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Abstract

This paper advances a  decision-aligned
post-processing layer for government bond yield
forecasts, turning competent sequence predictions
into curve-consistent and economically calibrated
outputs with minimal engineering burden. Starting
from capacity-fair baselines in the LSTM, GRU
and compact transformer families, used only to
generate initial point forecasts for five, ten and
thirty year maturities at short horizons, we add
two model-agnostic stages. A curve consistency
projection enforces monotone ordering across
maturities and, when warranted, mild convexity
while preserving local signal. An asymmetric
economic calibration then learns a monotone
mapping that down-weights the costlier side of
error in basis points and in price space via duration
and convexity. Rather than a perfectly linear
workflow, we report practical adjustments such as
solver choices for the projection and calibration
folds for stability. Evaluation considers violation
rates, smoothness and decision-weighted loss,
and probes weakly coupled transfer from ten year
forecasts to five and thirty year using rolling linear
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links without retraining. Results indicate lower
violation rates and reduced economic loss to some
extent across horizons, though gains can depend
on regimes and may partly reflect calibration rather
than new information. Alternative explanations
including liquidity frictions or structural breaks
remain plausible, and further research is needed on
denser tenor grids, portfolio utilities and additional
markets.

Keywords: curve consistency projection, asymmetric
economic calibration (AEQ), weakly-coupled
second-maturity, yield curve forecasting, decision-aligned
post-processing, basis-point economic loss, capacity-fair
baselines.

1 Introduction

Forecasting government bond yields is often presented
as a contest of point accuracy at a single tenor,
yet market practice is governed by the shape and
stability of the entire curve as well as by the
asymmetric consequences of forecast errors that push
hedges in the wrong direction [1]. A desk may
tolerate a small statistical miss if the predicted curve
remains monotone and smooth, while it will reject a
numerically accurate signal that implies implausible
cross-maturity relations or that understates the price
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impact on the costly side of risk. Considering these
practical pressures, accuracy becomes a necessary but
incomplete condition [2]. What is also required, to
some extent, is a decision layer that aligns forecasts
with no-arbitrage structure and with explicitly stated
risk preferences without discarding the information
already learned by competent sequence models.

The literature has made substantial progress with
recurrent and attention based architectures that exploit
temporal dependence and heterogeneity in predictors.
Many studies report meaningful reductions in squared
error, yet closer inspection often reveals two limitations
that matter for deployment [3]. First, the evaluation
is largely tenor specific and rarely checks whether the
forecasts across short, benchmark and long maturities
can be reconciled into a curve that a risk committee
would consider credible. Second, loss functions are
usually symmetric in yield space, while the economic
cost of over-forecasting versus under-forecasting
differs through duration and convexity effects that
translate identical basis-point errors into unequal
price outcomes. These observations motivate a
complementary perspective. Instead of searching
for yet another forecaster, we investigate whether a
lightweight post-hoc layer can project raw predictions
onto a curve that respects ordering and mild convexity,
and whether a calibrated mapping can emphasize the
expensive side of error in a controlled and auditable
manner [4].

Our own experimentation did not proceed in a straight
line. Early attempts to tighten point accuracy by tuning
horizons and look-backs occasionally produced lower
mean error together with more frequent violations of
cross-maturity ordering, which risk managers found
difficult to accept even when the numerical gains
were clear [5]. We also observed that calibration
tuned for symmetric loss understated the impact
of under-hedging during volatile weeks, while a
naive asymmetrization introduced instability when
regimes shifted. These frictions led us to refine two
guiding questions. Can we preserve local signal while
enforcing curve plausibility through a small projection
step that minimally perturbs forecasts. Can we
reduce decision-weighted loss in both basis points and
price space without inadvertently fitting to transient
anomalies such as liquidity squeezes or announcement
effects [6].

The study reported here starts from capacity-fair
baselines in the LSTM, GRU and compact transformer
families that serve only as producers of initial point
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forecasts for five, ten and thirty year maturities
over short horizons. On top of these forecasts we
introduce a curve consistency projection that enforces
monotone ordering and, when the data warrant it,
gentle convexity, followed by an asymmetric economic
calibration that learns a monotone mapping aligned
with user specified penalties on the costly side of error
in yield and in price space through modified duration
and convexity [7]. We finally probe weakly coupled
transfer from the ten year node to the short and long
ends through rolling linear links in order to assess
whether decision alignment at the benchmark maturity
carries over across the curve without retraining.
Multiple interpretations remain possible and further
research is needed on denser tenor grids, portfolio level
utility and alternative markets. Even so, the evidence
that follows suggests a feasible route by which accurate
but occasionally implausible point forecasts can be
transformed into decision-ready signals that are curve
consistent, risk aware and amenable to governance.

2 Related Work

Research on term structure forecasting has evolved
along two broad lines that only partially speak to
the practical demands of curve validity and decision
alignment. The first line, rooted in affine and dynamic
Nelson-Siegel families, emphasizes parsimony and
economic interpretability, often delivering factor based
forecasts that are stable under moderate regime change
and transparent for policy analysis [8]. Yet when such
systems are evaluated at short horizons, their appeal
to structure can come at the cost of local adaptability,
and their loss functions tend to be symmetric in yield
space, which may obscure the different economic
consequences of overshooting and undershooting.
The second line, more recent and methodologically
diverse, adopts sequence learning to exploit temporal
dependence and large covariate sets. Long short term
memory networks, gated recurrent units and compact
transformers have reported lower mean squared error
at key tenors, sometimes substantially so, although the
evaluation protocols frequently remain tenor specific
and the reconciliation of forecasts into a curve that a
risk committee would accept as plausible is seldom
examined.

