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Abstract
In the field of high-end precision manufacturing,
quality control in production processes has
long been challenged by both spatiotemporal
data sparsity and error lag. Traditional offline
sampling methods struggle to capture the
dynamic fluctuations in production, while
single-dimensional feedback controls fall short
in addressing the nonlinear coupling between
multi-dimensional process parameters and final
product quality. To address these challenges, this
paper proposes a production quality management
system based on multi-dimensional data learning
and an active error elimination method. First, to
tackle the issue of sparse sampling, an Adaptive
Gaussian Process Regression (AGPR) algorithm
with mixed kernel functions is introduced
to reconstruct continuous production quality
time-series states, effectively resolving the "blind
spot" problem caused by discrete monitoring.
Second, a Dynamic Gated LSTM network with
a "Correction Gate" is designed to explicitly
model the dynamic intervention mechanism of
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process control variables on quality evolution,
advancing from passive prediction to active
deduction. Most importantly, this paper develops
an active error elimination strategy using gradient
inversion. By minimizing the quality deviation
objective function, the optimal combination
of process parameters is inversely determined.
In practical terms, this approach enables the
"dynamic re-matching of machine tool state and
process requirements"—intelligently adjusting
process parameters (such as injection pressure
and holding time) according to the equipment’s
real-time state (e.g., thermal drift, wear). This
method compensates for physical equipment
performance degradation through dynamic
scheduling. Experimental results show that
the system significantly reduces the rejection rate
in precision injection molding scenarios, marking
a paradigm shift in production from "post-event
rejection" to "pre-event self-healing".

Keywords: production quality management,
multi-dimensional data learning, adaptive gaussian
process regression, dynamic gated LSTM, error elimination,
smart manufacturing.

1 Introduction
In the era of Industry 4.0, one of the core goals of
intelligent manufacturing is to achieve "zero-defect"
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management of production processes. In fields such
as automotive components, precision electronics, or
aerospace manufacturing, product quality is no longer
determined solely by single dimensional tolerances
but is reflected in the comprehensive compliance of
multi-dimensional indicators such as volume, mass,
density distribution, and geometric form.
However, in actual production lines, quality
management faces the dual challenges of
"measurement" and "control":
Sparsity and Non-continuity of Data Acquisition:
For certain key physical quantities (such as precision
weighing or CT-based internal volume measurement),
the detection speed is often lower than the production
cycle, making 100% full inspection or high-frequency
continuous monitoring impossible. This results in
quality data that is discrete and sparse on the time
axis.
Concealment and Lag of Error Generation: Tool
wear, thermal deformation of production equipment
(such as injection molding machines, CNC machine
tools), or raw material fluctuations can cause slow
drift in product quality. Traditional threshold alarm
mechanisms are often triggered only after the error has
exceeded the tolerance range, by which time a batch
of defective products has already been produced.
Therefore, how to reconstruct the continuous state of
the production line using sparse sampling data, and
establish an accurate predictivemodel between process
parameters and multi-dimensional quality indicators,
thereby enabling “feedforward control” or “predictive
maintenance” before errors result in defects, is a key
scientific problem that urgently needs to be solved in
the field of production quality management.
Current production quality management
technologies are mainly divided into two categories:
Statistical Process Control (SPC) and machine
vision-based surface defect detection.
SPC Technology: Focuses on monitoring process
stability using control charts. Its limitation lies in
the difficulty of handling multi-variable coupling
problems. For example, excessive product volumemay
occur simultaneously with underweight (insufficient
density), and single-dimensional SPC struggles to
capture this correlation.
MachineVision Inspection: Significant achievements
have been made using deep learning technologies
such as YOLO and SimAM for surface defect

