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Abstract
Aiming at the problems of low efficiency, strong
subjectivity in traditional bearing surface
defect detection and insufficient dimensional
measurement accuracy, this paper proposes an
integrated detection scheme SimAM-YOLO that
combines the improved YOLOv5 algorithm with
size measurement technology. Based on YOLOv5,
the scheme replaces the original C3 module with
the C2F network structure and embeds the SimAM
attention mechanism to enhance the model’s
ability to extract defect features. Combined with
OpenCV, it realizes the real-time measurement of
the key dimension of bearing radius and constructs
a visual system for bearing size measurement.
Experimental results show that the improved
model achieves an average detection precision of
86.03%, a recall rate of 78%, and an mAP-0.5 of
82.17% for bearing defects such as cracks, scratches,
and grooves, which are 14.8%, 8.77%, and 9.2%
higher than the original YOLOv5 respectively.
The dimensional measurement error is controlled
within ±0.000061mm, meeting the requirements
of industrial detection. The system has high
automation and strong real-time performance, can
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adapt to the detection needs of bearings of different
specifications, and provides an efficient and reliable
technical support for bearing quality control.
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1 Introduction: The Paradigm Shift from
Networking to Intelligence

As the core transmission component of mechanical
equipment, the surface quality and dimensional
accuracy of bearings directly determine the operational
stability and service life of mechanical systems [1–
12]. With the advancement of Industry 4.0, bearing
production is developing towards high speed and
precision, and traditional detection methods [13–
15] can no longer meet the needs of quality
control. Manual visual inspection is susceptible
to subjective experience and fatigue, resulting in
high missed detection rate (usually exceeding 2%)
and low efficiency (single piece detection time
exceeding 30s). Contact mechanical measurement
(such as micrometers and vernier calipers) is
complex to operate, cannot realize real-time online
detection on the production line, and is likely to
cause secondary damage to the bearing surface.
In this context, developing non-contact detection
technology based on machine vision to realize
synchronous and accurate detection of bearing surface
defects and dimensional parameters has become
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a key breakthrough direction to improve bearing
production quality and efficiency, which has important
engineering value for promoting the automation
upgrade of the machinery manufacturing industry.

The application of machine vision technology [16–18]
in the field of bearing detection has become a research
hotspot, and related research has focused on the
optimization of defect recognition algorithms and
the improvement of size measurement methods [19–
27]. Early studies mostly adopted traditional image
processing technologies, such as edge detection based
on Sobel operator [28] and Canny operator [29],
combined with threshold segmentation to achieve
defect localization. However, these methods have poor
adaptability to complex backgrounds and small-size
defects (such as microcracks with width less than
0.1mm), and are prone to false detection due to
illumination and noise interference. In recent
years, deep learning target detection algorithms have
gradually become mainstream, and models such as
YOLO series [30] and Faster R-CNN [31] have been
widely used. Among them, YOLOv5 [32] has become
a common model for bearing defect detection due to
its balance of detection speed and accuracy. However,
existing research still has bottlenecks: first, the unified
recognition accuracy of the model for multiple types of
defects (cracks, scratches, pits) is insufficient, and the
recall rate of small-size defects is generally lower than
85%; second, defect detection and size measurement
are mostly independent systems, requiring separate
hardware platforms and data processing modules to
be built, resulting in low integration and increased
industrial application costs; third, some systems
are complex to operate and lack lightweight visual
interfaces, making it difficult to meet the needs of
production line workers to get started quickly.

To address the above research bottlenecks, this
paper conducts the following research work around
the integrated demand of bearing surface defect
detection and size measurement: first, build a machine
vision detection platform, complete the selection and
communication connection of industrial cameras, light
sources, lenses and other hardware, and determine the
three-level system architecture of “image acquisition
- data processing - result output”; second, improve
the YOLOv5 defect detection model, replace the
original C3 module with the C2F network structure
to enhance gradient flow, and embed the SimAM [33]
attention mechanism to strengthen the attention to
defect area features, thereby improving the recognition
ability of multiple types and small-size defects; third,

design a size measurement algorithm based on
Python-OpenCV, and realize the real-time calculation
of bearing radius, area and other parameters through
image preprocessing, contour extraction and ratio
calibration.
The main contributions of this paper are as follows:
1. Propose the SimAM-YOLO improved model,

which increases the average detection precision of
small-size defects to 86.03%, the recall rate to 78%,
and the mAP-0.5 to 82.17%.

2. Design a size measurement algorithm based
on Python-OpenCV, which can realize real-time
calculation of bearing radius through image
preprocessing, contour extraction and ratio
calibration.

