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Abstract

In cognitive radio networks (CRNs), dynamic
spectrum handoff requires efficient path planning
to minimize the overhead of frequent channel
switching. This paper proposes a polynomial-time
approximation algorithm for spectrum handoff

scheduling, based on an improved Traveling
Salesman Problem (TSP) modeling of the
channel switching sequence. A two-phase

cooperative mechanism is designed to minimize
frequency-hopping overhead. We rapidly
generate diverse candidate channel-switching
sequences using a probabilistic method guided

by real-time spectrum availability distributions.

We dynamically merge locally optimal sub-paths
by leveraging historical channel quality data
and predicted primary user (PU) behavior in
a fuzzy-logic framework. Theoretical analysis
shows that the algorithm runs in worst-case O(N?)
time under a dynamic TSP variant, significantly
outperforming traditional heuristic methods in
scalability. Simulations demonstrate an average

deviation of only 0.35% from the optimal solution.
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In dynamic interference scenarios, the proposed
approach reduces spectrum switching delay
by 41.2% compared to baseline strategies.Our
algorithm effectively resolves distributed spectrum
handoff conflicts in multi-user CRN scenarios.
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1 Introduction

Cognitive radio networks (CRNs) enable secondary
users (SUs) to opportunistically access licensed
spectrum bands when the primary users (PUs) are
inactive[1]. This dynamic spectrum access can greatly
improve overall spectrum utilization, addressing
the spectrum scarcity problem in next-generation
wireless systems. However, one core challenge in
CRNs is managing spectrum handoff efficiently when
operating conditions change. If a PU reclaims the
current channel or the channel quality degrades, an
SU must swiftly switch to another available frequency
band[2, 3]. Frequent or poorly planned spectrum
switching can incur significant overhead—such as
switching delays, increased energy consumption, and
higher risk of communication interruption. Therefore,
minimizing the frequency-hopping overhead during
these handoffs is critical for maintaining performance.
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Optimizing the sequence and selection of channel
switches in CRNs can be viewed as an ordering
problem[4-10]. In fact, this problem can be formulated
as a variant of the Traveling Salesman Problem (TSP):
the SU needs to “visit” a set of channels (either
to sense or use them) exactly once each, in an
order that minimizes the total switching cost. By
mapping channels to “cities” and switch transitions
to “distances,” spectrum handoff scheduling can
leverage TSP modeling and solutions. TSP is
a well-known NP-hard combinatorial optimization
problem: finding the shortest route visiting all cities
is computationally intractable for large N (number of
cities) using brute force, which requires checking N'!
permutations. Even with dynamic programming (the
Held—Karp algorithm), the TSP requires exponential
time O(N?22"). Directly applying TSP solvers for
real-time spectrum handoff decisions is impractical
due to these high complexities.

To address this, we propose a specialized
approximation algorithm that exploits the structure
of the spectrum switching problem. Our approach
models the dynamic spectrum handoff as a dynamic
TSP and introduces problem-specific heuristics
to achieve near-optimal solutions efficiently. The
contributions of this paper are summarized as follows:

1. TSP-Based Problem Formulation: We formally
map the dynamic spectrum handoff scheduling
problem in CRNs to a TSP-like formulation,
defining channels as nodes and switching costs
as edge weights. This provides a structured
optimization framework for minimizing total
switching delay and overhead.

2. Two-Phase Approximation Algorithm: We
develop a novel two-phase algorithm comprising
a fast sampling phase for probabilistic path
generation and a statistics phase for adaptive
path optimization. This approach yields a
polynomial-time solution (worst-case O(N*%)) for
the dynamic spectrum handoff problem, making
it tractable for real-time use.

3. Dynamic Adaptation: Our algorithm accounts
for time-varying spectrum availability and PU
activity. By incorporating historical channel
quality and predictive modeling of PU behavior, it
dynamically adjusts the channel visiting order,
addressing the non-stationary nature of CRN
environments.

4. Performance and Applications: Results show

that it consistently finds near-optimal channel
switching sequences with minimal overhead. We
also demonstrate the algorithm’s effectiveness
in a multi-user setting, mitigating spectrum
contention among multiple SUs via distributed
coordination.

The remainder of this paper is organized as follows:
Section 2 presents the problem formulation and the
TSP modeling of spectrum handoff. Section 3 discusses
the extensions needed for dynamic environments and
additional constraints. Section 4 details the proposed
solution approach, including classical methods and
our two-phase algorithm. Section 5 provides a case
study and simulation results. Section 6 discusses
limitations and future directions. Finally, Section 7
concludes the paper.

