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Abstract
Yield optimization in advanced manufacturing
rarely proceeds as a tidy pipeline; it arises from the
gradual convergence of evidence across spatial
wafer patterns, multivariate metrology, and
asynchronous process and equipment events
that interact in ways that are only partially
observable. Prior studies often separate these
modalities, assigning convolutional encoders to
wafer maps, sequence models to metrology, and
template based encoders to logs, an arrangement
that can perform well locally yet struggles to
sustain cross-modal alignment or to reason over the
hierarchy that links defects to steps and equipment.
Building on these observations, we introduce a
manufacturing semantics oriented framework that
embeds lots, wafers, dies, steps, equipment, and
recipes in a heterogeneous graph, and uses cross
modal attention gating to reconcile image, time
series, and event representations while performing
relation aware message passing. The research was
not frictionless; time synchronization required
iterative windowing, spatial normalization exposed

Submitted: 10 November 2025
Accepted: 25 November 2025
Published: 09 January 2026

Vol. 3, No. 1, 2026.
10.62762/TETAI.2025.259226

*Corresponding author:
�Min Yin
gmiayinc@gmail.com

orientation drift, and naive imputation inflated
variance in rare steps, which motivated temperature
controlled gating and a lightweight contrastive
warm-up. On two production lines the approach
improves, to some extent, standard classification
metrics and stabilizes top k attribution under
feasible latency. Alternative explanations remain
possible, including benefits from stricter leakage
control or product specific distributions. The
work makes explicit the structural link among
defects, process, and equipment, and points toward
auditable, engineer actionable analytics; further
research is needed on long term stability, cross
site generalization, and the joint optimization of
accuracy, cost, and energy.

Keywords: heterogeneous graph learning, multi-modal
data fusion, wafer maps, metrology time-series, process
log mining, yield optimization, cross-Modal attention,
bottleneck identification, explainable AI, semiconductor
manufacturing.

1 Introduction
Yield optimization in semiconductor manufacturing
unfolds less as a neatly staged pipeline and more as
a delicate synthesis of signals that surface at different
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temporal scales and spatial granularities: wafer
defect distributions that encode process fingerprints
multivariate metrology traces that drift and recover
in subtle cycles, and logs that record equipment
states and operator actions with irregular cadence [1].
Treating these streams in isolation is analytically
convenient. However, such separation weakens our
ability to recover the structural pathways that link local
anomalies to systemic yield loss. The community has
made notable progress with convolutional encoders
for wafer maps, sequence models for metrology,
and statistical or template driven encoders for logs;
still, many of these designs assume modality specific
stationarity and rely on post-hoc feature stitching,
which is fragile when recipes evolve, when machines
age, or when rare events carry disproportionate
impact [2].

A growing strand of work explores graph based
learning for manufacturing, seeking to model lots,
wafers, steps and equipment as nodes connected
by process flow and co usage relations [3]. The
promise is clear: structure can constrain learning and,
in principle, improve generalization. Yet practical
studies often decouple image and time series encoders
from the graph and attach only coarse aggregates to
nodes, which helps with scalability but obscures cross
modal alignment; other studies emphasize prediction
accuracy while offering limited facilities for attribution
at the step or equipment level. Considering these
factors, there is room for a framework that keeps rich
modality specific evidence intact, aligns it where it
matters, and reasons over relations without collapsing
the hierarchy that links defects to process and to tools.

This paper proposes a manufacturing semantics
oriented approach that integrates three pillars.
First, a unified domain–data–problem formulation
aligns identifiers across lots, wafers, dies, steps,
equipment and recipes, and sets precise evaluation
tasks for first pass yield prediction and bottleneck
localization under strict leakage control. Second,
a heterogeneous graph representation, denoted Fab
HetGraph, encodes process flow, spatial adjacency,
co lot and co tool relations while attaching modality
specific embeddings at the appropriate hierarchy [4].
Third, a cross modal attention module reconciles
image, time series and event representations and
propagates information with relation aware message
passing so that signals can reinforce or discount one
another in context.

The path to this design was not perfectly linear. Early

experiments revealed that time synchronization rules
must adapt to metrology sampling jitter and that
spatial normalization of wafer coordinates is sensitive
to orientation drift, which can blur defect clusters
and mislead attention gating [5]. Naive imputation
of missing metrology inflated variance on rare steps
and biased gradients toward frequent tools. These
difficulties motivated temperature controlled attention,
lightweight contrastive warm up across adjacent
steps, and a careful separation between training and
validation windows to reduce inadvertent leakage;
some of these adjustments improved stability only
after several iterations, which reminds us that data
plumbing and modeling choices co evolve.

Empirically, evaluations on two production lines
indicate improvements in standard classification
metrics and, to some extent, more stable top k
attribution at step and equipment levels while meeting
latency budgets plausible for near line use. Multiple
readings remain possible [6]. Part of the gains may
reflect stricter alignment and quality control rather
than architectural novelty; distributional peculiarities
of specific product families may also favor graph
based regularization; further research is needed to
test robustness under broader recipes and cross site
transfer.

The contributions are threefold. We formalize a
domain–data–problem schema that operationalizes
multimodal integration with unambiguous keys and
leakage resistant splits [7]. We introduce a graph
based fusion architecture that keepsmodality evidence
explicit, aligns it through cross modal attention, and
reasons over relations in away that preserves hierarchy
rather than flattening it. We define a process segment
impact score for attribution that connects model
outputs to engineer actionable hypotheses, and we
demonstrate that interpretability can coevolve with
predictive performance under realistic computational
constraints.