2 Related Work
2.1 Experimental Platform Construction
To realize the synchronous development of bearing
surface defect detection and size measurement,
this paper completes the overall platform scheme
design, core hardware selection and communication
connection configuration based on system
requirements, and constructs a stable and reliable
basic architecture for machine vision detection.
Combined with the actual requirements of bearing
detection in industrial production scenarios, we
summarize four core requirements of the system.
First, real-time performance: it is necessary to realize
real-time acquisition and processing of bearing images,
the detection time of a single frame image should
not exceed 20ms, support continuous detection of 1-2
bearings per second on the production line, and can
real-time mark and reject defective bearings. Second,
accuracy: the false detection rate of defect detection
should be less than 1% and the missed detection
rate should be less than 0.5%, and the dimensional
measurement error should be controlled within
±0.03mm to meet the bearing industry precision
standards. Third, flexibility: it can adapt to bearings
of different specifications with inner diameter of
20-50mm and outer diameter of 30-80mm, and the
specification switching can be completed by replacing
the lens or adjusting the working distance without
reconstructing the system. Fourth, usability: the
operation interface should be intuitive and simple,
supporting functions such as image upload, real-time
preview and result export, and operators can use it
independently after simple training.

11



ICCK Transactions on Intelligent Cyber-Physical Systems

The system adopts a three-level architecture of “image
acquisition - data processing - result output”, with
clear functions and collaborative linkage of each
module: the image acquisition module is responsible
for obtaining high-quality bearing surface images,
capturing the front and side surface information of
bearings through industrial cameras, and transmitting
them to the computer via USB 3.0 interface with
a transmission rate of 5Gbps to ensure no delay
and no distortion of images; the data processing
module, as the core module, includes two sub-units:
defect detection and size measurement. The former
identifies defects such as cracks, scratches and pits on
the bearing surface through the improved YOLOv5
model, and the latter completes the calculation of
parameters such as radius and area based on the
OpenCV algorithm. Both share image acquisition
data to achieve parallel processing; the result output
module displays the detection results through a visual
interface, including defect type, confidence, position
coordinates and dimensional parameters, and also
supports abnormal data alarm (such as excessive
defects and out-of-tolerance size) and detection record
storage (Excel format export) to facilitate quality
traceability.

As the core component of image acquisition, the
industrial camera needs to balance the requirements
of resolution and frame rate. As shown in Figure 1,
this paper comprehensively compares the performance
parameters of different models and selects the Daheng
Mercury II MER-500-7UC-L industrial camera. It
adopts a 1/2.5-inch CMOS sensor with an effective
pixel of 5 million (2592×1944) and a maximum frame
rate of 30FPS, which can meet the clear capture of
bearing detailed features; it supports global shutter
to avoid motion blur and adapt to the bearing
transmission speed (0.5m/s) of the production line;
the dynamic range is 68dB, which can maintain the
gray level of images under different illumination
conditions, providing a high-quality data foundation
for subsequent defect recognition.

The selection of optical lens needs to match the camera
sensor size and the field of view (FOV) of detection.
According to the imaging optical principle, combined
with the requirements of the maximum outer diameter
(80mm) andworking distance (30cm) of the bearing to
be detected, a 16mm focal length fixed-focus industrial
lens is selected. The distortion rate of the lens is less
than 1%, ensuring no distortion of the bearing edge
contour; the aperture range is F1.4 - F16, which can
adjust the light intake according to the light source

Figure 1. Daheng Mercury II MER-500-7UC-L industrial
camera.

intensity to further optimize the image clarity. The
light source adopts an annular LED light source with
an inner diameter of 50mm and an outer diameter
of 100mm, and a light-emitting angle of 45°. It
provides uniform illumination for the bearing surface
through diffuse reflection, effectively eliminating the
shadow interference caused by the bearing surface and
highlighting the gray difference between defects and
the background; the light source controller supports
0-100% brightness adjustment, which can adapt to
the light reflection characteristics of bearing materials
(such as stainless steel and bearing steel). In addition,
a high-precision stage is configured to support X/Y
axis fine-tuning (precision 0.01mm), ensuring that the
bearing is placed in the center during detection and
avoiding detection errors caused by position offset.

2.2 Attention Mechanism
In the technological iteration of Convolutional
Neural Networks (CNN), the research on attention
mechanism has always focused on breaking through
the inherent constraints of the local receptive field of
CNN. Its core idea is to dynamically adjust the feature
weight distribution, strengthen the representation
efficiency of key visual information, and thus become
a core technical direction to improve the adaptability
of CNN in complex scenarios. From the development
context, the Spatial Transformer Network (STN)
proposed in 2015 can be regarded as the early
exploration form in this field. Although the model did
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not explicitly adopt the term “attention”, it can realize
adaptive focusing and alignment of key image regions
through end-to-end learning of deformable spatial
transformation matrices, providing the core idea of
“selective attention” for the design of subsequent
attention mechanisms and becoming an important
theoretical cornerstone for attention research in the
visual field.

It was not until 2017 that the proposal of
Squeeze-and-Excitation Networks (SENet) [34]
marked the formal formation of channel attention
mechanism. The model innovatively designed a
two-stage operation of “global average pooling
(squeeze stage) - fully connected layer modeling
(excitation stage)”, which dynamically learned the
dependency relationship between feature channels to
generate weight coefficients, significantly improving
the model’s attention to highly discriminative feature
channels. Relying on this design innovation, SENet
showed superior performance over traditional CNN in
the ImageNet image classification competition, which
not only verified the technical feasibility of integrating
attention mechanism with CNN, but also promoted
the large-scale application of attention technology in
various visual tasks.