Within the deep learning strand, two methodological
choices recur. One is to privilege point forecasts
trained under mean squared error and to treat the
curve as a collection of independent targets [9]. This
approach simplifies engineering but invites violations
of monotone ordering across maturities and creates



ICJK

ICCK Transactions on Emerging Topics in Artificial Intelligence

convexity profiles that a no arbitrage check would
likely contest. Another is to improve interpretability

through sparsity or ex post regressions on latent states.

This offers insight into which drivers co move with
error, yet it still assesses models through symmetric
statistical criteria and leaves the shape of the predicted
curve unconstrained [10]. These patterns suggest that
a different layer of analysis is needed. Rather than
competing to design yet another forecaster, one may
ask how to post process competent predictions so that
they become curve consistent and more closely aligned
with explicit economic preferences.

The literature on shape constrained estimation
provides a natural starting point. Isotonic regression
and quadratic programs with linear inequalities
can enforce monotonicity across maturities while
solving a small projection problem that perturbs
the original forecast as little as possible. Spline
based approaches can impose mild convexity that
stabilizes second differences without overwriting local
signals [11]. These techniques, which have matured
in other forecasting domains, are rarely embedded
after modern sequence models for yields, possibly
because evaluation traditions in finance still privilege
point accuracy and because operational teams prefer
not to modify trained predictors. Considering the
above factors, a post hoc projection that is auditable
and computationally light could be a pragmatic
compromise between structure and flexibility [12].

Decision aligned calibration forms a complementary
strand. Quantile and asymmetric losses acknowledge
that the cost of error is not the same on both sides
of the distribution. In fixed income, duration and
convexity transform an identical basis point miss into
unequal price moves, which implies that yield space
errors should be mapped into price space before loss
aggregation. Prior studies that explore calibration
often do so under symmetric criteria or without an
explicit price mapping [13]. A monotone calibration
map that is fitted on a validation slice and then frozen
out of sample may reduce costly side errors while
preserving the ranking learned by the forecaster. It
is also possible that such calibration picks up regime
specific biases rather than genuine signal, which calls
for sensitivity checks and for a modest interpretive
stance.

A third body of work, sometimes developed for
hierarchical and grouped time series, studies
reconciliation methods that impose coherence across
related forecasts [14]. The analogy to the yield

curve is suggestive. Reconciling across maturities
resembles reconciling across aggregation levels.
Yet there are differences that matter. Yield curves
require economic shape constraints rather than mere
additivity, and they are exposed to microstructure
frictions and announcement risk that can induce
transient anomalies. This leads us to consider weakly
coupled cross maturity links that do not retrain base
models but test whether decision layer improvements
at the benchmark tenor transfer to the short and long
ends.

Taken together, these strands highlight a gap. Modern
sequence learners deliver accuracy, classical curve
models deliver structure, and calibration methods
deliver better probabilistic alignment, yet the three are
rarely combined into a single, auditable decision layer
that respects curve shape and asymmetric economic
costs. The present study positions itself in this gap. We
retain capacity fair sequence learners only as producers
of initial signals. We then project forecasts onto a shape
constrained set to obtain a curve that is monotone and,
when warranted by the data, gently convex. Finally,
we calibrate yields to price space with an asymmetric
loss that reflects the institutional cost of being wrong
on the expensive side. The proposal does not preclude
alternative explanations and it does not claim universal
dominance [1]. Rather, it offers a possible route to
make existing predictors more useful for real decisions
while remaining open to further research on denser
tenor grids, portfolio level utilities and markets whose
microstructure differs in important ways.

3 Data and Experimental Setting

In order to assess the effectiveness of the proposed
post-hoc decision layer, we designed an experimental
framework built on a robust dataset of sovereign bond
yields. Given the complexities of modeling the yield
curve, which is inherently non-linear and exhibits
significant cross-maturity dependencies, we sought
to ensure that our experimental setup could capture
these challenges while also enabling a comprehensive
evaluation of our methodology.

The dataset consists of daily sovereign bond yields
for three widely-followed maturities: five years, ten
years, and thirty years [15]. These maturities were
selected to represent key points along the yield curve,
encompassing both shorter-term and long-term market
expectations. By focusing on these three maturities,
we aim to capture the typical dynamics that traders
and risk managers monitor, while simplifying the
modeling problem to a manageable level. We selected
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a long time period that includes diverse market
conditions pre-crisis stability, post-crisis recovery, and
unconventional monetary policies thereby allowing
us to examine whether the decision layer can adapt
across various economic regimes. It is important to
note that the selected period spans significant shifts
in macroeconomic conditions, which may impact the
robustness of our approach under different market
structures.

3.1 Dataset and Sample Window

The dataset spans multiple years of daily observations
for the five-year, ten-year, and thirty-year sovereign
bond yields, sourced from publicly available financial
databases. The sample includes a variety of economic
conditions: the pre-crisis period, the aftermath of
the financial crisis, and periods of unconventional
monetary policy and tightening. This broad sample
is intended to test the adaptability of the proposed
decision layer in both stable and volatile market
environments. We take care to harmonize the time
series of yields, ensuring consistency across maturities
by adjusting for any market holidays and other trading
disruptions [16]. The analysis further excludes
non-trading days, and forward fills gaps where market
closures result in missing data.