The remainder of the paper proceeds as follows.
We first position our work relative to wafer
map analysis, multivariate metrology modeling,
manufacturing graph learning, and multimodal
explainability, highlighting methodological trade offs
and known limitations. We then detail the unified
domain–data–problem formulation and present
the proposed method with design rationales and
reproducible settings. Comprehensive experiments
assess accuracy, attribution quality, sensitivity and
stability, followed by a discussion that considers
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alternative explanations, practical implications and
open issues [8]. We close by reflecting on how
structural modeling may provide a basis for causal
interventions and for joint optimization that balances
accuracy, cost and energy in future deployments.

2 Related Work
This section reviews four strands of research that
form the backdrop of our study and that, taken
together, reveal why a single-modality pipeline is
often insufficient for yield analysis in complex fabs:
wafer map analysis, multivariate metrology modeling,
graph-based representations for manufacturing
processes, and multimodal fusion with explainability.
Rather than listing results, we highlight methods, their
implicit assumptions, and where those assumptions
may be too strong for data that are heterogeneous in
space, time, and provenance.

2.1 Wafer map analysis
Early work in wafer map analysis focused on spatial
statistics and handcrafted pattern descriptors intended
to capture rings, clusters, scratches and edge-localized
anomalies. These pipelines showed that spatial
structure is informative, yet the reliance on fixed
descriptors limited adaptability once recipes, die
layouts or defect taxonomies shifted. Convolutional
neural networks improved pattern recognition by
learning spatial features from data, and more recent
vision transformer style encoders added global context,
which is useful when defect morphology is subtle.
Both directions tend to assume that wafer coordinates
are consistently registered and that spatial priors
transfer across tools and products. In practice,
orientation drift and partial masks are common,
which makes purely image-driven inference brittle [9].
A further difficulty is that most studies evaluate
classification accuracy on curated maps but give
limited attention to how spatial evidence links to
specific process steps or equipment. This disconnect
narrows the path from recognition to intervention.

2.2 Metrology time-series and SPC
Process control has a long tradition of using
univariate and multivariate control charts, followed
by latent factor or state-space models to detect
drift. Modern work often employs recurrent
or transformer architectures to model long-range
temporal dependencies and to forecast out-of-control
behavior. Such models can be powerful when
sampling cadence is regular and when the data

generating process is relatively stationary [10]. Fab
data seldom meet these conditions. Missing segments,
asynchronous sensors and episodic reworks introduce
irregularities that push sequence models to rely on
imputation schemes whose bias is hard to quantify.
Even when accuracy is competitive, attributing a
forecasted failure to a concrete step or tool remains
challenging because temporal features are typically
aggregated at lot orwafer level. It is possible that better
alignment rules and uncertainty-aware imputation
would alleviate some of these issues, yet the broader
question persists: how should temporal evidence be
fused with spatial and event-driven signals without
flattening the manufacturing hierarchy.

2.3 Graph representations for manufacturing
Graph formulations treat lots, wafers, steps, tools
and recipes as typed nodes connected by relations
such as process flow, co-tool usage, co-lot membership
or spatial adjacency. The promise lies in using
structure to constrain learning, which can reduce
spurious correlations and improve generalization
when configurations change. Several studies attach
tabular aggregates to nodes and train heterogeneous
graph neural networks with relation-aware attention.
This strategy scales and often delivers reasonable
gains for prediction tasks [11]. Two limitations recur.
First, modality compression at ingestion time discards
fine-grained spatial or temporal detail, making it
difficult to revisit evidence when engineers ask for
step-level explanations. Second, message passing
may mix signals from nodes that are only weakly
comparable because of hidden recipe differences,
which suggests that type-dependent normalization
and careful neighborhood sampling are as important
as the architecture itself. Further research is needed
on how to encode uncertainty and on how to prevent
information leakage along cyclical rework paths that
are common in real lines.

2.4 Multimodal fusion and explainability
Fusion strategies for industrial AI range from early
concatenation of features to attention-based alignment
and late decision aggregation. Early fusion is simple
but assumes commensurate scales and synchronized
timelines, an assumption that rarely holds when
images, time-series and events are combined. Late
fusion is robust to misalignment but can ignore
cross-modal interactions that are pivotal for root-cause
analysis. Attention mechanisms offer a middle path
by learning to weigh modalities given context. Yet
attention alone is not an explanation [12]. Without
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stability checks and sensitivity analyses, attention
maps can reflect priors learned from frequent recipes
rather than true causal leverage points. There is
also a practical gap between saliency over pixels
and actionable guidance at the level of steps and
tools. Some recent work couples attribution with
domain rules, which is promising, although the
degree to which such coupling generalizes beyond the
calibration site remains uncertain [29].