Since 2018, the attention mechanism has entered a
stage of rapid development with multiple dimensions
and diversification, and the research focus has
shifted from single-channel optimization to global
dependency modeling and multi-dimensional
collaborative optimization. Among them, Non-Local
Neural Networks [35] first introduced the
self-attention mechanism into the visual field.
By calculating the correlation similarity between any
two points in the feature map, the model effectively
captures long-distance contextual information,
making up for the lack of global semantic modeling
ability of CNN due to local convolution operations,
and providing a new technical solution for tasks that
require global information support such as target
detection and video analysis. The Convolutional Block
Attention Module (CBAM) [36] proposed in 2019
further achieved technical breakthroughs, innovatively
constructing a “channel-space” dual-branch attention
structure: first, the channel attention branch quantifies
and weights the importance of different feature
channels to screen out channels carrying key
information; then, the spatial attention branch locates
and enhances the salient regions in the channel feature
map, forming a collaborative optimization mechanism
of “channel screening - spatial focusing”. This hybrid

attention module has the characteristics of light weight
and easy embedding, and can be flexibly integrated
into various CNN architectures, showing excellent
generalization performance in various tasks such as
image classification, target detection and semantic
segmentation. At the same time, the Efficient Channel
Attention Network (ECA-Net) [37] optimized the
information redundancy problem caused by the
fully connected layer in SENet, replacing the fully
connected operation with 1D convolution, which
greatly reduces the computational complexity while
retaining local channel interaction information,
further improving the application efficiency of the
channel attention mechanism in resource-constrained
scenarios.

In recent years, the research on attention
mechanism has shown two core evolution trends:
“lightweight design” and “task customization”.
In resource-constrained scenarios such as mobile
terminals and embedded systems, models such as
ShuffleAttention [38] adopt the technical strategy
of “channel grouping - shuffle interaction - local
attention calculation”, which maintains the feature
representation ability while reducing redundant
parameters and computational load, realizing
the “lightweight” and efficient deployment of the
attention module; in specific visual tasks, the attention
mechanism begins to deeply integrate with task
characteristics. For example, in target detection tasks,
the attention module is designed to have a weight
distribution logic that suppresses background noise
and interfering targets, and in semantic segmentation
tasks, cross-scale attention is used to fuse multi-level
contextual information to adapt to the differentiated
needs of different tasks for feature representation. At
the same time, inspired by the global modeling ability
of Vision Transformer (ViT), a new generation of
visual models such as CoAtNet and ConvNeXt [39, 40]
further break the technical barrier between CNN and
self-attention, adapting to image multi-scale features
through a hierarchical attention mechanism: retaining
the advantage of CNN in local detail extraction in the
bottom network, and introducing self-attention in the
top network to model global semantic associations,
forming a “local-global” collaborative feature learning
mode, and promoting the continuous improvement
of the performance of visual models in complex
scenarios.

At present, the attention mechanism has developed
from an early auxiliary optimization method to a core
component of modern convolutional networks. Its
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technical evolution path clearly presents the logical
main line of “from single-dimensional optimization
to multi-dimensional collaboration, from generalized
design to task customization, and from performance
priority to efficiency-performance balance”. Looking
forward to the future, with the continuous deepening
of the demand for edge computing, real-time
vision and other scenarios, the attention mechanism
will further develop towards “high efficiency (low
parameter quantity, low computational overhead)”
and “scenarioization (adapting to specific tasks and
hardware environments)”, continuing to provide core
support for technological breakthroughs in the field
of convolutional images.

2.3 YOLOv5
Since the proposal of the YOLO (You Only Look Once)
series algorithms in 2016, they have attracted wide
attention in the field of target detection. The core
idea of this series of algorithms is to transform the
target detection task into a regression problem, and
obtain the bounding box and category probability
of the target through a single forward propagation,
thereby realizing high-speed and accurate detection.
With the continuous development of the YOLO series
algorithms, their performance has been significantly
improved. From the initial YOLOv1 to the subsequent
YOLOv2, YOLOv3, and now YOLOv4 and YOLOv5,
each generation of algorithms has been optimized and
improved in terms of structure, loss function, training
strategy and other aspects. Due to the excellent
performance of the YOLOv5 algorithm in terms of
speed and accuracy, it has a wide range of application
advantages in the field of target detection, so this paper
adopts the YOLOv5 algorithm as the main module
for defect detection. Especially in the task of bearing
surface defect detection, the YOLOv5 algorithm can
give full play to its advantages and realize efficient and
accurate defect detection.

The high speed of YOLOv5 enables it to complete the
detection task of a large number of bearing images
in a short time, meeting the application scenarios
with high real-time requirements. This is of great
significance for real-time detection of bearing surface
defects on the production line. Secondly, the accuracy
of YOLOv5 ensures the reliability of the detection
results. By optimizing the algorithm structure and
parameter settings, YOLOv5 can accurately identify
various defect types on the bearing surface and
provide accurate defect position and size information.
This provides strong support for subsequent defect

analysis and processing. In addition, the usability of
YOLOv5 allows users to easily apply it to practical
projects. Through simple configuration and training,
users can use the YOLOv5 algorithm to realize the
bearing surface defect detection task without complex
algorithm development and debugging work.