While the period of study is long enough to encompass
diverse regimes, certain challenges may arise in
periods of extreme volatility. For instance, market
microstructure effects, such as changes in liquidity
during crises or end-of-quarter effects, can introduce
noise that could interfere with the projection and
calibration steps. The experimental design ensures
that such anomalies are identified and addressed
by flagging outliers associated with major market
events [17]. Although extreme tail events such as
market crashes are not winsorized by default, the
robustness of the model under such conditions is
tested to understand its limits in more erratic market
environments. The summary statistics of the yield data
for the three maturities are presented in Table 1.

3.2 Predictors and Preprocessing

The predictor set is designed to be comprehensive
yet parsimonious, drawing on both macroeconomic
and market-based factors that are commonly believed
to influence yield curves. Included in the feature
set are term-structure spreads, interest rate swaps,
broad equity indices, commodity prices, and currency
exchange rates. To ensure that the models are not
unduly influenced by scale differences, each feature is
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standardized using statistics computed exclusively on
the training slice immediately preceding each forecast
date. The decision to standardize based on the training
window alone is driven by the need to simulate
real-world scenarios where future information should
not leak into the model at training time.

A key aspect of the data preparation involves the
handling of outliers, particularly those driven by
exceptional market events, such as central bank policy
announcements or geopolitical crises. While some
studies opt to winsorize extreme values to reduce their
influence, we choose not to impose such restrictions
initially, in order to allow the model’s decision layer
to fully confront the observed data generating process.
This is crucial because one of the objectives of the study
is to determine whether the decision layer can handle
noisy or extreme events effectively. That being said, we
do report robustness checks when extreme values seem
to disproportionately affect the results, which could
point to further avenues of investigation regarding the
model’s sensitivity to outliers.

3.3 Rolling Windows and Horizons

The experimental setup employs rolling windows to
ensure the model is evaluated in a way that reflects
how it would perform in a real-world forecasting
environment. Specifically, the data are split into
overlapping training and testing windows to simulate
the forecasting task at hand. The forecasting horizon
is set to three different time frames: one day, five
days, and ten days. For each horizon, the look-back
windows are set to six, twenty-one, and sixty-one
trading days, respectively. These look-back windows
capture a range of temporal dynamics, from short-term
volatility to longer-term trends, allowing the model to
adjust its forecast horizon depending on the length of
the prediction required.

The rolling evaluation involves advancing the training
window by one day, refitting the base forecasters
within this rolling window, and then applying the
post-hoc decision layer to the out-of-sample test data.
This process mimics a production setting, where
models must be continuously updated with new data,
reflecting the dynamic nature of financial markets.
Importantly, the validation slices used for fitting the
asymmetric economic calibration map are kept distinct
from the training data, ensuring that the model does
not suffer from data leakage.
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Table 1. Data summary statistics.

Statistic 5Y Yield 10Y Yield 30Y Yield

Observations 6,842 6,842 6,842
Time Period Jan 1999 - Apr 2025 Jan 1999 - Apr 2025 Jan 1999 - Apr 2025
Mean 2.18 2.87 3.52
Std. Deviation 1.45 1.68 1.92
Minimum -0.25 0.08 0.67
25th Percentile 1.12 1.65 2.24
Median 1.95 2.58 3.18
75th Percentile 2.89 3.74 453
Maximum 6.23 7.15 7.98
Skewness 0.52 0.41 0.35
Kurtosis 2.78 2.65 2.51
Jarque-Bera Test 243.7%** 218.9*** 195.3***

ADF Test Statistic -2.41 -2.63 -2.35

3.4 Capacity-Fair Base Learners

The base learners used in this study include
single-layer LSTM networks, GRU networks, and a
compact transformer model with a narrow architecture
designed to capture temporal dependencies without
overwhelming computational costs. These models
are selected not because they are expected to be
the optimal architecture for bond yield forecasting,
but because they provide a fair comparison across
common deep learning families while minimizing
the impact of overfitting. To ensure that the results
are not influenced by variations in model capacity,
we constrain the number of parameters across these
models to within five percent of one another. This is
done by adjusting the number of layers, hidden units,
and other hyperparameters to match the parameter
counts across the different architectures.

Base models are trained with identical optimization
routines, learning rates, and early-stopping patience,
which guarantees that any differences in performance
can be attributed to the decision layer rather than
inherent architectural advantages. The training
process is kept as efficient as possible, using a limited
number of epochs to avoid excessive computational
costs that could potentially overshadow the negligible
cost of the projection and calibration steps [18].
In essence, the goal is to isolate the effect of the
post-hoc decision layer and to avoid conflating model
complexity with improvements achieved through our
proposed methodology. The detailed configurations
and hyperparameter settings for the base LSTM,
GRU, and Transformer models are summarized in
Table 2. The internal architecture of a single LSTM cell,
illustrating the gating mechanisms that underlie the

model’s temporal processing capabilities, is depicted
in Figure 1.

O
il

gate

Figure 1. LSTM cell architecture diagram.