2.5 Positioning of this work
Considering the above factors, a consistent picture
emerges. Wafer map encoders are discriminative
yet fragile under registration noise. Time-series
models capture drift but can struggle with
irregular sampling and with attribution beyond
the aggregate. Graph models impose structure
but often compress modalities too early. Fusion
methods introduce flexibility but require care to
avoid attention behaving as a proxy for frequency.
Our approach is positioned at the intersection
of these lines. We retain rich modality-specific
evidence, align it through cross-modal gating that is
aware of manufacturing semantics, and reason over
relations in a heterogeneous graph that preserves
the lot–wafer–die–step–equipment hierarchy. The
intent is not to claim that structure alone guarantees
better yield analytics. Rather, we argue that explicit
structure, coupled with carefully designed alignment
and with attribution defined at process segment
level, can make predictions more auditable and, to
some extent, more transferable [28]. Alternative
explanations for observed gains remain plausible,
including benefits from stricter leakage control and
improved preprocessing, which motivates broader
validation across product families and sites.

3 Domain Data Problem
This section formalizes the manufacturing entities
and relations that ground our study, articulates the
three principal data modalities with their provenance
and statistical quirks, and states the learning tasks
and evaluation protocol in a way that is faithful
to shop-floor practice. The objective is not only to
define inputs and outputs but to make explicit the
alignment rules, quality controls, and leakage guards
that can otherwise confound results. Some choices
reflect constraints of the lines we studied and may
need adjustment when recipes, tooling, or sampling
cadences differ.

3.1 Domain entities and identifiers
Semiconductor fabrication organizes production
through a nested hierarchy. Lots are the planning
unit and yield wafers. Wafers consist of dies arranged
on a grid determined by product layout. Processing
proceeds through steps that instantiate recipes on
equipment. We denote a lot by L, a wafer by W ,
a die by D, a process step by S, equipment by E,
and a recipe by R. Each entity carries a stable key.
The tuple (L,W,D) identifies a die, while (S,E,R, t)
identifies a step execution with timestamp t. Rework
is permitted and induces cycles in the flow graph. To
keep the graph acyclic where needed, we index rework
iterations and attach them to the same step identity
with an iteration counter. This permits reasoning
about repeated exposure without collapsing distinct
passes.

Two conceptual relations are essential. The flow
relation chains lots to wafers to dies and then to
the ordered list of steps that define the route. The
equipment relation links each step execution to the tool
instance that executed it. We also use spatial adjacency
between dies on a wafer and co-membership relations
such as co-lot and co-tool. These relations are used
later to define message passing neighborhoods and to
constrain sampling. They also act as documentation
of what the model is allowed to learn from structure
as opposed to raw signals.

3.2 Data modalities and provenance
We consider three streams that together describe
the state of production.Wafer maps encode spatial
distributions of bin outcomes or defect annotations
on a two-dimensional grid. The native coordinate
system is circular with a reference notch. In
practice, coordinate drift and partial masking are
common due to handling and inspection conditions.
We retain raw grids when available and include
a binary mask that records missing or occluded
regions. The signal-to-noise ratio varies with recipe
and inspection tooling. As a result, the spatial prior
we impose is deliberately weak to avoid overconfident
extrapolation from edge sectors. Metrology is collected
as multivariate time series. The cadence is not strictly
regular. Some steps emit dense sequences, others
only sparse summaries [13]. Sensors may drop
segments during maintenance or when thresholds
suppress acquisition. We store the full sequence per
step execution with timestamps and treat absence as
informative rather than a defect that must always be
filled. Derived statistics such as trend and short-term
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variability are computed for analysis but are not a
substitute for the sequence.

Process and equipment logs record events with
codes and parameters along with free-text operator
notes. We map codes to structured tokens and parse
parameters as typed fields. Free-text is retained
as subword units with limited vocabulary growth,
which permits representation learning without heavy
normalization. The temporal resolution is high but
irregular. Bursts of events can occur around chamber
clean or recipe changeover [14]. In such windows,
spurious correlations are possible unless the alignment
policy is explicit.

3.3 Alignment and quality control
Temporal alignment ties metrology and logs to step
execution. For each step S on a given wafer we
define a window [t−S ,t

+
S ] around the recorded start

and end times. Metrology and events are assigned to
a step when their timestamps fall inside the window.
Windowwidths vary by tool class. Ovens and furnaces
admit wider tails due to warm-up and cool-down
effects, while lithography requires narrow bounds to
avoid contamination from neighboring steps. These
choices were revisited more than once as we observed
that a narrow window reduces leakage yet risks
discarding legitimate precursors.

Spatial alignment standardizes wafer coordinates. We
detect the wafer edge and notch, estimate the center,
and rotate the grid to a canonical orientation (see
Figure 1 for the overall pipeline). When the notch
is ambiguous due to occlusion, a fallback alignment
uses die-grid consensus based on majority voting
across wafers in the same lot. This reduces orientation
drift but may blur localized clusters. We record a
confidence score for the alignment and later use it to
downweight maps with uncertain registration. This
simple mechanism brought practical gains without
complex geometry [15].

Missingness is treated as a feature of the process
rather than as an error to be erased. We use masking
units in image encoders and time-aware sequence
encoders that accept observed timestamps. When
an imputed value is necessary to avoid numerical
failure, a conservative strategy is used, as visualized
in the imputation module of Figure 1. It preserves
the empirical mean and inflates variance mildly to
avoid overconfident gradients. Event streams keep rare
codes even when frequency is low, since rare events
often matter disproportionately in excursions [16]. As

a counterweight, we clip extreme parameter values
after robust scaling to curb the influence of logging
artifacts.

Figure 1. Multi-modal data processing and alignment
pipeline.

The complete multi-modal data processing workflow,
integrating the temporal, spatial, and missingness
handling strategies described above, is summarized in
Figure 1.