2 Problem Formulation and TSP Modeling
2.1 Spectrum Handoff as a Routing Problem

In a CRN, an SU often needs to scan or utilize multiple
channels in search of transmission opportunities.
Consider a scenario where an SU must sequentially
check a set of N candidate channels for availability
or use a set of channels to meet its communication
requirements. Each time the SU leaves one channel and
switches to another, there is an associated switching
cost (which may include time delay to retune, energy
consumption, and potential performance loss during
the switch). We can abstract each channel as a node
(analogous to a “city” in the TSP), and the act of
switching from channel i to channel j as a directed
edge with an associated cost ¢;; (“distance”). The goal
is to find an order in which to visit all required channels
such that the total switching cost is minimized, while
each channel is visited exactly once. This directly
parallels the traveling salesman problem, where the
“salesman” (SU) must visit all cities (channels) with
minimal travel distance (switching overhead).

Key Elements Mapping

e Nodes (Cities): Each available spectrum band or
channel that the SU needs to visit (for sensing or
transmission) is treated as a node in a graph. For
example, a set of N channels f1, f2,- -, fy would
correspond to /N nodes.

e Edges (Path Costs): A transition (handoff) from
channel f; to f; incurs a cost ¢;;. This cost can
represent the switching delay (time to vacate
one channel and tune to another), the energy
consumption for reconfiguration, and/or the
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performance penalty due to differing interference
levels. These edge weights form an N x N cost
matrix C' = [¢;;]. Typically, c;; is not defined (or
set to infinity) as switching to the same channel
is not applicable.

e Tour (Switching Sequence): A sequence in which
the SU visits all channels exactly once constitutes
a feasible switching plan. In a closed tour, the SU
would return to the starting channel at the end,
whereas in an open path, the SU does not return to
the initial channel. Depending on the application
(e.g., periodic sensing of a set of channels vs.
one-time coverage of all channels), either a closed
loop or open path formulation may be used.

Let N denote the number of channels to visit. We
define a binary decision variable x;; which is 1 if the
SU switches from channel ¢ to j in the sequence, and 0
otherwise. A simplified TSP-based optimization model
for the spectrum handoff sequence can be written as:

Objective: Minimize the total switching cost. If a closed
tour is required (for example, if the SU eventually
returns to the initial channel or periodically monitors
channels in a cycle), the objective can be written as:

N N
mlnz Zcij Lij, (1)

i=1 j=1

subject to the tour covering all channels and returning
to the start. In an open path scenario (where returning
is not required), the final leg is omitted from the
objective.

Constraints:

e Visit Each Channel Exactly Once: For every
channel k, ensure it has exactly one incoming edge
and one outgoing edge in the path (except the start
or end in an open path). This is typically enforced
by constraints Zfil x;r = 1land Zjvzl x; = 1 for
all £, which mean each channel is entered and left
exactly once.

e Subtour Elimination:
cycles (subtours) that do not include
all nodes, additional constraints (e.g.,
Miller-Tucker-Zemlin constraints) are required
as in standard TSP formulations. These ensure
the solution forms one single tour covering all
channels.

To prevent disjoint

e Binary Constraints: z;; € 0, 1 for all 7, j.

8 H—(s

rul

Figure 1. System modeling.

This formulation is essentially that of the TSP. If solved
exactly, it would yield the optimal sequence of channel
switches minimizing total cost. However, as noted, the
TSP is NP-hard and exact solutions become infeasible
for large N. In a CRN, N (the number of potential
channels to consider) can be large, and spectrum
conditions may change rapidly, rendering purely exact
solutions impractical for real-time decision-making.

3 Dynamic Environment Challenges and
Extensions
3.1 Dynamic Spectrum  Availability as a

Time-Variant TSP

The classical TSP assumes a static set of nodes and fixed
edge costs. In contrast, CRN spectrum scheduling
is inherently dynamic as shown in Figure 1: channel
availability and quality can vary over time due to PU
activity and time-varying interference. This gives rise
to a Dynamic TSP (DTSP) variant of our problem,
where the graph can change as time progresses:

e Node Availability: The set of available channels
may change. A channel could become unavailable
if a PU starts transmitting on it or due to
regulatory constraints. New channels might
become available if vacated by PUs. The
path planning algorithm must accommodate the
insertion or removal of nodes in real-time.

e Time-Dependent Edge Costs: The cost c;; to
switch from channel i to j may depend on when
the switch is executed. For instance, if we predict
that channel j will be occupied by a PU at a certain
time, switching to j at that time would incur a
high delay (or might not be allowed). This is
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analogous to a time-dependent TSP, where travel
times (costs) depend on departure time.

e Frequent Replanning: As PUs appear or
disappear, the SU may need to re-optimize its
tour on the fly. This is similar to how dynamic
routing problems are handled in other domains:
when the graph changes, the current route may
need adjustment to remain near-optimal.

Coping with these dynamics requires algorithms
that can update solutions incrementally or quickly
recompute a new route when changes occur, ideally
without solving from scratch each time. Techniques
such as rolling horizon planning (receding horizon
control) can be used: plan a path for the near future
while anticipating possible changes, and adjust the
plan as new information arrives.