2.4 Edge Detection Algorithm
Edge detection is a core technology in the fields of
image processing and computer vision, aiming to
identify regions in images with significant brightness
changes, i.e., edges. These edges often carry key
features or important event information of the image.
Edges can be detected by calculating the gradient
change of the image. Because theCanny edge detection
algorithm has good noise suppression and edge
detection performance, this paper uses it as the edge
detection algorithm for bearings.
Edge detection based on the Canny operator mainly
relies on image filtering and pixel gradient calculation.
Image filtering is usually used to eliminate or reduce
noise, blur or other unwanted details in the image,
while retaining or enhancing important information
in the image. In digital image processing, filtering
operations usually involve applying a filter to each
pixel in the image. This filter can be predefined or
dynamically generated according to the image content.
The application method of the filter usually involves
convolving the filter with a small region (such as
a 3x3 or 5x5 pixel block) in the image, and then
assigning the result of the operation to the central
pixel of the region. Figure 2 shows the comparison
between the median filtered image and the original
image, and we adopt median filtering as the filter for
our images. The main advantage of median filtering
is that it can effectively filter out impulse noise (such
as salt and pepper noise) and other random noise,
while keeping the edge information of the image from
being blurred. Compared with mean filtering, median
filtering is more excellent in protecting image details.
In addition, median filtering is not sensitive to the
statistical characteristics of noise in the input signal,
making it show good robustness in processing various
noises.
We adopt the Sobel operator as the core algorithm
for pixel gradient calculation. The Sobel operator
occupies an important position in image processing,
especially in the field of edge detection. It realizes edge
detection by calculating the approximate value of the
gradient of the image brightness function. Applying
the Sobel operator to any point in the image can obtain
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Figure 2. Comparison between the original image and the
image after median filtering.

the gradient vector or its norm at that point. This
operator mainly performs first-order or second-order
differential operations on each pixel of the image based
on various possible reasons for edge formation, so as to
accurately identify points with significant brightness
changes, i.e., edges.

The Sobel operator has two directional templates,
namely horizontal and vertical direction templates, as
shown in Figure 3.

Figure 3. Direction templates of the Sobel operator.

Calculation process of the Sobel operator: first, use
the above two templates to calculate the gradients
of the original image I in the horizontal and vertical
directions by Equation (1):

GX =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, GY =

−1 −2 −1
0 0 0
1 2 1

 ∗ I
(1)

(1) Its expanded calculation formula is as Equation

(2):
∆xf(x, y) = [f(x− 1, y + 1) + 2f(x, y + 1) + f(x + 1, y + 1)]

− [f(x− 1, y − 1) + 2f(x, y − 1) + f(x + 1, y − 1)]

(2)

∆yf(x, y) = [f(x− 1, y − 1) + 2f(x− 1, y) + f(x− 1, y + 1)]

− [f(x + 1, y − 1) + 2f(x + 1, y) + f(x + 1, y + 1)]

(3)
(2) Finally, the gradient of the entire image is
calculated by Equation (3):

G =
√

G2
x + G2

y (4)

The Sobel operator skillfully combines the advantages
of the Prewitt operator and the Roberts operator,
which can not only effectively suppress noise, but
also provide relatively accurate edge positioning
information. It determines the position and direction
of edges by calculating the approximate value of
the gradient of the image brightness function and
combining the gray weighted difference of the upper,
lower, left and right neighboring pixels of the pixel.
This strategy makes the Sobel operator perform well
in practical applications, especially when the accuracy
requirement is not very high. The Sobel operator can
handle noise well and obtain relatively accurate edge
information, so it has been widely used in the field of
image processing.

3 Proposed Methods
3.1 Network Structure
As one of the core tasks in the field of computer vision,
target detection has a wide range of applications in
intelligent monitoring, autonomous driving and many
other fields. The YOLO series algorithms have become
the mainstream choice for real-time target detection
tasks due to their end-to-end detection process
and efficient inference speed. To further improve
its detection performance, this paper proposes an
improved method based on the YOLO architecture,
which mainly realizes the improvement of feature
expression ability and detection accuracy through two
key improvements: introducing the SimAM attention
mechanism in the neck and replacing the C3 module
with the C2F module. The final network structure is
shown in Figure 4.
The improved YOLO network still follows the classic
three-stage architecture of Backbone-Neck-Head. The
Backbone is responsible for extracting multi-scale
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Figure 4. Network structure of SimAM-YOLO.

features from the input image. The C2F network
structure is a special network design mainly used
for computer vision tasks, especially target detection
tasks. Its core idea is to convert the output of the
convolutional layer into the input of the fully connected
layer, so as to better integrate and utilize feature
information at different levels. Specifically, the C2F
structure usually includes a series of convolutional
layers, which are used to extract features from the input
image. Then, these features are converted into a format
suitable for processing by the fully connected layer
through a certain method (such as pooling or other
feature integration methods). The fully connected
layer further processes and classifies these features
to generate the final detection results. In this paper,
the original C3 module in YOLO is replaced with the
C2F module, and the comparison of their network
structures is shown in Figure 5. Compared with
the C3 network structure, the Channel of the input
Tensor entering the Bottleneck calculation sequence
is only 0.5 times that of the input channel of C2F, so
the computational complexity is significantly reduced.
On the other hand, the increase in gradient flow can
also significantly improve the convergence speed and
effect, so the effect is better. In the construction
process of feature maps of different scales (such as
128, 256, 512, 1024 channel dimensions), the alternate

combination of CBS (Conv+BatchNorm+SiLU) units
and C2F modules realizes the gradual extraction of
multi-scale features from the input image (640×640).
In addition, the SPPF (Spatial Pyramid Pooling - Fast)
module is introduced at the end of the Backbone
to fuse features of different receptive fields through
multi-scale pooling operations, further improving the
global perception ability of features.