detection. However, these methods are mostly used
for “appearance screening” i.e., removing already
produced defects. They lack the ability to reversely
regulate production process parameters (such as
pressure, temperature, speed) and cannot eliminate
errors at the source.
To address the aforementioned issues, inspired by
the concept of fine management in crop production
(i.e., the closed loop of environmentalmonitoring-state
prediction-precision supplementation), this paper
transfers it to discrete manufacturing processes and
proposes a multi-dimensional data learning-based
production quality management system.
The main contributions of this paper are as follows:
Continuous Reconstruction of Sparse Production
Data: An improved Adaptive Gaussian Process
Regression model is proposed, utilizing a multi-kernel
learning strategy to recover the continuous quality
fluctuation curve of the production line from sparse
sampling data (volume, mass), providing a data basis
for full-period monitoring.
Prediction Model with a "Process Correction Gate":
The standard LSTM structure is improved by adding
a gated unit specifically designed to handle process
control variables (such as equipment speed, pressure
compensation). This enables the model not only to
predict the natural evolution trend of quality but also
to simulate the impact of different process adjustment
schemes on future quality.
Error Elimination Strategy Based on Multi-objective
Optimization: A loss function incorporating quality
deviation penalty and equipment adjustment cost is
established. The gradient descent method is used to
automatically calculate the optimal process parameter
correction amount, achieving automatic correction of
production errors.

2 Related Work
With the deepening advancement of the "Industry
4.0" and "Made in China 2025" strategies, the
manufacturing industry is undergoing a profound
transformation from digitalization to intelligence.
Product quality, as the lifeline of manufacturing
enterprises, is seeing its management mode shift
from traditional "post-event sampling" to "online
monitoring" and "active predictive control"". Modern
industrial production lines are characterized by
multi-variable coupling, nonlinear time-varying
behavior, and multi-source heterogeneous data,
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posing extremely high challenges for quality control.
This chapter will systematically review domestic
and international research progress in four aspects:
statistical process control, quality prediction based
on deep learning, modeling enhancement under
incomplete data, and active compensation of
production errors, summarizing the shortcomings of
existing methods.

2.1 Research Status of Multivariate Statistical
Process Control (MSPC)

Early quality management primarily relied on
Shewhart control charts. However, when facing
modern complex industrial processes, univariate
statistical methods often fail. Consequently,
Multivariate Statistical Process Control (MSPC)
became the mainstream research direction in the early
stages.
MacGregor et al. [1] laid the theoretical foundation
based on Principal Component Analysis (PCA)
and Partial Least Squares (PLS). By projecting
high-dimensional process data into a low-dimensional
latent variable space, early detection of process
anomalies was achieved. To address the non-Gaussian
and nonlinear issues in industrial processes, Lee
et al. [2] proposed Kernel Principal Component
Analysis (KPCA), which maps nonlinear data into
a high-dimensional feature space for linear analysis
using the kernel trick. Building on this, Deng et al. [3]
further combined Support Vector Data Description
(SVDD), enhancing the sensitivity for detecting faults
in nonlinear processes.
Addressing the dynamic characteristics of production
processes, Ku et al. [4] proposed the Dynamic PCA
(DPCA) algorithm, which handles autocorrelation
between variables by introducing a time-lag matrix.
Yin et al. [5], targeting the time-varying nature of
industrial process data, proposed a recursive PLS
algorithm enabling online model updates. Ge et al. [6]
reviewed data-driven monitoring methods, noting
that while MSPC excels at fault detection, the fitting
capability of linear models remains insufficient for
precise prediction of specific quality metrics (e.g.,
specific dimension values).

2.2 Quality Prediction Based on Machine Learning
and Deep Learning

With the development of artificial intelligence
technology, data-driven quality prediction has become
a research hotspot. Compared to traditional
statistical methods, machine learning offers