3.5 Post-Hoc Decision Layer: Application Protocol

The core novelty of this research lies in the post-hoc
decision layer, which is applied uniformly across
all forecasts generated by the base models. After
generating point forecasts at five, ten, and thirty
years, the decision layer applies a curve-consistency
projection that ensures the forecasted curve remains
monotone and, when applicable, convex. This
is accomplished by solving a small constrained
optimization problem that minimally alters the
forecasted values but ensures that the shape of
the yield curve is plausible and consistent with
known financial principles [19]. Following the curve
projection, the ten-year forecast is passed through an
asymmetric economic calibration map that emphasizes
minimizing the costlier side of the error, as determined
by modified duration and convexity. This post-hoc
calibration map is trained using the validation slice,
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Table 2. Model configurations.

Model Specification Details
Component
Base Models LST™, GRU, Capacity-fair comparison within
Compact 5% parameter tolerance
Transformer
Parameter Within +5% Ensures fair architectural
Matching tolerance comparison
LSTM Single-layer 100 hidden wunits, 40,901
Architecture vanilla LSTM parameters
GRU Architecture = Single-layer GRU 95 hidden units, 38,750
parameters
Transformer Compact 6 attention heads, 96 hidden
Architecture transformer units, 42,150 parameters
Input Sequence 6, 21, 61 trading Captures short, medium, and
Length days long-term dependencies
Forecasting 1, 5, 10, 15, 20 Evaluates short to medium-term
Horizons days predictive capability
Training Window 3,000 trading days Rolling window approach for
(~12 years) temporal validation
Optimization ADAM optimizer Learning rate: 0.005, piecewise
decay schedule
Regularization L2 regularization Early stopping with patience of
(A=0.0001) 50 epochs
Data Split 70% training, 30% Chronological split maintaining
testing temporal order
Feature Zero mean, unit Standardization based on
Normalization variance training window only
Batch Size 32 Mini-batch training for stability
Initialization Xavier uniform Consistent initialization across
models
Activation Tanh Standard activations  for
Functions (LSTM/GRU), respective architectures
GELU
(Transformer)

and once learned, it is applied to the full dataset.

Finally, when testing weakly-coupled transfer between
ten-year forecasts and the five- and thirty-year nodes,
we project the ten-year forecast to the other maturities
using a simple linear link, and then apply the same
decision layer to those values. This protocol allows
us to assess whether the gains from the decision layer
extend across maturities without retraining the base
models.

3.6 Data Quality, Governance, and Potential Biases

Data quality and governance are central to ensuring
the robustness and interpretability of the results.
Throughout the study, we document any significant
market events, such as changes in benchmark bonds,
liquidity disruptions, or macroeconomic shifts, that
might introduce biases into the yield curve. These
events are flagged and analyzed separately to ensure
that they do not disproportionately affect the results.
Furthermore, since yield curve forecasting is sensitive
to regime changes, we carefully monitor the level and
slope of the curve to detect potential shifts that might
invalidate assumptions about stability [20]. Despite
these challenges, we believe that the use of a rolling
validation scheme, along with rigorous data cleaning
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procedures, minimizes the potential for significant
biases. We also report sensitivity analyses when
extreme values or anomalies appear to influence the
model’s behavior.

3.7 Reproducibility and Experiment Registry

To promote transparency and facilitate replication,
all experiment details, including random seeds,
hyperparameter settings, data splits, and model
architectures, are logged in a machine-readable
registry. This registry also tracks any changes made to
the benchmark bonds or handling of data anomalies.
The full dataset and experimental scripts, including
those used to generate rolling windows, preprocess
data, and apply the decision layer, are available to
ensure that results can be independently reproduced
and stress-tested. Given that future research may
explore alternative feature sets, more granular tenors,
or different market structures, this registry serves
as a foundation for further experimentation and
comparison. While the present study offers a
disciplined and reproducible approach to evaluating
decision-aligned yield forecasting, further research
is needed to explore the impact of denser tenors
and alternative financial markets on the proposed
methodology.

4 Methods: Post-Hoc Decision Layer

We cast the decision layer as a sequence of small convex
programs and monotone calibrations that act after
the base forecasters produce point predictions. The
emphasis is operational: each component must be
auditable, inexpensive, and, to some extent, tolerant
to regime shifts. Throughout, maturities are m €
{5Y,10Y,30Y} and horizons H € {1,5,10}. At date
t, the raw forecast vector is

- _ (5 ~10  ~30 \ T
Yt+H = (yt+H7yt+Hayt+H) .

4.1 Curve-Consistency Projection

4.1.1 Projection objective and constraint set

We project 3,4+ g onto a shape-constrained set C using
a weighted least-squares objective:

G = arg min WAy — a3 sty eC. (1)

where W = diag(ws, w10, w3o) encodes maturity-wise
trust in the raw forecasts. The feasible set enforces
monotonicity and gentle curvature:

C={y:y° <y <y, A?ysmall}.

(2)
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With three nodes, a convenient convex proxy for
“small curvature” is a quadratic penalty on the second
difference:

APy = y0-2y"044° Q(y) = My*—2y"+1°)%, A > 0.
(3)

Combining (1)—(3) yields a strictly convex quadratic
program (QP):

955 = argmin {IW/2(y = o) I3 + 20v) }

st y® < yl0 < .

(4)

The projection minimally perturbs raw forecasts
while imposing economically meaningful shape. We
found A values in a modest range stabilize second
differences without erasing local signals; larger A
may oversmooth during sharp regime changes, which
suggests sensitivity checks are prudent.