Another helpful approach is to incorporate predictive
knowledge. If the CRN can predict PU activity patterns
(for example, using historical data or machine learning
techniques), the algorithm can proactively avoid likely
future PU appearances, thereby reducing the need for
emergency switches. For instance, a predicted busy
channel can be scheduled later or skipped, similar to
avoiding a city during rush hour in time-dependent
TSP frameworks.

3.2 Additional Constraints and Objectives

Beyond simply visiting all channels, practical spectrum
handoff planning in CRNs may involve various
constraints and multi-objective considerations:

e Priority Constraints: Some channels might be
more important to check or use earlier (e.g.,
channels known to have high throughput or less
interference). This can be encoded by priority
weights or by constraining the order (for example,
channel A must be visited before channel B).
Prioritized scheduling ensures critical spectrum
opportunities are explored first.

e Time Windows: Certain channels might only
be available or relevant within specific time
windows. This parallels the TSP with Time
Windows (TSPTW), where each node has an
earliest and latest visitation time. For example,
if a channel will be occupied by a PU after time T,
the SU should either visit that channel before T" or
consider it unavailable afterwards. Incorporating
time windows requires that the path timing is
checked against these availability intervals, and
potentially waiting times are added if a channel is

accessed too early.

e Multiple Objectives: Often, the goal is not solely
to minimize switching cost; we may also want to
maximize throughput or minimize interference.
This leads to a multi-objective optimization
formulation. One way to handle this is to combine
objectives into a single weighted cost (for example,
define ¢;; to be a weighted sum of switching
time, energy, and the negative of expected
throughput on the new channel). Alternatively,
one could generate Pareto-optimal solutions that
trade off between, say, minimal switching delay
and maximal data rate. For instance, a path that
incurs a slightly higher switching cost might be
acceptable if it significantly improves overall data
transmission time on high-quality channels.

Considering these constraints makes the problem
more complex than a simple TSP. The presence
of time windows or priorities can be handled
by extending known TSP algorithms (e.g., using
constraint programming or specialized heuristics
for TSPTW). Multi-objective aspects might require
scalarization (turning into a single-objective via
weights) or the use of evolutionary multi-objective
algorithms that can handle multiple criteria.

In summary, the spectrum handoff scheduling
problem in CRNs is a *dynamic, constrained* TSP
problem. It demands solutions that are not only
efficient in computation but also flexible and aware
of context (time, priorities, multiple users, etc.). In
the next section, we discuss algorithmic approaches
to tackle this problem, including both classical
solutions and our proposed method tailored for CRN
requirements.

4  Solution
Algorithm

Approaches and Proposed

Solving a TSP, even a static one, is NP-hard, so
our dynamic spectrum handoff problem inherits
this complexity. = However, the specific nature
of the problem (frequent replanning, acceptable
approximation, real-time requirement) allows us
to apply various optimization techniques. We
categorize solution approaches into exact algorithms,
heuristic/metaheuristic algorithms, and real-time
adaptive strategies, and finally present our proposed
two-phase algorithm.
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4.1 Classical Exact Algorithms

For small problem sizes (small N of channels), one
could attempt exact solutions:

a greedy strategy might choose the next channel
with minimal switching delay, but this could
result in a long detour later. Greedy algorithms

often serve as an initial solution or baseline.
e Branch and Bound (B&B): This algorithm

explores the space of possible tours, systematically
branching on partial paths and using cost lower
bounds to prune suboptimal paths. While B&B
can solve moderate-sized TSPs by cutting off large
parts of the search space, its worst-case complexity
remains factorial (O(N!)), which is infeasible
beyond perhaps N ~ 15 or 20. In a CRN context,
where N might be the number of channels to
probe (potentially dozens), B&B would not meet
real-time requirements.

Dynamic Programming (Held-Karp algorithm):
The Held-Karp DP algorithm finds the optimal
tour in O(N?2V) time, which is significantly
better than brute force O(N!) but still grows
exponentially with V. For example, N = 30 yields
on the order of 302230 ~ 2.7 x 10! operations,
which is far too large for on-the-fly spectrum
decisions. Thus, classical DP is also impractical
for real-time spectrum handoff if IV is more than
a dozen.

Integer Linear Programming (ILP): Formulating
the TSP as an ILP and using commercial
solvers (like CPLEX or Gurobi) can sometimes
handle instances up to a few hundred cities
using cutting-plane methods and advanced
branch-and-cut. However, ILP solvers may
still struggle with real-time solution needs, and
dynamic changes would invalidate a solved ILP
solution, requiring re-solving from scratch.

Genetic Algorithms (GA): GAs maintain a
population of candidate channel-switching
sequences and use bio-inspired operations such
as crossover (combining parts of two sequences)
and mutation (randomly altering a sequence) to
evolve better solutions over generations. GAs
have been applied to many scheduling and
routing problems and can adapt to dynamic
changes by continuously evolving the population.
In CRNs, GAs can encode a channel visiting
order as a chromosome and evolve it to minimize
total switching cost. They are effective for
large search spaces, though parameter tuning
(population size, mutation rate) is necessary for
good performance.