As a key link of feature fusion, the core improvement
of theNeck in this paper lies in introducing the SimAM
attentionmechanism and combining the feature fusion
ability of the C2F module. As a parameter-free
attention method, SimAMmodels the importance of
neurons in the featuremap, adaptively strengthens key
features and suppresses redundant information. In the
multi-scale feature fusion path of the Neck, SimAM
is inserted into the key feature layers, so that after
operations such as upsampling and concatenation of
features, the network can more accurately focus on the
effective features of the target region.

First, SimAM extracts the feature map of the input
image through a Convolutional Neural Network
(CNN). Each position in the feature map represents
specific information of a part of the image. In a
convolutional neural network, these feature maps
usually contain rich spatial information, which is
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Figure 5. Structural comparison diagram of C2F and C3
modules.

crucial for tasks such as image recognition and
classification. Next, SimAM calculates the attention
weight by using the local self-similarity of the feature
map. In an image, adjacent pixels usually have
strong similarity, while pixels at a long distance
have weak similarity. Based on this characteristic,
SimAM calculates the similarity between each pixel
and its adjacent pixels to generate attention weights.
Specifically, SimAM first calculates the square of the
difference between each pixel and the average value
of its channel, which helps to capture the difference
between the pixel and its surrounding area. Then,
these difference values are divided by a regularization
term (i.e., the sum of squares of each channel plus a
small constant e_lambda), and 0.5 is added to obtain
a new tensor y. This operation aims to enhance the
weight of pixels that are significantly different from
the surrounding pixels, while suppressing the weight
of pixels that are similar to the surrounding pixels.
Finally, SimAM multiplies the original feature map
by y processed by the Sigmoid activation function to
obtain the weighted feature map. This process actually
applies an attention weight to each pixel in the original
feature map, making the model pay more attention
to the key features that are significantly different
from the surrounding pixels. In general, the SimAM
model generates attention weights by calculating
the local self-similarity of the feature map, thereby
guiding the model to focus on the key regions in the
image. This lightweight and parameter-free attention
mechanism can effectively improve the performance of
the convolutional neural network, making the model

perform better in tasks such as target detection and
image classification.
In the feature fusion process, the Neck realizes
cross-scale feature fusion through UpSample
operation, and combines the feature integration ability
of the C2F module and the attention guidance of
SimAM to repeatedly fuse the multi-scale features
output by the Backbone, and finally generates three
enhanced feature maps of different scales, providing
more discriminative feature input for the detection
task of the Head.
The Head part adopts a fully convolutional structure,
and maps the feature maps output by the Neck to
detection results through Conv layers. Each detection
branch includes a convolutional layer with 64 channels,
and finally outputs three types of prediction results
(corresponding to target detection requirements of
different scales), realizing the prediction of the
category, position and confidence of the target.

3.2 Real-time Bearing Size Measurement
3.2.1 Overall Measurement Scheme Design
The flow chart of the real-time bearing size
measurement designed in this paper is shown
in Figure 6: first, set the type of camera to be called.
Before starting the measurement, it is necessary to
select an appropriate camera type according to the
actual application scenario, such as a USB camera or
an industrial camera, and configure corresponding
parameters such as resolution and frame rate. The
main function of this step is to facilitate the program
to switch between the built-in camera and the external
camera. Next, call the camera. Use functions or
classes in the Python-OpenCV library to initialize
and start the camera so that it can capture real-time
video streams. This step is the basis of real-time
measurement, ensuring that continuous image data of
the bearing can be obtained.
In the image processing stage, preprocess and extract
features from the captured bearing images. This
usually includes steps such as grayscale conversion,
filtering and denoising, and edge detection to more
accurately identify the contour and feature points of
the bearing. In contour endpoint detection, contour
detection algorithms provided byOpenCV can be used
to find the endpoints of the bearing contour, which are
crucial for subsequent size measurement.
Then, perform border drawing (data calculation).
According to the found contour endpoints, draw the
corresponding border on the image and calculate the
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Figure 6. Flow chart of real-time bearing size measurement.

size data of the border. These size data can be pixel
values, but usually need to be converted into actual
physical sizes according to the calibration parameters
of the camera. The main purpose of this part is to
draw the frame and calculate the data. Next is ratio
calculation. In real-time measurement, it may also be
necessary to calculate the ratio according to a reference
object of known size to convert pixel size into actual
size. This can be achieved by introducing a reference
object of known size (such as a standard bearing or a
calibration plate) during the measurement process.

