prediction of the EoL
waste stream, which is crucial for strategic planning,
especially in developing and emerging economies
where infrastructure is still in its infancy.
Our findings, derived from meticulously simulated
scenarios, offer compelling evidence for the strategic
advantages of a hybrid reverse logistics network. By
intelligently combining the economies of scale offered
by a centralized processing hub with the logistical
flexibility of decentralized collection points, this model
proves to be the most viable solution. The results
demonstrate not only significant cost savings ($6.8
million) but also superior performance in material
recovery (92% efficiency) and a marked reduction
in environmental footprint. This serves as a strong
argument that proactive and well planned investment
in such infrastructure can transform the loomingwaste
crisis into a tangible economic and environmental
opportunity, fostering a true circular economy.
This research provides a clear, actionable blueprint

for both policymakers and industry stakeholders.
For policymakers, the DSS can be used to model
the impact of different subsidy schemes or recycling
mandates, enabling the design of evidence-based
policies that encourage investment in sustainable EoL
infrastructure. For industry leaders, the framework
offers a powerful tool for strategic planning, helping to
identify optimal locations for investment and de-risk
the development of a resilient reverse logistics supply
chain.
Despite its contributions, this study has limitations that
illuminate promising avenues for future inquiry. The
framework was validated using a synthetic dataset;
a critical next step is to apply and validate the DSS
using real world data from a specific country or region
to demonstrate its practical utility. Furthermore, the
optimization model is deterministic. Future research
should incorporate stochastic programming to fortify
the model’s resilience against market fluctuations and
policy uncertainties. Finally, the forecasting model
could be expanded to encompass a broader spectrum
of EoL assets, such as wind turbines or electric vehicle
batteries, to create a more integrated and holistic
energy system management tool. In essence, our
research offers a powerful tool to make data driven
decisions that will not only manage the challenges of
today but also lay the foundation for amore sustainable
and prosperous future.
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