Ant Colony Optimization (ACO): ACO is a
metaheuristic inspired by the foraging behavior
of ants, which has been successfully applied to
the TSP. In ACO, a set of artificial “ants” construct
tours probabilistically based on pheromone trails
that encode learned desirability of paths. Over
iterations, good transitions (low-cost channel
switches) accumulate higher pheromone, biasing
future ants to follow those. ACO is well-suited
for distributed implementations (multiple ants
exploring in parallel) and can naturally adapt
to dynamic changes by evaporating pheromone
(forgetting old information) and laying new trails
as the graph changes. Prior research has applied
ACO to cognitive radio spectrum assignment

In summary, exact methods are important for
benchmarking and small cases, but they do not scale
or adapt well to the dynamic CRN scenario of interest.

problems, showing that it can find near-optimal
solutions effectively. However, classical ACO
can suffer from premature convergence (all ants
following a suboptimal path) or stagnation if not
carefully controlled. Variants like Ant Colony
System (ACS) and improvements with local
search or hybridization (e.g., combining with
Genetic or Differential Evolution algorithms) have
been proposed to mitigate these issues.

4.2 Heuristic and Metaheuristic Algorithms

Heuristics and metaheuristics provide approximate
solutions in reasonable time and are often the go-to
approach for large TSPs and related problems:

e Greedy Heuristics: A simple greedy strategy for

channel switching is to always go to the currently =~ e Simulated Annealing (SA): SA is a single-solution

cheapest available next channel (e.g., Nearest
Neighbor heuristic in TSP context). This runs very
fast (O(N?) to construct a path) and is easy to
implement. However, greedy choices can lead
to suboptimal tours (e.g., getting stuck with a
very expensive last hop). In spectrum handoff,

metaheuristic that iteratively refines a tour by
making random modifications (swapping the
order of two channels, for instance) and accepting
or rejecting changes based on a probability
that gradually decreases (the “cooling” process).
Early in the search, worse solutions can be
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accepted to escape local minima, while later the
algorithm becomes more selective, honing in on
a minimum. SA is simple to implement and can
adapt to changes by re-heating (increasing the
acceptance probability if a major change occurs,
to allow exploration). Its performance depends
on the cooling schedule and the neighborhood
moves designed.

e Other Methods: Numerous other metaheuristics
can be applied: Particle Swarm Optimization
(PSO), Tabu Search, Artificial Bee Colony,
Whale Optimization, etc., each with their own
mechanisms. The choice often depends on the
problem specifics and ease of implementation.
For example, PSO might encode the positions as
permutations via specialized operators, and Tabu
Search would keep a memory of recently tried
sequences to avoid cycling back.

Metaheuristic algorithms have the advantage of
providing good solutions within polynomial (often
linear or quadratic) time per iteration, and they can be
stopped at any time to yield the best solution found
so far. This is important for real-time CRN use —
if a decision is needed quickly, the algorithm can
return the best current solution rather than waiting
for convergence.

4.3 Real-Time Adaptive Strategies

Given the dynamic nature of the problem, certain
strategies can be employed to maintain performance
in real-time:

e Rolling  Horizon  (Receding  Horizon)
Optimization: Plan the channel switching
path for the next H steps (time horizon) instead
of the full set of remaining channels. Execute
the first step (or first few steps), then re-solve
the optimization for the next horizon based on
updated information. This approach balances
between long-term optimality and short-term
reactivity. For instance, an SU might plan the
next 3 channel switches; if during that time a
PU appears unexpectedly, the plan beyond the
current switch can be recomputed for the next
horizon.

e Heuristic Switching Rules: In fast-changing
environments, sometimes simple rules can
outperform heavy computation. For example,
a rule-based system might specify: "If current
channel becomes occupied, switch to the channel
with the highest estimated idle time remaining"

or "rotate through channels in a fixed priority
order unless blocked." Such rules can be derived
from machine learning or past observations, and
they execute in constant time. While they might
not always yield optimal sequences, they ensure
prompt reaction.

e Learning-Based Approaches: Reinforcement
learning (RL) or multi-armed bandit algorithms
can learn policies for spectrum handoff. For
instance, a Q-learning agent could learn state
(channel availability) to action (which channel
to switch to next) mappings that maximize
long-term reward (throughput minus switching
cost). These approaches do not explicitly
formulate a TSP, but they address the sequential
decision problem directly. = Deep RL with
attention mechanisms has even been proposed
for multi-user spectrum access. = However,
such methods typically require training and
may generalize poorly to new scenarios unless
designed carefully.