4.1.2 Isotonic form and KKT characterization

Setting A = 0 reduces equation (4) to a weighted
isotonic regression problem. Let P be the
pool-adjacent-violators (PAV) operator. The solution
admits a variational characterization:

It = P(ers W) (5)
which is the unique minimizer satisfying
Karush—-Kuhn-Tucker conditions.

Wy — 9t4n) + =0, p1o(yi0 —ys) =0, (6)

#30(y30 — y10) = 0, fe10, 30 > 0

When adjacent constraints are slack, multipliers vanish
and y equals y; when violated, PAV pools neighboring
nodes to restore order, which arguably preserves local
information to the extent possible.

4.1.3 Penalized solver and closed-form step

For A > 0, equation (4) remains a small quadratic
program. Writing Q@ = W +AD " D with D = [1, -2, 1],

Gy = arg myin (v — Gerr) QW — Gvm) 7)
st. s < yio < 30
A projected Newton step,
(k+1) _ 11 (k) _ VI( (k))
Y {ys<y10<yso} \ ¥ n Y ) (8)

Vi(y) =2Q(y — Jt+n)

converges in a few iterations for this 3-variate problem.
IT denotes Euclidean projection onto the order cone.

4.1.4 Curve-level diagnostics

We quantify curve plausibility through violation rate
and smoothness:

1
VR = 7 ; l{yt,S > Y¢,10 OF Yt,10 > yt,30}7

X (9)

1 _ 2
SC = T zt: (Y£,30 — 2yt,10 + Yr.5)

The gain from projection is CCG = VRyaw — VRccp.
While large CCG is desirable, a simultaneous rise
in mean-squared error would be undesirable; our
empirical section weighs these tensions rather than
presuming a single dominant criterion.

4.2 Asymmetric Economic Calibration (AEC)

4.2.1 Yield-space asymmetry and choice of loss

~CCP,(m) (m)

Let GET}J = O — Y- We model directional

costs via a piecewise-quadratic asymmetric loss:

Lo(e) = a(e™)? + (1

e~ = max(—e,0),

—a)(e™)?, e" =max(e,0),
a€[0,1]
(10)

When a > 1/2 the loss prioritizes over-prediction
penalties; institutions may prefer this when
under-hedging is particularly costly. We emphasize
that « is not universal and likely shifts across regimes.

4.2.2 Monotone calibration map and training objective

We learn a monotone map g : R — R applied to the
CCP output. Two parameterizations are practical:

e Affine-monotone: g(x) = a + bz, with b > 0.

e Isotonic: ¢ € (G, where G is the set of
non-decreasing right-continuous functions on R.

On a rolling validation slice ), we solve:

(m)

i) ~Yiin

§ = argmingeg 1. s1myey Wi () La (9 (055G m ) + pR(9)

(11)

with maturity—horizon weights wg (m). R(g) canbe a
total-variation penalty for isotonic functions or a small
ridge on (a, b) in the affine case, p > 0.

The monotonicity constraint prevents pathological
re-orderings and typically stabilizes calibration under
limited data. We keep p small so that the map adjusts
bias on the costly side without overfitting transient
noise.
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4.2.3 Price-space mapping and economic loss

To reflect decision costs, we map yield errors to price
space using modified duration Dy,,q and convexity C'
of a representative bond:

1
AP ~ —Dpoq Ay + 5C (Ay)? (12)

We then evaluate a price-weighted asymmetric loss:

oo (22)’

+(1-a) <App>i (13)

and report decision-weighted risk:

CCP,(m)
t+H,m )

DA price = ’;’ > Ea. (g (y

(t,Hm)eT

)
(14)

Explanation: (12)—(14) translate identical basis-point
misses into unequal price consequences, which is
closer to how risk owners perceive errors. Alternative
bond specifications are possible; we fix a representative
10-year bond and check sensitivity.

4.2.4 Calibration stability and frontier

To balance statistical fidelity and economic alignment,
we examine a frontier by varying o and p:

F = {(MSE7 DAprice) achieved by («, p) on T}
(15)

Points on F that reduce DA ;.. with negligible MSE
degradation are preferred. In volatile episodes, shifts
along F may reflect regime bias rather than genuine
signal; we discuss this possibility explicitly in the
experiments. An illustrative example of such a frontier,
mapping the trade-off between statistical error (MSE)
and economicloss (DA ice) under different calibration
parameters («, p), is shown in Figure 2.

4.3 Weakly-Coupled Second-Maturity (WCM)
4.3.1 Rolling Linear Link and Estimation

We probe cross-maturity transfer by linking 10Y
predictions to 5Y and 30Y via a rolling ridge regression
on a window W;:
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Economic Loss Frontier: MSE vs. DA_price Trade-off

Price Loss (DA_price)
©

on-Weighted Asymmetric

Decisif

Mean Squared Error (MSE)

Figure 2. Economic loss frontier.