Reference object selection (photography) is an
important part of ratio calculation. Before the
measurement starts, it is necessary to select a suitable
reference object and take its image with a camera.
Then, through image processing and analysis, find
the size information of the reference object and use it

as the benchmark for subsequent size measurement.
Finally, perform real-time measurement. In the
real-time video stream captured by the camera,
perform the above processing and analysis on each
frame of image, calculate and output the real-time size
data of the bearing. This can be achieved by presenting
the size data to the user in the form of numbers, charts
or real-time displays.
Through the above process, the real-time bearing
size measurement system based on Python-OpenCV
can efficiently and accurately complete the size
measurement task, providing strong support for fields
such as industrial automation and quality control.

3.3 Image Processing
This paper adopts the Canny edge detection algorithm
to realize the accurate positioning of image edges,
effectively reducing noise interference and the false
detection rate of non-edge pixels. The specific
implementation process is as follows: first, convert the
input RGB color image into a grayscale image through
the cv2.cvtColor function to lay the foundation for
subsequent edge detection; second, use a Gaussian
kernel of size (5, 5) to filter the grayscale image (where
the standard deviation of the Gaussian function is set
to 0, and OpenCV will automatically calculate this
parameter according to the kernel size) to further
smooth the image and suppress noise; then, perform
Canny edge detection based on double thresholds
(min_val and max_val). Pixels with values lower
than min_val are judged as non-edge pixels, those
higher than max_val are judged as edge pixels, and
pixels between the two thresholds are judged as
edge pixels only when they are connected to pixels
higher than max_val, otherwise they are classified
as non-edge pixels; considering the requirement of
edge continuity, this study only performs cv2.dilate
dilation operation on the detected image (without
corrosion operation) to achieve edge thickening and
connection of discontinuous edges; then, call the
cv2.findContours function to extract contours from the
dilated binary image, and only retain the outermost
contours, which are represented in the form of
compressed horizontal, vertical and diagonal line
segments (only the endpoints of the line segments are
retained); since there are differences in the return value
formats of the cv2.findContours function between
OpenCV 3 and OpenCV 4, the return results of the
two versions need to be unified through the contour
extraction step; finally, the function outputs a list of
detected contours, where each contour is presented in
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the form of a set of points, corresponding to an edge
in the image or the boundary of a target object.

3.3.1 Border Drawing
The specific flow of this part is shown in Figure 7. The
core functions are frame drawing and data calculation:
in the initial stage of the program, when taking a
photo of the reference object, the selected object is
clearly identified by drawing a frame; as the program
progresses, on the basis of continuously drawing
this frame, the length and area in the real world
are determined through a series of ratio calculations;
finally, while completing the frame drawing, the
program intuitively presents the calculated results
such as length and area to the user. Considering
that bearings are mainly circular structures, it is only
necessary to extract the coordinates of the leftmost and
rightmost points of the contour to meet the calculation
needs of relevant parameters.

Figure 7. Flow chart of the border drawing module.

3.3.2 Ratio Calculation
The ratio is defined as the ratio of the distance
between two points of the reference object in the
metric space to the actual distance between these
two points. All dimensions to be calculated are
obtained by dividing the Euclidean distance by this
ratio. Among them, the Euclidean distance is a
classic method in mathematics for measuring the
"ordinary" straight-line distance between two points
in multi-dimensional space. It is named after the

ancient Greek mathematician Euclid, and this distance
represents the shortest straight-line distance between
two points. Specifically, the calculation formula of the
Euclidean distance between two points A(x1, y1) and
B(x2, y2) in a two-dimensional plane is as shown in
Equation (4):

d =
√

(x1 − x2)2 + (y1 − y2)2 (5)

The calculation formula of the Euclidean distance
between two points A(x1, y1, z1) and B(x2, y2, z2) in
a three-dimensional space is as shown in Equation (5):

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (6)

The calculation formula of the Euclidean distance
between two points A = (a1, a2, · · · , an) and B =
(b1, b2, · · · , bn) in an N-dimensional space is as shown
in Equation (6):

d =

√√√√ n∑
i=1

(ai − bi)2 (7)