significant advantages in handling complex nonlinear
relationships.
In the realm of shallow learning models, Kotsiantis [7]
compared algorithms such as SVM and Random Forest
in manufacturing quality prediction. Jung et al. [8]
utilized the XGBoost algorithm to predict product
weight in the injectionmolding process, demonstrating
the effectiveness of ensemble learning in industrial
regression problems.
In recent years, deep learning, with its powerful
feature extraction capabilities, has gradually taken
a dominant position. Wang et al. [9] reviewed the
application of deep learning in smart manufacturing
in the Journal of Manufacturing Systems, noting that
Deep Neural Networks (DNNs) can automatically
extract hierarchical features from raw sensor data.
For processing time-series signals, Zhao et al. [10]
proposed a Convolutional Bi-directional LSTM
network (CBLSTM). By using convolutional layers
to extract local features and LSTM to capture
long-term dependencies, it was successfully applied
to mechanical health monitoring. Zhao et al. [11] used
an LSTM network to model multi-stage manufacturing
processes, achieving dynamic prediction of product
quality.
To further improve prediction accuracy, Zheng
et al. [12] proposed an LSTM model based on
an Attention mechanism. By assigning different
weights to different time steps, it addressed the
problem of long-sequence information loss. Wu et
al. [13], focusing on tool wear prediction, constructed
a prediction model based on Vanilla LSTM and
compared the performance differences between RNN
and GRU. Additionally, Tao et al. [14] proposed a new
workshop production management and control mode
based on digital twins, emphasizing the core role of
deep learning models in virtual-physical mapping.
For multi-source heterogeneous data (e.g., mixed
images and numerical data), Chen et al. [15] designed
a multimodal Deep Belief Network (DBN) that
fused visual inspection data with process parameters,
significantly improving the recognition rate of surface
defects. Weimer et al. [16] focused on the application
of CNNs in automated surface inspection, reviewing
machine vision-based quality control technologies.

2.3 Few-Shot Learning and Data Augmentation
Methods

Although deep learning performs excellently, it heavily
relies on massive amounts of labeled data. In
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Figure 1. Multi-dimensional data-driven production quality management system.

actual production, due to the high cost of destructive
testing or time-consuming measurements, there is
often a sample sparsity problem characterized by
"high-frequency process data, low-frequency quality
data".

Gaussian Process Regression (GPR), due to its
rigorous Bayesian probabilistic framework, has become
a powerful tool for solving small-sample regression
problems. Seeger [17] systematically discussed the
advantages of GPR in handling nonlinear regression
and uncertainty estimation. Jin et al. [18] proposed
an adaptive Gaussian process model. By updating
hyperparameters online to adapt to the drift in batch
processes, it solved the model distortion problem
caused by insufficient sampling points. Research by
Kocijan et al. [19] showed that modeling methods
based on dynamic Gaussian processes have better
robustness than neural networks in nonlinear system
identification.

Another approach is to use generative models for
data augmentation. The Generative Adversarial
Network (GAN) proposed by Goodfellow et
al. [20] provided a new idea for industrial data
augmentation. Jiang et al. [21] published research
in IEEE Access, using an improved GAN to generate
labeled industrial fault samples, effectively solving the
data imbalance problem. Shao et al. [22] proposed

a data augmentation method based on Auxiliary
Classifier GAN for fault diagnosis of induction
motors. Furthermore, Pan et al. [23] reviewed Transfer
Learning technology, pointing out that transferring
models trained under similar operating conditions
to new tasks is an effective way to solve few-shot
problems.
However, purely data generation often ignores the
continuity and periodicity (e.g., production cycles)
of physical processes. Therefore, interpolation
techniques combining Kernel Methods still hold
irreplaceable physical interpretability when dealing
with time-series missing data [24].

2.4 Active Compensation for Production Errors and
Closed-Loop Control

The ultimate goal of quality management is not merely
"prediction" but "error elimination".
Traditional control strategies primarily rely on PID or
Run-to-Run (R2R) control. Wang et al. [25] detailed
the application of R2R control in semiconductor
manufacturing, using error feedback from the previous
batch to adjust the recipe for the next batch. Apley
et al. [26] studied control algorithms based on
EWMA (Exponentially Weighted Moving Average)
for handling process errors with autocorrelation.
With the introduction of intelligent algorithms, direct
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control based on predictive models has become
possible. Lu et al. [27] proposed a reference
architecture for digital twin-based manufacturing
systems, using virtual models for real-time simulation
and inversely deducing optimal processing parameters.
Wuest et al. [28] explored the potential of supervised
machine learning in manufacturing process control.