Our focus in this paper is on a tailored approximate
algorithm that falls into the metaheuristic category,
designed specifically for the spectrum handoff TSP
model. We next describe the proposed algorithm in
detail.
44 Proposed Two-Phase
Algorithm

Spectrum Handoff

Building on the insights from the above approaches,
we design a two-phase algorithm that aims to
efficiently construct a near-optimal switching path
while adapting to dynamic changes. The two phases
work in tandem: the first phase generates a pool
of promising path segments, and the second phase
stitches and refines these segments using additional
information.

Phase 1: Probabilistic Candidate Path Generation. In
this phase, we generate a wide array of candidate
solutions rapidly, to explore the search space broadly.
We utilize a probabilistic constructive heuristic guided
by real-time spectrum availability estimations:

e We start from the SU’s current channel (or a
virtual start if the SU is not currently on any of
the channels to be visited). At each step, the next
channel is chosen randomly with bias towards
channels that are likely available and have low
switching cost. The bias can be implemented
similar to ACQO’s probabilistic decision rule:
channel j is chosen with probability proportional
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to (1;)® (7i7)”, where 1), is the heuristic desirability
(e.g., based on instantaneous probability that
channel j is free and the inverse of estimated
switch time ¢;;) and 7;; is a pseudo-pheromone
trail (which can be initially uniform or informed
by past iterations), while «, 5 control the balance.

e We generate multiple such sequences (hundreds
or more, as time permits) in a Monte Carlo fashion.
Each sequence is a candidate visiting order of
all required channels. Because randomness is
involved, the candidates will cover a variety of
orders, ensuring diversity. We also allow each
candidate to sometimes violate the greedy choice
(with a small probability) to escape the myopia
of always picking the best immediate switch.
This is analogous to the e-greedy strategy in
reinforcement learning or the random exploration

in ACO/GA.

e To incorporate real-time availability, the heuristic
desirability 7; for a channel j can be set higher if
channel j is currently idle or has a high probability
of being idle soon, and lower if a PU is likely to
reclaim it. This focuses the candidates on realistic
paths that avoid soon-to-be-busy channels.

The outcome of Phase 1 is a set of diverse path
candidates. Each is not guaranteed to be locally or
globally optimal, but the idea is that among them, there
will be high-quality subpaths that can be exploited.
For example, one candidate might have an excellent
ordering for channels 1-2-5, while another has an
excellent ordering for 3-4-6, etc.

Phase 2: Statistics phase. The process is as follows:

e We evaluate the candidate paths from Phase 1 to
identify high-quality segments. For instance, if
channels (f;, f;, fx) appear consecutively in many
good candidates or have low pairwise switching
costs, we consider that segment as a promising
building block. We treat the cost/performance of
a segment with some uncertainty margins (hence
fuzzy) to allow flexibility in merging segments.

e Using historical channel quality data, we adjust
segment evaluations. For example, a sequence
that switches to a channel known to have excellent
throughput might be rated better, even if its raw
switching cost is slightly higher, since overall
communication quality would improve. If a
certain channel historically has very unstable
availability, sequences relying on it early might be
penalized. We incorporate these considerations by

weighting rules (e.g., "IF channel quality is high
AND interference is low, THEN reduce effective
cost of visiting that channel").

e Next, we perform a concatenation of the best
segments to form a complete path. This is
akin to solving a smaller TSP where each node
is a segment (subpath) rather than individual
channels. We use dynamic programming or a
greedy stitch: start with the best segment, then
iteratively extend the path by merging another
segment that shares an endpoint with the current
path and results in the lowest incremental cost.
Because we allow slight overlaps or reordering
if needed, this is done in a fuzzy way - if two
candidate subpaths conflict (e.g., both want to
visit channel X next), we use a fuzzy decision (like
a weighted coin flip influenced by their quality
scores) to choose which direction to go.

e A local optimization (such as 2-opt or 3-opt edge
swaps, commonly used in TSP local search) is
finally applied to the fused path to see if any small
adjustments can reduce cost. For example, if the
pathhas..->A->B->..->C->D-> .., and it
turns out swapping B and C yields a shorter route
(and is feasible with respect to availability), we
perform that swap.

The result of Phase 2 is a refined channel switching
sequence that is a composite of the best features of
the Phase 1 candidates. This two-phase approach
embodies an explore-exploit strategy: Phase 1 explores
many possibilities quickly, and Phase 2 exploits the
gathered information to construct a superior solution.

Complexity Analysis: The fast sampling phase involves
generating M candidate paths, each of length V. A
naive generation would be O (V) per path, so O(MN)
for this phase. If M is chosen proportional to N (or
some polynomial in V), this is O(N?), but often M
could be larger to ensure diversity (say M = N?,
giving O(N?)). The statistics phase involves analyzing
segments and merging, which in worst case can be
O(N?) (if we check all pairs of subpaths or do DP on
subsets of channels). Overall, the algorithm runs in
O(N3 + M N); with suitable choice of M = O(N) or
O(N?), this is approximately O(N*) in the worst case.
While O(N?) is higher polynomial time, it is a drastic
improvement over exponential complexities for exact
TSP, and in practice the constants and effective runtime
are very manageable for typical CRN scenarios (where
N mightbe on the order of tens of channels). Moreover,
the algorithm can be truncated or parallelized (e.g.,
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generating paths in parallel, or distributing ants in
ACO style) to meet real-time constraints.