The specific implementation scheme of this part is as
follows: instead of directly calculating the distance
of the actual object in the physical world, first solve
the Euclidean distance between two reference points
(left_point and right_point) in the coordinate system
(denoted as length_euclidean); then, the code prompts
the user to input the length of the reference object
based on known standards or information (denoted as
length_reference), which may correspond to a certain
size of the actual object in the physical world, but
the code itself does not contain the corresponding
relationship between the two; then, the ratio (denoted
as rate) is obtained by calculating the ratio of the
Euclidean distance to the length of the reference object.
This ratio does not directly represent the distance of
the actual object in the physical world, but serves
as a scaling factor for estimating the proportional
relationship of other relevant dimensions according
to the known length of the reference object. It should
be noted that the above estimation process is based
on the assumption that "the image size scaling is
uniform and there is no perspective distortion", but
this assumption may not hold in actual scenarios, so
the actual object distance calculated by this method is
only an approximate value.
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3.3.3 Real-time Detection
The core function of this part is to realize real-time
measurement. Algorithm 1 summarizes the
pseudocode of the real-time measurement algorithm
in this part, and its specific execution process is as
follows: first, initialize the camera, create a camera
object camera, which usually represents the device ID
of the camera in the form of an integer (for example,
0 corresponds to the built-in camera, 1 corresponds
to the external camera, etc.); then the function enters
an infinite main loop to continuously capture video
frames from the camera and perform processing and
display operations on each frame of image. Inside
the loop, the first step is to capture a frame, obtain a
frame of image from the camera through a specific
method, which returns a boolean value indicating
whether the capture is successful (usually True means
success) and an image frame (stored in the form of a
NumPy array). Since only the image frame is needed,
it is extracted through the [1] index; the second step
is to flip the image, call the function to horizontally
flip the captured image frame to make the image
consistent with the camera preview direction (because
the camera preview image is usually in a mirror state);
the third step is to obtain contour points, process
the flipped image and return the contour endpoints
of all reference objects, which can characterize the
boundaries or specific feature points of objects in the
image; the fourth step is to filter contour points, first
initialize an empty list selected_points to store the
filtered contour points, then traverse each contour in
the points list through a list comprehension, calculate
the area of each contour, and if the contour area
is greater than the preset threshold, add it to the
selected_points list; the fifth step is to draw the border,
draw the border corresponding to all contours in the
selected_points list on the original image; the sixth
step is to display the image, and display the image
with the drawn border in a window named "Camera";
finally, perform the operation of exiting the loop to
end the real-time measurement process.

4 Experiments and Results
In this paper, a general bearing test dataset is used
to evaluate the SimAM-YOLO model designed in this
paper.

4.1 Experimental Setup
The code runs on theWindows 11 system environment,
using the NVIDIA GeForce RTX 4060 graphics card.
During the experimental training process, the SGD

Algorithm 1: Real-time measurement algorithm
Input: Camera device ID, display mode
Output: Processed image with detected contours
// Define the real-time processing function
begin

PRINT "Enter the real-time processing program"
// Initialize the camera object: parameters are
camera device type and display flag
camera← Initialize video capture object
(camera device ID, display mode)

// Enter the real-time processing main loop
while True do

frame← Read image frame from camera
// Capture a frame of image from the
camera, only get the image frame data
flipped_frame← Perform horizontal flip
operation on frame // Horizontally flip
the image

points← Process flipped_frame
// Process the flipped image to obtain
the contour endpoints of all reference
objects
selected_points← Empty list // Filter
contours: retain contours with area
greater than the threshold

foreach contour i in points do
if area of contour i ≥ preset area threshold
then
Add contour i to selected_points

end
end
Draw the border corresponding to
selected_points on frame // Draw the
border of the filtered contour on the
original image
Display image window ("Camera", frame)
// Display the processed image (window
name is "Camera")

if (key input is detected) or (window
"Camera" is closed) then

// Detect exit conditions: any key
is pressed or the window is closed
Close the "Camera" window
break

end
end

end
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optimizer is adopted, the initial learning rate is 0.01,
and the weight decay coefficient is 0.0005. The
confidence threshold is set to 0.5 for mAP-50 and 0.95
for mAP-95. Each training cycle of the model is 300
epochs, the batch size is 32, and the image input size
is 640×640 pixels.
Data collection is a key step in building a bearing
surface defect detection system. To train a
high-performance YOLOv5 model, we collect a
large number of bearing surface images containing
various defect types. These images can be obtained
through laboratory shooting, production line
collection or public datasets. Place the camera above
the bearing to be detected, first perform image
collection and save it in the specified path on the
computer; then, open the LabelImg software in the
YOLOV5 environment to perform image coordinate
calibration, as shown in Figure 8. It should be noted
that the more images included in the training set, the
better, which is conducive to improving the accuracy.

Figure 8. Coordinate calibration.

This paper adopts Precision (Metrics/Precision),
Recall (Metrics/Recall), mean average precision
(mAP-0.5 & mAP-0.5:0.95) and frame rate (FPS) as
core performance indicators. Among them, Precision
is used to measure the accuracy of positive sample
prediction, reflecting the proportion of correctly
identified among all positive predictions; Recall
evaluates the model’s ability to capture all relevant
instances, indicating the proportion of correctly
identified among actual positive samples. Accuracy
can be calculated by combining True Positive (TP),

Figure 9. Scratch detection effect.

Figure 10. Groove detection effect.

Figure 11. Defect detection effect.

True Negative (TN), False Negative (FN) and False
Positive (FP) through Equation (9). The Average
Precision (AP) is defined by Equation (10), where
Rn and Pn represent the recall rate and precision
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Figure 12. Original image, YOLOv5 detection image and SimAM-YOLO detection image.

corresponding to the nth threshold respectively.
The mean Average Precision (mAP) is the average
result of the AP values of all instances, which is
equivalent to the area under the Precision-Recall (P-R
curve). Among them, mAP-0.5 & mAP-0.5:0.95 as a
comprehensive indicator provides a comprehensive
evaluation of model quality by calculating the average
precision across multiple categories. These indicators
together constitute a comprehensive evaluation of
model effectiveness, balancing accuracy, efficiency and
comprehensiveness, making it suitable for a wide
range of applications from autonomous driving to
medical image analysis. Themathematical expressions
of these indicators are as shown in Equations (7)-(10):

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

accuracy =
TP + TN

TP + FN + FP + TN
(10)

AP =
∑
n

(Rn −Rn−1)Pn (11)

4.2 Feature Performance of Detection Results
In this paper, the characteristic manifestations of
various common defects on the bearing surface in
images are divided into three categories: grooves
(aocao), defects (quexian), and scratches (huahen).
Specifically, the scratch detection results are shown
in Figure 9; the groove detection results are shown in
Figure 10; and the defect detection results are shown
in Figure 11.