3.4 Problem formulation
We address two coupled tasks. The first is
first-pass-yield prediction at the wafer level. Given
wafer mapsXwm, metrology sequencesXmt, and event
streams Xlg aligned as above, we predict a binary
outcome y ∈ {0, 1} indicating pass at final electrical
test. The model outputs ŷ ∈ [0, 1]. The loss for this
head is binary cross-entropy with class weights when
imbalance is severe. The second task is bottleneck
localization. The objective is to produce a ranked set
of steps and equipment that plausibly contribute to
the predicted outcome. We quantify attribution with a
process segment impact score. For an object o that is a
step or a tool, we define

PIS(o) = ŷ − ŷ(−o). (1)

where ŷ(−o) is the predicted probability after masking
features and edges that transmit information from o
to the target wafer. This operationalizes attribution as
a measurable perturbation rather than as a saliency
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proxy. It is only an approximation, yet it behaves
consistently across repeated batches when masking
is applied with the same policy.

3.5 Metrics and operational constraints
Predictive performance is reported using area under
the ROC curve, area under the precision–recall
curve, and F1 at a threshold selected on a validation
split. Attribution is assessed with precision at k and
normalized discounted cumulative gain at k for ranked
step and equipment lists based on known excursions
and engineer-reviewed cases. We also report a change
in expected first-pass yield under a simple offline
policy that prioritizes the top causes and simulates
mitigation [30]. These business-facing estimates are
sensitive to assumptions on intervention efficacy. They
should be read as directional evidence rather than as
guarantees.

Latency and throughput matter [17]. We measure
end-to-end inference time per wafer and the number
of wafers processed per second on a reference server.
Neighborhood sampling and caching policies are held
constant during evaluation to prevent overly optimistic
timing. Stability metrics include variance of PIS across
adjacent time windows and disagreement rates for
top k attributions under small perturbations such as
window width and mask inflation. The intent is to
surface whether explanations are reproducible to some
extent under reasonable changes.

3.6 Splits, leakage control, and assumptions
Data are split by time. Training uses older windows,
validation tunes thresholds and early stopping, and
test covers later windows. Lots andwafers do not cross
splits. Step executions tied to awafer inherit thewafer’s
split. Rework is handled by assigning all iterations of
a wafer to the same split to prevent subtle leakage
through repeated exposure. Feature engineering is
fitted on training only and then applied to validation
and test. Hyperparameters are selected on validation
without peeking at test. We discovered that a
seemingly harmless practice of aligning metrology
using a global z-score computed on all data can
leak distributional information [18]. We replaced it
with group-wise scaling that uses training statistics
conditioned on recipe or tool family.

Two assumptions should be made explicit. First, we
assume that the flow recorded in the manufacturing
execution system is complete for the units studied,
which may not hold during system outages. Second,
we assume that failure labels reflect electrical test

outcomes without systematic drift due to evolving
test limits. Both assumptions are common in yield
studies, yet they deserve verificationwhen transferring
the framework to other lines.

4 Method
We describe a manufacturing–semantics oriented
framework that preserves modality-specific evidence,
aligns it where structure demands, and reasons over
typed relations without collapsing the hierarchy that
connects defects to process steps and equipment [27].
The presentation follows a simple progression:
we first introduce the heterogeneous graph and
the way features are attached at the proper level
of abstraction, then detail modality encoders and
the cross-modal attention gating, next formalize
relation-aware message passing and multi-task
learning, and finally operationalize attribution as a
measurable perturbation. Throughout, we emphasize
choices made after empirical obstacles surfaced, since
some details only became necessary once real data
stubbornly challenged clean theory.

4.1 Fab-HetGraph: entities, relations, and feature
attachment

Let G = (V,E) be a typed graph, with its overall
architecture depicted in Figure 2. Nodes are drawn
from the set

Tv = {Lot L, WaferW, Die D, Step S,
Equipment E, Recipe R}. (2)

Edges carry relation types

Te = {flow, proc, equip, spatial, co_lot, co_tool}.
(3)

The flow relation links L → W → D and orders the
route of steps; the proc relation connects D to the
steps that act upon it; the equip relation binds S to
E; the spatial relation links neighboring dies on the
same wafer; co_lot and co_tool capture shared context
within a lot or a tool family. These node and edge types
form the structural foundation of the Fab-HetGraph,
as shown in the graph schema of Figure 2.

Rework induces cycles at the step level. We index
rework iterations and preserve each pass as a separate
node instance S(i) while maintaining type identity,
which allows message passing to learn from repeated
exposure without silently merging distinct executions.

Feature attachment respects hierarchy. Wafer-map
representations reside on W or D, metrology
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Figure 2. Framework of multi-modal heterogeneous graph fusion.

embeddings on S, and log embeddings on S or E
depending on provenance. This assignment avoids
premature aggregation and prevents an encoder from
"seeing" relations that should be learned by the graph
layer. The feature assignment and subsequent fusion
process are visualized in the modality fusion and
message passing modules of Figure 2.

Figure 2 provides a comprehensive overview of
the proposed framework, illustrating how the
heterogeneous graph structure, modality-specific
encoders, cross-modal attention gating, and
relation-aware message passing are integrated
to perform yield prediction and attribution.