In the field of Reinforcement Learning (RL), Kober et
al. [29] reviewed the application of RL in robot control.
Panjapornpon et al. [30] attempted to use the Deep
Deterministic Policy Gradient (DDPG) algorithm for
continuous control of chemical processes. Oliff et
al. [31] proposed an intelligent process parameter
optimization framework based on reinforcement
learning to reduce energy consumption and improve
quality.

Although RL-based methods have self-learning
capabilities, their training process often requires
extensive interaction with the environment, suffering
from problems like "high trial-and-error cost" and
"difficult cold start". In contrast, using differentiable
deep learningmodels forGradient-basedOptimization
can quickly solve control variables using knownmodel
knowledge. However, research on its application in the
industrial field is relatively scarce, which is precisely
the entry point of this study.

3 Proposed methods
This system follows the closed-loop control logic of
"perception-cognition-decision-execution", aiming to
solve the problems of "incomplete visibility" caused by
sparse sampling and "inaccurate adjustment" caused
by complex coupling in the production process. The
system architecture mainly includes four subsystems:
the material and process execution subsystem, the
multi-dimensional quality data acquisition subsystem,
the motion and transmission control subsystem, and
the data processing and decision-making subsystem.
The system architecture diagram is shown in Figure 1.

Addressing the strong lag of traditional Statistical
Process Control (SPC) and the lack of active
control mechanisms in existing deep learning models
described in Chapter 2, this chapter proposes an
improved production quality management method.
The core innovations of this method are:

Data Layer Improvement: Uses Adaptive Gaussian
Process Regression (AGPR) to address the problem
of discontinuous and sparse time series data under
industrial sampling modes.

Model Layer Improvement: Introduces a "Process
Correction Gate" into the Long Short-Term Memory
network (LSTM) to explicitly model the dynamic
impact of process parameter adjustments on product
quality state.
Control Layer Improvement: Based on the gradient
information of the predictive model, constructs a
backpropagation controller to achieve closed-loop
automatic control from "quality prediction" to "error
elimination".

3.1 Overall Method Framework and Variable
Definitions

3.1.1 Variable Mapping Definitions
To apply the multi-dimensional data learning-based
method to industrial scenarios, the system variables
are first reconstructed with physical meaning:
State Variable (X): Corresponds to the
environmental multi-dimensional variables in
the original model. Defined as X ∈ R5, representing
key product quality indicators, such as:

x1 : Volume,
x2 : Mass,
x3 : Key Dimension Deviation,
x4 : Surface Finish,
x5 : Material Density.

Control Variable (Q): Corresponds to the
replenishment amount in the original model.
Defined as Q ∈ R4, representing process adjustment
parameters of production equipment, such as:

q1 : Injection Processing Pressure,
q2 : Holding Time,
q3 : Heating Temperature Compensation,
q4 : Feed Rate.

3.1.2 Algorithm Process
The closed-loop system operation flow is as follows:
Data Acquisition and Enhancement: Collect
historical X sequences from production batches, use
the AGPR model to predict unsampled points, and
expand the sample through interpolation to form
continuous time series.
State Prediction: Input the expanded sequence into
the dynamic gated LSTM, combined with current
process parameters Q, to predict the future state X̃t+1

of future batches.
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Error Calculation and Decision: Calculate the
deviation between the predicted value X̃t+1 and the
target specification Xtarget. If the deviation exceeds a
threshold or the rate of change is too fast (high urgency
score), the control algorithm is triggered.
Parameter Inversion and Execution: Use the gradient
descent method to inversely solve for the optimal
process correction amount ∆Q, and issue it to the
production equipment for execution.

3.2 Data Enhancement Based onAdaptiveGaussian
Process Regression

In actual production, full inspection is too costly, and
data is often discrete. To obtain continuous quality
state evolution patterns, this chapter employsAdaptive
Gaussian Process Regression (AGPR) to interpolate
sparse data.