It can be seen that our algorithm can clearly distinguish
various defects, achieve no missed detection and no
false detection, and the accuracy of the detection frame
is controlled at the millimeter level.

4.3 Comparison After Introducing the SimAM
Attention Mechanism

After introducing the SimAMmechanism, the model
will be significantly improved. Taking scratches as an
example, the detection effect is shown in Figure 12. It
can be seen that the performance of the SimAM-YOLO
model is better than that of the original YOLOv5
model, and its performance in scratch recognition is
significantly improved. Table 1 shows the quantitative
analysis results of the twomodels. The data shows that
SimAM-YOLO surpasses the original YOLOv5 model
with higher mean average precision (mAP) in all three
categories. Specifically, its precision is improved by
12.1%, 14.2% and 18.1% in scratches, pits and grooves
respectively, and the recall rate is also significantly
improved by 12.9%, 4.8% and 8.6%.

Table 1. Quantitative comparison between the original
YOLOv5 and SimAM-YOLO.

Model Defect
type

Precision
(%)

Recall
(%)

Map-50
(%)

Map50-95
(%)

YOLOv5
Scratch 73.1 71.8 69.4 39.3
Defect 75.3 72.4 81.2 47.5
Groove 65.3 63.5 68.3 39.6

SimAM-YOLO
Scratch 85.2 84.7 81.9 50.2
Defect 89.5 77.2 88.2 52.9
Groove 83.4 72.1 76.4 50.8

4.4 Real-time Monitoring Implementation Effect
The code terminal implementation flow chart and the
measurement result chart are shown in Figures 13
and 14 respectively. For bearings, we use BJK-608RS
deep groove ball miniature bearings as the detection
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Figure 13. Flow chart of real-time size detection.

Figure 14. Measurement result chart of real-time size
detection.

object, with specifications of outer diameter 22mm
and inner diameter 8mm. In comparison, it can be
seen that the error of the algorithm designed in this
paper in real-time bearing size is only 0.000061mm,
which can efficiently and accurately complete the size
measurement task, providing strong support for fields
such as industrial automation and quality control.

5 Conclusion
Aiming at the industry pain points of strong
subjectivity, low efficiency in traditional bearing
surface defect detection and insufficient dimensional
measurement accuracy, this paper proposes an
integrated detection scheme SimAM-YOLO that
combines the improved YOLOv5 algorithm with
machine vision size measurement technology,
realizing the synchronous and efficient completion
of bearing surface defect recognition and key
dimensional parameter measurement.
This paper first builds a three-level machine vision

detection platform of “image acquisition - data
processing - result output”, completes the selection
and integration of core hardware such as industrial
cameras, optical lenses and annular LED light sources,
and provides hardware support for high-quality
image acquisition and real-time detection; at the
algorithm level, based on the YOLOv5 framework,
the original C3 module is replaced with the C2F
network structure to enhance gradient flow and
reduce computational complexity, and the SimAM
parameter-free attention mechanism is embedded to
strengthen the characterization of defect area features,
constructing a SimAM-YOLO defect detection model
with both detection speed and accuracy; at the
same time, a size measurement algorithm including
image preprocessing, Canny edge detection, contour
extraction, Euclidean distance calculation and ratio
calibration is designed based on Python-OpenCV to
realize real-time and accurate calculation of bearing
radius, area and other parameters, and a visual
detection interface is developed to improve the
usability of the system.

Experimental results show that the SimAM-YOLO
model achieves an average detection precision of
86.03%, a recall rate of 78%, and an mAP-0.5 of 82.17%
for three typical bearing defects: scratches, defects
and grooves, which are 14.8%, 8.77% and 9.2% higher
than the original YOLOv5 respectively; the measured
error for BJK-608RS deep groove ball bearings is only
0.000061mm, which fully meets the requirements of
industrial detection accuracy. In addition, the system
realizes 100% reuse of the hardware platform for
defect detection and size measurement, supports the
detection of bearings of different specifications with
outer diameters of 30-80mm, is easy to operate and
flexible to deploy, and effectively reduces the cost of
industrial application.

The innovation of this paper lies in proposing the
technical path of “feature enhancement - attention
guidance - integrated detection”, improving the
defect recognition ability through the collaborative
optimization of the C2F module and the SimAM
attention mechanism, and realizing the deep
integration of detection and measurement functions.
Future research can further optimize the feature
adaptation strategy of the attention mechanism,
correct the measurement error caused by perspective
deformation by combining binocular vision or laser
ranging technology, and explore the lightweight
deployment scheme of the model on embedded
devices to meet the real-time detection needs of more
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complex industrial scenarios.
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