4.2 Modality encoders and alignment signals
Three encoders producemodality-specific vectors with
explicit masks and timestamps so that later layers can
reason about absence as information rather than noise.

Wafer maps: Let Xwm ∈ RH×W be a grid with a
binary maskMwm ∈ {0, 1}H×W . A lightweight vision
backbone φwm produces an embedding for each wafer,

zwm = φwm

(
Xwm,Mwm

)
∈ Rd. (4)

We keep an attention map Awm ∈ [0, 1]H×W from the
last stage for later visualization. Orientation drift made
this map unstable in early experiments; a notch-guided
rotation plus die-grid consensus reduced variance
to a manageable level, although residual uncertainty

remains and is recorded as a confidence weight used
downstream.

Metrology time series: For a step execution with
timestamps {ti}Ti=1 and measurements xi ∈ RP ,
a time-aware encoder φmt combines positional
features ψ(ti) with masked self-attention to obtain an
embedding,

zmt = φmt

(
{(xi, ψ(ti),mi)}Ti=1

)
∈ Rd, (5)

where mi ∈ {0, 1} flags observation presence. We
deliberately avoid unconditional imputation; when
a value is necessary to prevent numerical failure,
a conservative strategy fills the mean and inflates
variance by a small factor to reduce overconfident
gradients.

Process and equipment logs: Event sequences
(cj , pj , uj , tj) contain a code cj , typed parameters pj , a
subword token sequence uj from operator notes, and
a timestamp tj . An event encoder φlg maps codes and
text to embeddings and summarizes with temporal
attention,

zlg = φlg

(
{(cj , pj , uj , tj)}Jj=1

)
∈ Rd. (6)

Bursty windows around cleans or recipe changeovers
often produced spurious peaks; adding time-decay
factors to attention mitigated over-weighting closely
spaced events.
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Contrastive warm-up: Tomake alignment less brittle, we
apply a lightweight contrastive objective on adjacent
steps within a lot. For positive pairs (za, zb) from
contiguous steps and negatives from distant lots or
recipes, the InfoNCE objective is defined as

Lcon = − log
exp
(
〈za, zb〉/τ

)∑
k exp

(
〈za, zk〉/τ

) . (7)

This encourages local coherence. Temperature τ is
tuned cautiously; we observed that too small a τ made
frequent recipes dominate the geometry.

4.3 Cross-modal attention gating
At any node v that can host multiple modalities, we
form a fused representation h̃v by weighting available
encodings. Let Mv ⊆ {wm,mt, lg} denote present
modalities at v, and let zm be the corresponding
vectors. A query vector

qv = Wqh
(0)
v (8)

is produced from an initial type embedding h
(0)
v .

Modality weights are computed as

αv,m =
exp
(
q>v Wmzm/γ

)∑
m′∈Mv

exp(q>v Wm′zm′/γ)
. (9)

The gated fusion is

h̃v =
∑

m∈Mv

αv,m zm. (10)

Here γ > 0 is a temperature that controls sharpness.
We introduced γ after noticing that attention tended
to collapse onto the most frequent modality in
imbalanced regimes. Amoderate γ preserved diversity
without drifting into uniform averaging. Missing
modalities are simply excluded fromMv, so the gate
adapts to partial evidence.

4.4 Relation-aware message passing on a
heterogeneous graph

Given fused inputs h̃v, we propagate information with
type- and relation-specific parameters. Let R be the
set of relation types and Nr(v) the neighbors of v
under relation r. One propagation layer updates node
representations as

h(`+1)
v = σ

∑
r∈R

∑
u∈Nr(v)

1

cv,r
W(`)

r Attnr

(
h(`)
u ,h(`)

v

) ,

(11)

with nonlinearity σ and normalization cv,r that
balances degrees across relations. The attention term is
a scaled dot-product with relation-specific projections,

Attnr(hu,hv) = α(r)
u→v,

α(r)
u→v =

exp
(

(WQ
r hv)>(WK

r hu)/d
)

∑
u′∈Nr(v) exp

(
(WQ

r hv)>(WK
r hu′)/d

) .
(12)

We stack L layers with residuals and type-dependent
feed-forward blocks. Neighborhood sampling respects
relation types and caps fanouts per r, which was
necessary to keep latency within near-line budgets.
Without relation-aware caps, co_lot edges occasionally
swamped the computation and diluted informative
spatial paths.

4.5 Task heads and multi-objective training
Two heads share the graph backbone.

FPY prediction: For a wafer node W , the classifier
outputs

ŷ = σ(w>h
(L)
W + b). (13)

The primary loss is a weighted binary cross-entropy,

Lcls = −β y log ŷ − (1− β)(1− y) log(1− ŷ), (14)

with class weight β chosen from validation to counter
imbalance. In regimes with extreme skew we
sometimes replace it with focal loss. Gains were
marginal in our setting, yet the option remains.

Process-aware distillation: When domain rules or
historical root-cause analyses suggest prior importance
for a subset Ω ⊆ {S,E}, we regularize the model to
align its internal relevance with these priors. Let s be
a soft attribution over objects produced by the head in
§4.6. A Kullback–Leibler penalty

Ldistill =
∑
o∈Ω

π(o) log

(
s(o)

π(o)

)
(15)

encourages consistency while permitting
disagreement. We apply this term cautiously
and only when π is credible, since strong priors can
entrench bias.