. ~ ~ 2
(am; bm) = argmin > (Grm — a = bijr10)” + 07,

TEW:
m € {5, 30}

(16)
with small v > 0 to stabilize b,,. The mapped
predictions are:

@T+H, m«10 = Am + meT+H,10 (17)
4.3.2 Coherence test with projection and calibration
We stack the triplet g)t(i;lo), gjt(i(g, gjﬁogl_lo) and
re-apply the CCP and AEC sequence:
~cCcPyWCM ((54¢-10)  ~(10) (30410
(Z/tHL?) = CCP <y§+<;1 )v y§+1217 y1§+1-<l_ )>a (18)

~AEC ~CcCcp\WCM
YirH = 9<(yt+H) )

We then compute VR, SC and DA ;i as in equations
(9) and (14).

4.4 Drift and stability metrics

To monitor stability of the weak link, we track

Drifty, (t) = |bm (t)—bm (t—1)|, VarCoeff,, = Var; (b, (t))
(19)

and a transfer-gain index

TGI,, = DAprice,raw,m - DAprice,WCM,m (20)
High VarCoeff or spikes in Drift hint at regime breaks;
positive TGI suggests the decision layer’s benefits at
10Y plausibly extend to 5Y or 30Y. Ambiguous signs
merit a closer look at liquidity and announcement
calendars.
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Figure 3. End-to-End post-hoc decision layer pipeline.

4.5 Algorithmic Summary and Complexity

We structure the decision layer as a thin wrapper
around the base forecasters, with deterministic
projections and monotone calibrations that can be
executed in-line with a rolling evaluation. The aim
is operational clarity: each step should admit a
transparent objective, a small number of tunables, and
predictable runtime; at the same time, we acknowledge
that market regimes and data idiosyncrasies may,
to some extent, stress otherwise straightforward
procedures, which motivates careful scheduling,
warm-starting, and monitoring.

Scope and notation. For each date ¢t and horizon H €
{1,5,10}, let the raw maturity vector be g1y € R>.
Define weights W = diag(ws, w10, ws30), curvature
penalty A > 0, calibration asymmetry o € [0,1],
isotonic or affine map g, and the weak-coupling ridge
~v > 0 when WCM is enabled.

4.5.1 End-to-end Pipeline

The complete workflow of the proposed post-hoc
decision layer, illustrating the sequential application
of CCP, AEC, and WCM modules to raw forecasts, is
visualized in Figure 3.

Step 1: Curve-Consistency Projection Solve the tiny
quadratic program (Eq. (7)) with order constraints;
if A = 0, apply weighted pool-adjacent-violators
algorithm (Eq. (5)).

Implementation detail: use a projected Newton or
active-set solver; ties from PAV pooling are acceptable
and, in our experience, stabilizing near inversions.

Record multipliers i (Eq. (6)) for audit trails; non-zero
s indicate binding shape constraints.

Step 2: Asymmetric Economic Calibration Apply
g to the CCP output (Egs. (10)—(11)); when using
isotonic g, cache breakpoints and reuse them until the
validation slice rolls.

Compute price-space deltas via D04, C (Eq. (12)) and
log the decision-weighted loss (Egs. (13)-(14)).

Practical note: clamp extremely large |Ay| before
convexity expansion to avoid numeric explosion on
rare tail days; we report sensitivity when clamping is
active.

Step 3: Weakly-Coupled Second-Maturity
Estimate rolling links (a,,by,) on W; (Eq. (16)),
map 10Y — 5,30 (Eq. (17)), re-run CCP — AEC
(Eq. (18)).

Monitor drift and variability (Eq. (19)) and compute
transfer gains (Eq. (20)); spikes may suggest regime
breaks or liquidity-induced decoupling.

Step 4: Metrics and logging
e Curve plausibility: VR, SC, and CCG (Eq. (9)).
e Economic alignment: DAy ice (Eq. (14)).
e Statistical context: RMSE / MAE.

Persist A, a, p, W, solver tolerances, KKT residuals, and
wall-clock times for reproducibility and post-mortem
analysis.

4.5.2 Numerical Choices, Stability, and Failure Modes
Solvers: With three nodes, isotonic CCP is O(1) per
date (formally O(K) with K = 3); the penalized QP
typically converges in < 5 projected Newton steps with
tight tolerances. Affine g is closed-form; isotonic g is
O(N) in the validation slice via PAV and is refit only
when the slice rolls.
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Step sizes and conditioning: For Eq. (8), a
backtracking line-search on 7 avoids overshooting
when A\ is large. If @ is ill-conditioned, add a tiny
ridge eI with ¢ € [10719,107%] and report it in logs.

Warm-starting and pooling: Active-set continuity
between ¢ — 1 and ¢ usually holds except on inversion
flips; PAV pooling will merge adjacent nodes when
order is violated, which we accept as an economically
plausible correction rather than an error. Still, we flag
sustained pooling for review.

Calibration drift: The map § can absorb
regime-specific bias. To avoid chasing noise, we
(i) refit on a fixed-length validation slice, (ii) penalize
excessive total variation for isotonic g via small p,
and (iii) freeze § during high-volatility bursts and
re-evaluate ex post. Frontier plots (Eq. (15)) help
identify settings where price loss falls without material
MSE deterioration.

WCM fragility: Large Drift,, or VarCoeff,,
(Eq. (19)) may indicate that the linear link is
temporarily unreliable; in such windows, we allow
WCM to fall back to direct forecasts at 5Y/30Y and still
pass through CCP — AEC, acknowledging that further
research is needed on non-linear or regime-switching
links.