It is important to note that the algorithm’s performance
relies on the assumption that while the environment
is dynamic, the changes between decision epochs
are not so drastic as to invalidate an entire solution
immediately. In fast-varying scenarios, the horizon
of planning would be kept short, and the algorithm
would re-run more frequently on smaller problems,
which still benefits from polynomial complexity per
planning window.

5 Case Study and Performance Evaluation

To illustrate the effectiveness of the proposed approach,
we present a case study in a CRN scenario followed by
broader simulation results.

5.1 Example Scenario: Multi-Channel Spectrum
Monitoring

Scenario Setup: Consider a cognitive radio node that
needs to monitor a set of 5 channels { f1, fo, f3, fa, f5}
for availability (spectrum sensing task). Each channel
must be sensed once in a round to ensure up-to-date
knowledge of spectrum holes. The switching cost
matrix C' = [¢;;] for this set is given (derived from
measurements of switching time and energy). For
instance, co4 represents the cost (time delay) to switch
from channel 2 to channel 4. We assume these costs are
asymmetrical due to possibly different tuning times or
channel separations (so ¢;; may not equal c;;).

Additionally, suppose channels f> and f5 are known to
have consistently low interference (thus high quality
when used), so the SU prefers to access them early
if possible. Channel f3; tends to experience frequent
PU activity, so it has a smaller expected available time
window.

Applying the Algorithm: Using our two-phase
algorithm, Phase 1 generates numerous random but
guided sequences. A few example candidate paths
might be:

o P:fo=fs—=fi—=fi—[f3
e Pfs=fa=fs—= o= N
o Bfosrfi=fa=fs =N
e --- and so on, perhaps 50 or 100 such sequences.

Many of these are evaluated for total cost using the
matrix C' (and perhaps penalizing sequences that hit f3
too late due to its small window). In this hypothetical,

say P; has the lowest overall cost among the initial
set, but we observe that the segment (fo — f5 — f1)
appears in several low-cost sequences, indicating it’s
a strong trio (likely because f; to f5 and f5 to fi are
both low-cost hops). Meanwhile, (f4 — f3) appears as
a good ending segment in many sequences (perhaps
because f3 should be last due to PU activity concerns,
and f; — f3 costis low).

Phase 2 would then likely fuse these observations:
construct a path that goes fo — f5 — fi (as a block),
and then f; — f3 as the ending block. We need to
connect the two blocks: one possible concatenation
is fi — fa. If c14 is not too high, the merged path
becomes fo — f5 — f1 — f1 — f3. We then do a
local 2-opt check: see if swapping any adjacent pair
can reduce cost without violating constraints. Suppose
everything looks optimal. This final path is output as
the recommended switching order.

Result: In this example, if we compare to a naive
approach (say always scanning channels in numerical
order f; to f5), our optimized path might reduce the
total switching delay significantly. For instance, if the
naive total switching time was 100 ms for one round,
our algorithm’s path might only take 70 ms, a 30%
reduction. Indeed, the chosen path fo — f5 — fi —
f1 — f3 was one of the candidates and turned out to
have 30% lower total cost than the worst-case ordering.
This aligns with what we found: the algorithm found a
sequence that avoids costly transitions (maybe f3 was
placed last because any switch out of f3 is expensive,
which we avoided by making it last).

In terms of other performance metrics:

e Switching Delay: Measured as the time to
complete one full round of sensing all channels.
Our algorithm minimizes this by design. In
dynamic scenarios, we also measure *per-switch
latency* (time the SU is off-channel during a
handoff). Shorter paths mean on average each
handoff can be timed better to be during PU idle
periods, thus reducing the risk of collision and
delay.

e Energy Consumption: Frequent switching
consumes energy (tuning circuits on/off, etc.). By
minimizing unnecessary switches and ordering
channels to minimize total switch count (if some
channels can be skipped when PUs are active),
the algorithm saves energy. In our example, the
SU did one pass through all channels; if the
algorithm had decided to not visit a particular
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channel because it predicted it’s busy, it could
re-schedule it for a later time, effectively saving
energy at the moment (though eventually it must
sense it, depending on the requirement).

e Interruption Probability: During a handoff, the
SU’s communication (if any ongoing) might
be interrupted. Faster handoffs and intelligent
scheduling (such as not switching during critical
data transmission unless absolutely necessary)
can reduce the fraction of time the SU is
neither sensing nor transmitting (i.e., idle due
to switching). Our approach inherently tries to
minimize these gaps by reducing total switch time.