Contrastive consistency: The warm-up objective Lcon

from §4.2 is retained with a small weight during early
epochs to stabilize geometry under minor alignment
changes.

Total objective: The training loss is

L = λ1Lcls + λ2Ldistill + λ3Lcon, (16)
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with λi selected on validation. We found λ3 should
decay over time; otherwise contrastive forces resist
task-specific specialization.

4.6 Attribution via process-segment impact
Attribution should connect model outputs to
engineer-actionable hypotheses. We operationalize
this link with a perturbational score at the level of
steps and tools. For an object o ∈ {S,E}, we define
the process-segment impact as

PIS(o) = ŷ − ŷ(−o). (17)

The perturbed output ŷ(−o) is obtained by masking
object-specific signals and edges: we zero the gate
weights αv,m for modalities attached to o, remove or
downweight edges incident to owith a relation-specific
factor ηr ∈ [0, 1], and recompute the forward pass on
the induced subgraph with cached activations where
valid. Exact recomputation is expensive; a first-order
approximation sufficed in many cases,

ŷ(−o) ≈ σ
(
w>
(
h

(L)
W −∆h

(L)
W (o)

)
+ b
)
, (18)

where ∆h
(L)
W (o) is the accumulated contribution from

paths that traverse o, estimated by backpropagating
a unit gradient and summing relevance along
relation-typed edges.

We average PIS over small perturbations of window
widths and alignment parameters to reduce sensitivity.
Stability is assessed by variance across adjacent time
windows, which often reveals when attention maps
reflect frequency rather than causal effect.

4.7 Training, inference, and practical safeguards
Training loop: Batches are formed by sampling seed
wafers and expanding relation-aware neighborhoods
with fixed fanouts. We precompute or cache modality
embeddings that do not change within a batch. Early
experiments that recomputed wafer encodings on the
fly suffered latency spikes; caching eliminated stalls
without harming accuracy since augmentations were
minimal.

Inference: Near-line inference mirrors the training
neighborhoods, which avoids train–serve skew. We
throttle co_lot fanout to keep latency within budget,
then compute ŷ and a ranked list of objects using PIS.
The list is written to the shop-floor dashboard with
links to wafer attention maps and event snippets.

Safeguards: To limit leakage, all scaling and
normalization statistics are computed on training

data grouped by recipe or tool family and then
frozen. Alignment policies are versioned. Any change
triggers a short re-tuning stage. This discipline sounds
mundane yet was decisive when migrating from one
product family to another.

5 Experiments
This section reports how the proposed framework
behaves under realistic constraints, what it improves
and what it merely reveals, and where the evidence
is compelling versus where it remains suggestive. We
follow a protocol that mirrors shop-floor practice,
favoring time-based splits, leakage guards, and latency
accounting. All results were reproduced under three
seeds with independent data shuffles, and summary
statistics include central tendency and dispersion to
make uncertainty visible rather than implicit.

5.1 Data and evaluation protocol
Datasets and scope: We evaluate on two production
lines covering multiple product families and tool
classes. Each line contributes lots, wafers, and steps
with aligned wafer maps, metrology sequences, and
process or equipment events as formalized in Section
3. Spatial masks and alignment confidence are carried
forward to prevent silent discarding of uncertain
regions. The study window spans several months in
each line to expose the model to seasonal patterns and
maintenance cycles.

Temporal splits and leakage control: Training uses the
earliest window, validation tunes thresholds and early
stopping in a subsequent window, and test covers
the latest window. Lots and wafers do not cross
splits. Step executions inherit their wafer’s split.
Group-wise scaling statistics are fitted on training only
and are conditioned on recipe or tool family to avoid
global normalization that could leak distributional
information [19]. We found that small violations of
this rule, for instance computing a global z-score across
the entire dataset before splitting, inflated validation
performance in a way that did not materialize on the
test window.

Metrics: Predictive quality is summarized with ROC
AUC, PR AUC, and F1 at a threshold chosen on
validation. Attribution is evaluated using precision
at k and normalized discounted cumulative gain at
k for ranked lists of steps and tools against a set of
known excursions and engineer-reviewed cases [20].
Business-aligned impact is approximated by an offline
policy that simulates mitigation on the top causes
and reports the resulting change in expected first-pass
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Table 1. Comparison of predictive and attribution performance.

Model ROC AUC PR AUC F1 Score Precision@3 NDCG@3
Proposed
Framework 0.91 0.87 0.83 0.78 0.80

Tabular
Model 0.87 0.82 0.75 0.70 0.72

Transformer
(Metrology) 0.89 0.84 0.79 0.74 0.76

Heterogeneous
Graph 0.88 0.83 0.77 0.72 0.74

Graph + Image 0.90 0.85 0.80 0.76 0.78

yield. Latency and throughput are measured on a
reference server, with neighborhood sampling held
constant to avoid optimistic timing due to smaller
evaluation graphs. Stability is assessed through the
variance of process segment impact scores across
adjacent time windows and the disagreement rate
of top k attributions under small perturbations of
alignment windows and mask inflation.

5.2 Baselines, implementation, and fairness
safeguards

Baselines: We compare against tabular learners trained
on engineered aggregates from all modalities, a
transformer trained on metrology sequences alone,
a heterogeneous graph network that consumes
node-level aggregates without cross-modal gating,
and a graph plus image variant that attaches wafer
embeddings to wafer nodes while leaving other
modalities flattened. These choices reflect common
practice: strong tabular models remain competitive on
structured data, sequence models capture drift, and
graph models test the value of explicit structure.