4.5.3 Complexity and Latency

Let T be the number of rolling dates, H the number
of horizons, and S the number of maturities. Ignoring
the base forecaster:

e CCP (isotonic): O(THS) with a very small
constant; with penalty and projected Newton,
O(THS) with < 5 iterations.

e AEC (inference): O(THS), AEC (fit) on a
validation slice of size V' is O(V) for isotonic, O(1)
for affine.

e WCM: ridge fit O(|W:|) per ¢, mapping O(1),
followed by another CCP — AEC which is again
O(1) pert, H.

In practice, the marginal latency of the decision layer is
negligible compared with training or scoring the base
models. Vectorizing over horizons and batching dates
across CPU cores keeps wall-clock close to linear in 7'.

4.6 Design choices, Limitations, and Openness

The layer is deliberately simple projection plus
monotone calibration so auditors can trace how
each constraint affects outputs. Weighting W in
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Eq. (1) allows institutions to embed maturity-specific
confidence; A\ in Eq. (3) expresses tolerance for
curvature. The asymmetric parameter « in Eq. (10)
is contextual, not universal, moving « reshapes
the frontier 7 in Eq. (15), which we read as
institutional preference rather than a mechanical
optimum. Ridge v in Eq. (16) stabilizes links but may
hide genuine changes in term-structure mechanics; we
thus track drift in Eq. (19) and do not rule out the
possibility that transfer gains or losses reflect evolving
microstructure. While the present formulation is
convex and reproducible, further research is needed
on denser tenor grids, regime-switching weights, and
distributional objectives beyond piecewise quadratics,
especially where tail risks dominate decision costs.

5 Experiments

The experimental section serves as a bridge between
the methodological design presented earlier and the
interpretive discussion that follows. Its purpose
is to examine whether the proposed post-hoc
decision layer composed of the Curve-Consistency
Projection, the Asymmetric Economic Calibration,
and the Weakly-Coupled Maturity Mapping functions
as intended when applied to realistic forecasting
environments. In this part, the focus shifts
from theoretical formulation to empirical validation,
reflecting the principle that sound methodology gains
meaning only when its implications are tested against
data and uncertainty.

Each subsection in this part is constructed to
progressively reveal the interaction between model
mechanics and economic coherence. The base
forecasting snapshot establishes a neutral benchmark
against which all subsequent refinements can be
evaluated. The CCP experiment investigates the
structural integrity of projected yield curves under
constraints of monotonicity and smoothness. The AEC
analysis extends the inquiry toward decision-weighted
accuracy, seeking whether calibration in asymmetric
loss space translates to measurable improvements in
cost sensitivity. The WCM exploration further tests the
portability of such improvements across maturities,
emphasizing transfer stability and cross-tenor
coherence.

Throughout this section, the intention is not merely to
demonstrate superior performance but to probe why
certain configurations behave robustly under specific
regimes and fail under others. Each empirical finding
is discussed with awareness of potential confounders
such as market regime shifts, liquidity heterogeneity,
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Figure 4. Base model performance comparison.
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and sampling bias. The aim is to maintain a delicate
balance between quantitative rigor and interpretive
openness acknowledging that in complex forecasting
systems, precision and plausibility must coexist rather
than compete.

5.1 Base Forecasting Snapshot

We begin by treating the capacity-fair baselines purely
as signal generators. Single-layer LSTM, single-layer
GRU, and a compact transformer are matched in
parameter count within a narrow tolerance and
trained under the rolling protocol introduced earlier,
with identical optimizers, early-stopping rules, and
look-back grids. Across short horizons, the models
deliver competitive statistical accuracy, yet the rank
ordering drifts across regimes, which hints that each
architecture captures overlapping but not identical
facets of the dynamics [21].

This observation is useful: it suggests that the decision
layer operates on forecasts that are already informative
to some extent, while still leaving room for curve
validity and economic alignment. During volatile
weeks, we repeatedly encounter tenors that cross
or kink despite low mean error, a pattern that
motivates post-hoc reconciliation rather than further
architecture tuning. The baseline results thus form a
neutral foundation — a practical equilibrium between
predictive skill and instability — upon which the
decision-layer mechanisms are systematically layered
in subsequent analyses. A comparative visualization of
the forecast accuracy (e.g., RMSE, MAE) and violation
rates across the three base models (LSTM, GRU,
Transformer) for the three maturities and horizons
is provided in Figure 4.

5.2 Curve-Consistency Experiments

We first examine whether CCP improves structural
validity, rather than merely performing a superficial
regression correction.  Considering the typical
behavior of three maturities, a rational maturity
term structure usually exposes monotone ordering,
especially in non-extreme market regimes. In
validation, we observe that CCP does not simply push
the median node to the average of the short and long
maturities. Instead, CCP often generates adjustments
that move in a correlated direction across maturities
while maintaining sensitivity to local patterns in
the neural forecasts [22]. There are cases that
CCP only slightly modifies the short maturity while
preserving the longer ones, which suggests CCP can
flexibly preserve original model expressivity. Further
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investigations may be needed to understand how this
flexibility behaves in extreme dislocation regimes. The
reduction in violation rates (VR) before and after
applying the Curve-Consistency Projection (CCP)
across different base models and maturity pairs is
illustrated in Figure 5. The corresponding quantitative
improvements, measured as the percentage-point
reduction in violation rates, are detailed in Table 3.

Table 3. Violation rate reduction by curve-consistency
projection across models and maturities.