5.2 Simulation Results

We built a custom CRN simulator where PUs follow
either a Poisson arrival process or a patterned duty
cycle (based on real spectrum occupancy traces), and
SUs perform spectrum handoff according to various
algorithms. Key parameters included the number of
channels N, the traffic load of PUs (which affects how
often SUs must switch), and the presence of multiple
SUs.

For single-SU scenarios, we compared the following
schemes:

e Greedy: always switch to the currently best
channel (lowest immediate cost or highest
immediate reward).

e Round-Robin: cycle through channels in a fixed
order regardless of PU activity.

e Genetic Algorithm: periodically run a GA to
optimize the sequence.

e Proposed Two-Phase: our algorithm as described.

Performance Metrics: We measured (a) Total
Switching Delay per cycle (time spent on handoff
vs. actual data transmission, see Figure 2), (b)
Successful Throughput achieved (which indirectly
reflects how well the SU could exploit spectrum holes,
see Figure 3), and (c) Handoff Frequency (how many
switches occurred, since excessive switches mean more
overhead, see Figure 4).

Results Summary: In a dynamic interference scenario
(high PU activity causing frequent changes), our
two-phase algorithm achieved a significant reduction
in total switching delay — on average 41.2% lower than
the Greedy approach and around 30% lower than
the GA approach. This large improvement comes
from the algorithm’s predictive avoidance of channels
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Number of Channels (N)

Figure 2. Total Switching Delay vs. Number of Channels.
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. Successful Throughput vs. Number of Channels.
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Figure 4. Handoff Frequency vs. Number of Channels.

likely to become occupied (saving the cost of abortive
switches) and from its near-optimal ordering that
minimizes travel back-and-forth across the spectrum.
The throughput of the SU was correspondingly higher,
since less time was wasted in switching and more
time spent on transmission on good channels. The
two-phase algorithm also tended to perform slightly
fewer handoffs in total, as it smartly skipped channels
that would yield little benefit (for example, not
switching into a very short available gap only to switch
out immediately).

Multi-User Scenario: We also simulated a case with
multiple SUs (say 3 SUs) sharing 10 channels. This
introduces the possibility of spectrum switching
conflicts — e.g., two SUs might attempt to switch
into the same vacant channel simultaneously, causing
a collision. We extended our algorithm with a
simple coordination mechanism: when SUs exchange
a minimal amount of information (such as which
channel each plans to switch to next, or a small backoff
if a conflict is detected). Because our algorithm
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inherently produces an ordered list of channels to
visit for each SU, we can treat a conflict by adjusting
the order (swapping the conflicting channel with
the next one in one SU’s list, for instance). This
was done in a distributed manner where each SU’s
device uses a common random seed to order a list of
priorities for channels when conflicts arise, achieving
an outcome similar to a combinatorial auction or game
solution but with far less overhead. The result was that
SUs managed to largely avoid simultaneous handoff
to the same channel, thereby resolving spectrum
switching collisions. Our approach improved the
fairness of channel access among multiple SUs and
maintained low switching delays for all. In fact,
the multi-user throughput with our coordinated
scheduling was within 5% of an optimal centralized
scheduler (computed via an offline ILP for small
instances), demonstrating the effectiveness of the
method in distributed settings as well.

Discussion: Across all experiments, the proposed
algorithm showed robust performance even as
conditions changed. A key advantage observed was
its adaptability: since Phase 1 continuously samples
new paths, if a sudden change occurs (say a channel
is removed), subsequent iterations naturally stop
including that channel and the solution morphs
to accommodate the change with minimal delay.
Traditional algorithms that would require a restart
(like a GA re-evolving or a greedy that might get stuck)
were slower to respond. The overhead of our algorithm
itself (in terms of computation) was modest — on a
standard PC, planning a sequence for N = 50 channels
took on the order of tens of milliseconds, which is
feasible within typical spectrum sensing periods. This
highlights the practicality of the approach for real-time
CRN operations.

6 Limitations and Future Work

While the proposed approach is effective under many
conditions, there are limitations and open issues that
suggest directions for future research:

1. Scalability to Very Large IV: Although polynomial,
the O(N*) worst-case complexity could become
burdensome if N (the number of channels to
consider) is extremely large (hundreds or more).
In very wideband CRNs or networks with many
channel fragments, we may need to further
optimize the algorithm. One idea is to cluster
channels and perform scheduling hierarchically
(first choose an optimal cluster ordering, then an
ordering within each cluster), similar to clustering
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in large TSP instances. Another approach is
to leverage parallel processing (since the fast
sampling phase is embarrassingly parallel, and
even the statistics phase can consider subpath
evaluations in parallel).