Implementation parity: All methods share the same
alignment outputs, scaling policies, and time splits.
Hyperparameters are selected on validation, with the
same search budgets [21]. The training environment,
batch sizes, optimizer families, and early stopping
rules are harmonized. We report parameter counts and
inference latency to contextualize performance. Such
parity feels tedious to enforce, yet small asymmetries
in preprocessing or search budget have outsized effects
in industrial data.

A note on missingness. Baselines that require
fixed-length input receive imputed sequences
following the conservative strategy from Section 3.3.
The proposed model consumes masked sequences
directly. This difference is methodological rather than
preferential and is acknowledged when interpreting

the results.

5.3 Main results
Across both lines the proposed framework improves
standard classification metrics relative to the
strongest baseline (see Table 1 for quantitative
comparisons), with gains that are statistically
significant under nonparametric tests at conventional
levels. Improvements are more pronounced when
wafer maps contain structured patterns that align
with specific process segments, which suggests that
the graph and the gating mechanism help preserve
and propagate spatial evidence [22]. In product
families where metrology cadence is sparse and event
logs are the dominant signal, gains persist but with
wider confidence intervals, an indication that the
model benefits from structure yet still contends with
irregular sampling.

Attribution quality also improves, as evidenced by the
Precision@3 andNDCG@3metrics in Table 1. Precision
at three and five increases in most test windows, and
the spread of normalized discounted cumulative gain
narrows, which hints at more stable ranking rather
than occasional lucky hits [23]. In several windows
the baseline graph model achieves similar predictive
accuracy but exhibits volatile attribution, especially
when co-lot neighborhoods are dense. The proposed
method maintains ranking stability by tempering
co-membership through relation-aware caps and by
letting modality gates discount noisy channels.

Two alternative readings deserve attention. Part of
the improvement may originate from stricter leakage
control rather than from architecture alone, since
rigorous group-wise scaling and alignment versioning
benefit all models. There is also a possibility that
distributional peculiarities in certain product families
favormethods that emphasize structure. Both readings
are plausible and motivate extended validation across
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additional lines.

The comprehensive performance comparison in Table 1
demonstrates that the proposed framework achieves
the best balance between predictive accuracy (ROC
AUC: 0.91, PR AUC: 0.87) and attribution quality
(Precision@3: 0.78, NDCG@3: 0.80) among all
evaluated methods.

5.4 Ablations and sensitivity
We ablate the key design choices to understand their
contributions, with quantitative results summarized in
Table 2 and sensitivity to hyperparameters visualized
in Figure 3.

Removing amodality: Eliminatingwafer embeddings
leads to the largest drop when spatial patterns
dominate excursions (ROC AUC decreases from 0.91
to 0.88 as shown in Table 2), while removing log
embeddings hurts most around changeovers and
chamber cleans. Metrology removal impacts lines
where drift precedes failure by several steps. The
asymmetry is expected and underscores that fusion
should adapt to context rather than assume uniform
importance.

Removing spatial or co-tool edges: Cutting spatial
adjacency reduces performance on ring and cluster
patterns, whereas trimming co-tool edges reduces
attribution stability for equipment families. In early
trials co-lot edges overwhelmed neighborhoods and
diluted informative paths. Relation-aware caps
corrected this tendency with little cost in accuracy.

Disabling cross-modal gating: Replacing attention
with uniform averaging makes the model less selective

and increases disagreement of top k attribution under
perturbation, particularly when logs become bursty.
This indicates that the gatemodulates noise rather than
simply mixing features.

Sensitivity to temperature and neighborhood size:
Gating temperature controls the diversity ofmodalities
that survive fusion. Too sharp a temperature collapses
attention onto frequent modalities, while too soft leads
to uninformative averaging. Neighborhood sizes show
a similar trade-off. Larger neighborhoods help when
structure is informative yet hurt when relations pull
in weakly comparable nodes. These sensitivity trends
are analyzed in detail in Figure 3.

Table 2 provides systematic evidence for the
importance of each component: removing cross-modal
attention causes the most significant drop in
attribution metrics (Precision@3 falls to 0.68), while
the absence of temporal alignment severely impacts
overall performance. The sensitivity analysis in
Figure 3 further reveals how the framework’s
performance varies with key hyperparameters,
confirming the need for careful tuning.

5.5 Robustness and generalization
We test stability across time by evaluating in rolling
windows and by introducing small, controlled
perturbations to alignment windows and spatial
masks. The variance of process segment impact
scores remains bounded in most windows, which
suggests that explanations are reproducible to some
extent. Disagreement rates increase during product
introductions, a reminder that domain shift is not
an abstract risk but a common occurrence [25].

Table 2. Quantitative analysis of ablation studies.

Model Variant ROC AUC PR AUC F1 Score Precision@3 NDCG@3
Full Model
(Proposed) 0.91 0.87 0.83 0.78 0.80

No Wafer
Map Modality 0.88 0.84 0.78 0.72 0.74

No Cross-modal
Attention 0.86 0.81 0.75 0.68 0.70

No Spatial
Edges 0.89 0.83 0.77 0.71 0.73

No Co-tool
Edges 0.87 0.82 0.74 0.69 0.71

No Log
Modality 0.84 0.78 0.71 0.65 0.67

No Temporal
Alignment 0.85 0.79 0.72 0.66 0.68
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Figure 3. Hyperparameter sensitivity analysis.