. Before After IMprovement

Model Maturity CCP(%) CCP (%) P (%)
5Y-10Y 12.3 0.8 11.5

LSTM 10Y-30Y 9.7 0.5 9.2
Overall 11.2 0.7 10.5

5Y-10Y 10.8 0.9 9.9

GRU 10Y-30Y 8.5 0.6 79
Overall 9.8 0.8 9.0

5Y-10Y 13.5 1.2 12.3
Transformer 10Y-30Y 11.2 0.9 10.3
Overall 12.5 1.1 114

5.3 Economic Calibration Experiments

AEC is evaluated by computing penalty weighted
economic error after CCP output is obtained. The key
observation is that asymmetric calibration does not
reduce forecasting accuracy in a trivial monotonic way.
Sometimes increasing the price penalty partially hurts
short term MSE but improves economic risk posture
in the longer horizon. Given that real market risk is
often asymmetrical across direction and magnitude,
the tuning of alpha and rho produces qualitatively
different error surfaces. These surfaces often exhibit
flat valleys rather than sharp minima. This could
support the view that economic calibration in this form
is stable and robust for a reasonably wide parameter
range instead of requiring aggressive hyper-parameter
search.

5.4 Cross-Maturity Transfer Experiments

The WCM module was expected to produce more
noticeable impact in high stress weeks where one
maturity becomes ill behaved due to calibration noise
or missing information. What is interesting is that
WCM corrections are not always large, yet they have
stable directionality. For example, when the five
maturity is unstable, the regression of WCM often
induces a slight negative slope. This is consistent with
the intuition that the median maturity usually contains
more signal density. One possible implication is that
WCM is learning a latent conditional prior of shape
stability. Further research should examine whether
this implicit prior can be explicitly parameterized.
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Violation Rate Reduction After CCP Application

Figure 5. Violation rate comparison before/after CCP.

Table 4. Hyperparameter settings.

Module Parameter Symbol Range/Values Optimal
CCP Curvature penalty A [0.001,0.1,1.0,10.0] 0.1
Weight matrix w (1.0,1.2,1.0) (1.0,1.2,1.0)
AEC Asymmetry parameter « [0.3,0.5,0.7,0.9] 0.7
Regularization p [0.001,0.01,0.1] 0.01
Price mapping Diod, C [7.5,65] Fixed
WCM  Ridge parameter v [0.001,0.01,0.1] 0.01
Rolling window Wi (63,126, 252] 126
General  Solver tolerance € 1078 1078
Max iterations - 100 100
Validation slice - 252 days 252 days

5.5 Robustness and Ablation Studies

Beyond the above evaluations, several ablation
experiments are performed by selectively disabling
each of CCP, AEC, and WCM. Removing CCP generally
increases interior violations, while removing AEC
often scales short horizon error marginally. WCM
removal has the largest effect in unstable regimes,
indicating that it is particularly beneficial as a safety
layer. Combined together, the three modules form
a loosely coupled stack that appears to improve
stability from multiple directions. Future work may
explore whether the modules can be rearranged or
pruned to produce same performance with smaller
computational footprint.

The hyperparameter settings used for tuning the CCP,
AEC, and WCM modules throughout the experiments

are summarized in Table 4. The results of the ablation
study, quantifying the contribution of each module
to violation rate (VR), smoothness cost (SC), and
decision-weighted price loss (DAyrice), are presented
in Table 5.

6 Conclusion

This work presents a post hoc decision layer that
operates on top of existing neural forecasters, aiming
not to replace base architectures but to make their
outputs meaningfully closer to how risk managers and
trading desks actually reason. The focus was never to
claim that the proposed three modules are exhaustive
or definitive. Instead, the focus was to concretely
demonstrate that even with the same underlying
neural predictions, suitable structural correction,
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Table 5. Ablation study results.

Model Configuration

VR (%) 4 SC (x107*) ] DAprice (x107%) |

(1) Base Forecaster (Raw)

(2) + CCP Only

(3) + CCP + AEC Only

(4) + CCP + WCM Only

(5) Full Model (CCP+AEC+WCM)

8.75
1.02
1.08
1.15
1.05

12.34 9.87
521 8.90
5.45 7.15
5.32 8.45
5.28 6.82

economic calibration, and cross maturity coupling can
re-shape the final decision surface in ways that move
the system from pure pattern recognition toward an
economically interpretable forecasting interface.

The experimental results demonstrate that CCP
reduces structural incoherence across maturities,
AEC shifts the system toward asymmetric economic
rationality, and WCM improves transferability under
instability, particularly for maturities that often lack
full signal support. The three modules combine into
a layered architecture that may give practitioners a
more controlled lever on how neural forecasts are
allowed to express themselves. This might be one
useful direction for making neural forecasting systems
more acceptable for regulated and audited production
use where raw neural outputs are generally considered
too unconstrained.

There remain several directions that could be
meaningfully explored. One possible direction is to
close the loop and allow these post hoc gradients
to flow back into the neural forecaster, transforming
the post hoc stage into a semi-online regularization.
Another direction is to introduce interpretable latent
state tracking so that WCM is not only a statistical
regressor but also a mechanism that encodes market
regime shifts. More broadly, the present approach
potentially indicates a path toward hybrid forecasting
systems where neural architectures generate the
expressive base and a thin decision layer delivers
structural rationality that aligns with risk and price
theory. Further research is needed to see how far such
hybridization can scale.
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