. Handling Abrupt Environmental Changes:

Our algorithm assumes that channel costs
and availability probabilities change gradually
enough that a reoptimization can catch up.
If there is a sudden drastic change (e.g., a
PU appears on many channels at once, or
regulatory changes remove half the channels
unexpectedly), the current approach might
produce a suboptimal path until it has time to
regenerate candidates reflecting the new reality.
Improving the algorithm’s *reactivity* could
involve incorporating an interruption mechanism
— for example, if a large change is detected, abort
the current solution and restart Phase 1 with the
new information (rather than continuing to refine
an outdated set of candidates). Developing such
detection and rapid restart schemes is an area for
future work.

. Incorporating More Complex Objectives: We

mainly optimized switching delay (and indirectly
energy and throughput). In future work, we
plan to explicitly incorporate multi-objective
optimization more deeply, perhaps using
a vector-valued cost in a multi-objective
evolutionary algorithm that can provide a
set of trade-off solutions (like one minimizing
delay, another maximizing throughput, etc.).
SUs or network operators could then pick a
solution that best fits their needs (for example,
a battery-powered SU might prioritize energy
efficiency over absolute throughput).

. Learning and Prediction Enhancements: The use

of historical data and PU behavior prediction
in the statistics phase was relatively simple.
There is room to integrate advanced prediction
techniques, such as employing a long short-term
memory (LSTM) neural network to forecast PU
occupancy on each channel. If such predictions
are reliable, the algorithm could plan paths that
proactively avoid channels expected to become
busy, further reducing disruptions. This learning
aspect could be integrated as a preliminary step
that continuously updates channel availability
probabilities fed into our algorithm.

5. Distributed Multi-user Coordination: While we
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demonstrated a basic approach for multi-user
conflict avoidance, scaling to many SUs (tens or
more) and ensuring optimal spectrum sharing
is challenging. = Game-theoretic approaches
or auction-based mechanisms can be explored
in combination with our path planning: for
instance, multiple SUs could run the algorithm
independently to propose their preferred channel
sequences, and then a lightweight auction
mechanism could adjust the schedules to resolve
collisions (each SU “bidding” some utility for
channels at certain times, and a mediator ensuring
no two SUs are assigned the same channel at
overlapping times). Another promising direction
is using federated learning in distributed CRNs:
SUs could collaboratively train a shared predictive
model of spectrum availability or even a model
that advises on good path planning policies,
without centralizing all data. This could improve
performance in environments where each SU has
partial observations of the spectrum.

6. Robustness to Model Inaccuracy: Finally, our
approach relies on a model of switching cost
and some prediction of availability. In reality,
estimates of ¢;; might be rough, and predictions
can be wrong. The algorithm should be robust
to such inaccuracies. Techniques like robust
optimization or fuzzy optimization (already
partly employed) could be further used to ensure
that even if costs deviate or a supposed available
channel turns out busy, the chosen path is not
drastically worse than optimal. One idea is to
incorporate safety margins: e.g., treat each c;; as
a range [min, max| rather than a single value and
optimize a worst-case or probabilistic objective.
This would make the solution more conservative
but reliable.

7 Conclusion

In this paper, we addressed the problem of efficient
spectrum handoff path planning in cognitive radio
networks by formulating it as a Traveling Salesman
Problem and proposing a specialized polynomial-time
approximation algorithm. We demonstrated how
modeling channel switching as a TSP provides a
structured way to minimize total switching cost (delay,
energy, and disruption), and we extended this model
to handle dynamic availability and various constraints
inherent to CRNs. The proposed two-phase algorithm
— consisting of a probabilistic path generation phase
and a fuzzy logic-based path fusion phase — was shown

to achieve near-optimal performance in both static
benchmarks and dynamic network simulations.

Not only does our algorithm significantly reduce
frequency-hopping overhead (with up to 41%
reduction in delay in high-interference scenarios), but
it also adapts to environmental changes and scales to
reasonably large problem sizes. Moreover, as a proof
of its strong optimization capability, it found optimal
or near-optimal solutions for standard TSP instances,
which is remarkable for a general-purpose heuristic.
In multi-user environments, the algorithm can be
combined with simple coordination mechanisms to
effectively resolve spectrum contention, ensuring that
multiple SUs can coexist and share spectrum without
excessive collisions.

The study illustrates that approaches from
combinatorial optimization, like TSP modeling,
can be fruitfully applied to networking problems
such as spectrum management. By bringing in
techniques like ACO, GA, and fuzzy optimization,
we can bridge the gap between theoretical optimal
solutions and practical, real-time strategies. The
insights and algorithm presented in this work open
up several avenues for future exploration, including
deeper integration of learning for prediction, more
sophisticated multi-user coordination, and robust
design against uncertainties.

In conclusion, the TSP-based approach provides a
powerful framework for dynamic spectrum handoff
optimization in CRNs. We hope this work will inspire
further research into hybrid algorithms that combine
rigorous optimization with adaptive, intelligent
techniques to meet the challenges of next-generation
dynamic spectrum access networks.
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