Cross-product evaluation, where the model trains on
one family and is tested on another with similar route
length, shows moderate transfer. A brief adaptation
phase that updates only the modality encoders while
freezing relation parameters recovers part of the gap.
This hints that structure transfers better than low-level
features, though further research is needed to make
this statement precise [31].

5.6 Case studies and error analysis
Case A: Chamber wear and ring defects. In a series
of wafers with edge-centered failures, the model
concentrates wafer attention near the perimeter and
elevates impact scores for a specific etch step and
its associated chamber family [24, 32], as visually
demonstrated in Figure 4. Engineers confirmed
increased particle counts after a maintenance cycle.
The ranking did not simply mirror frequency, since
another chamber with similar usage remained low
impact. This instance illustrates how spatial evidence
and co-tool relations reinforce each other [33].

Case B: Sparse metrology and false alarms. On a
route with limited metrology cadence the model flags
a lithography step that, upon inspection, had clean
process logs. The false positive was traced to bursty
events earlier in the route that coincided with rare

recipe switches [34]. After tightening time-decay in
the log encoder and slightly widening the alignment
window, attribution shifted away from lithography.
The correction was modest yet shows that small
modeling choices can redirect explanations, which
argues for audited policies and sensitivity checks [35].

Failure patterns: Common errors include
over-attributing to steps with frequent events
and underweighting low-frequency but high-impact
steps. Reweighting via the distillation term helped
when credible priors existed; otherwise it risked
injecting bias. This tension suggests that priors should
be treated as soft hints rather than hard constraints.

Figure 4 provides a detailed visualization of Case A,
showing: (a) the ring defect pattern on the wafer map
with attention heatmap highlighting the edge region,
(b) the elevated process segment impact scores for
the specific etch step and chamber family, and (c) the
temporal correlation between chamber maintenance
events and defect occurrence. This comprehensive
visualization reinforces how the framework integrates
spatial, temporal, and relational evidence to produce
actionable insights.
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Table 3. Key engineering feasibility metrics.

Model Average Inference
Latency (ms)

Throughput
(Wafers/sec)

Model Parameters
(Millions)

PIS Variance
(Test Window)

Memory
Usage (GB)

Proposed
Framework 35 0.25 15.2 0.05 3.5

Tabular
Model 28 0.30 5.6 0.12 2.8

Transformer
(Metrology) 42 0.22 12.5 0.10 3.2

Heterogeneous
Graph 38 0.23 10.4 0.08 3.0

Graph + Image 45 0.20 18.6 0.07 3.6

Figure 4. Case study: chamber wear and ring defect analysis.

5.7 Engineering feasibility and latency accounting
Near-line feasibility was assessed by measuring
end-to-end inference per wafer, including
neighborhood extraction and process segment
impact scoring. With relation-aware caps and cached
modality embeddings, latency remained within
acceptable budgets (see Table 3 for detailed metrics)

and throughput was stable at the line level [26].
Hot equipment and recipe nodes benefited from
embedding caches. Without caching, sporadic spikes
occurred during peak hours and were traced to
recomputation of image embeddings. Standardizing
the cache policy across models eliminated the spikes
and made comparisons more equitable.
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Monitoring included distribution shift indicators such
as population stability index for key features and
drift of impact scores over time. Alarms were set
when stability thresholds were exceeded, with the
stability trends visualized in Figure 5. In practice,
stability alarms often coincided with maintenance
events, which is encouraging, yet there were instances
where alarms reflected benign product mix shifts.
Distinguishing between these cases is an open problem
and calls for closer coupling between analytics and
operations.

The proposed framework achieves a balance between
latency and accuracy, as detailed in Table 3. With an
average inference latency of 35 ms and throughput
of 0.25 wafers/second, it offers practical near-line
applicability while maintaining low PIS variance
(0.05), indicating stable attribution performance.

Figure 5. Latency and stability analysis.

As shown in Table 3, the proposed framework exhibits
a favorable trade-off: although the tabular model has
the lowest latency (28 ms), it suffers from higher
PIS variance (0.12), indicating less stable attribution.
Conversely, while the Graph+Image model achieves
low variance (0.07), its latency (45 ms) is less
suitable for near-line applications. The latency-stability
relationship across different model architectures is
further explored in Figure 5.

6 Conclusions
This study demonstrates that by incorporating
manufacturing semantics into a heterogeneous
graph with cross-modal attention, prediction and
explanation can evolve together. The model preserves
wafer, metrology, and event data in their natural
hierarchy, aligning them when relevant to the process.
It improves first-pass yield prediction and attribution
stability, while maintaining acceptable latency. The
value lies in structuring manufacturing data explicitly,
which leads to more accurate diagnostics of complex
patterns across product families and tools.

However, the framework has limitations. Attribution is
approximate, and generalization across sites remains
uncertain. The impact of interventions requires
direct validation, and operational contexts could
influence the results. Future research should focus
on causal modeling, uncertainty quantification, and
broader testing across different sites and product
families. Additionally, multi-objective optimization to
balance accuracy, cost, and energywill further enhance
practical applicability. Ultimately, this work shows
that robust decision support for yield improvement
is possible through careful data structuring and
reasoning in industrial settings.
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