3.2.1 Construction of Mixed Kernel Functions
To simultaneously capture the complex nonlinear
coupling relationships between multidimensional
process parameters (x) and their independent
contributions to quality indicators, this paper
constructs a hybrid covariance function combining
product kernels and additive kernels.
Define the independent kernel function for the i-th
dimension variable as ki(x

(i), x′(i)), then the final
mixed kernel function kfinal(x, x′) is defined as:
kfinal(x, x′) = wprod · kprod(x, x′) + wadd · kadd(x, x′)

where:
• Coupling Term (Product Kernel): Used to

describe global similarity under the synergies of
multiple variables. This term is significant only
when two samples are close in all dimensions.

kprod(x, x′) =

D∏
i=1

ki(x
(i), x′(i))

• Independent Term (Additive Kernel): Used to
describe the linear superposition or independent
nonlinear influence of each dimension variable
on the output. This term contributes as long as
variables in one dimension are close, avoiding the
problem of the product kernel value being too
small (gradient vanishing) in high-dimensional
space.

kadd(x, x′) =

D∑
i=1

ki(x
(i), x′(i))

Base Kernel Function ki:

For each dimension, a spectral mixture strategy is
adopted, combining Radial Basis Function (RBF)
kernels, Periodic kernels, and Linear kernels to adapt
to the trends and fluctuations of production data:

ki = αikRBF + βikPeriodic + γikLinear

In the formula, D = 5 is the input dimension, wprod
and wadd are hyperparameters balancing coupling
features and independent features, adaptively learned
by maximizing the Log Marginal Likelihood.

3.3 Dynamic LSTMPredictionModel with "Process
Correction Gate"

Traditional LSTM can only handle time series
dependencies and cannot explicitly handle the
intervention of "external control signals" on the state.
This chapter improves the LSTM unit structure by
adding a Process Correction Gate (Correction Gate,
st).

3.3.1 Network Structure Improvement
The improved LSTM unit adds an input channel for
process parameters based on the standard forget gate
ft, input gate it, and output gate ot. The core update
formulas are as follows:
Process Correction Gate Calculation: Evaluates the
degree of impact of the current process parameter
adjustment amount Qt on the product state:

st = σ(Ws · [ht−1, Qt] + bs)

where Qt is the vector containing control parameters
such as pressure and temperature, Ws is the weight
matrix, bs is the bias, and ht−1 is the hidden state from
the previous time step.
Control Feature Extraction: Maps physical process
parameters to the hidden state space:

Ccontrol = tanh(WCs ·Qt + bCs)

Cell State Update: This is the key improvement point
of this method. The cell state Ct depends not only on
historical memory and current observation but also
adds the state change caused by process adjustment:

Ct = ft � Ct−1 + it � C̃t + st � Ccontrol

This formula clarifies that changes in process
parameters directly affect the internal quality features
Ct of the product through the correction gate st.
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Table 1. Experimental platform configuration details.
Category Configuration Parameters Description
CPU AMD Ryzen 7 9700X 8-Core

Processor @ 3.80 GHz
Leverages its high IPC performance and boost
frequency (up to 5.5GHz) to ensure efficient
execution of data preprocessing and serial
control logic.

GPU NVIDIA GeForce RTX 4070 SUPER
(12GB VRAM)

Utilizes its 7168 CUDA cores to accelerate the
training and inference of deep learning models.
The 12GB VRAM supports large batch size
training.

Memory 32GB DDR5 High-frequency DDR5 memory ensures high
throughput speed for massive industrial time
series data, reducing the data transfer bottleneck
between CPU and GPU.

Operating System Windows 11 Professional Provides stable system scheduling and driver
support.

Development
Environment

Python 3.9, PyTorch 2.1 (CUDA
12.1), GPy 1.10

Deep learning and Gaussian Process Regression
libraries.

Output Layer: Finally outputs the predicted
five-dimensional quality value X̂t+1 for the next time
step through a fully connected layer.

3.4 Active Elimination of Production Errors and
Parameter Inversion

Based on the above prediction model, this chapter
proposes a gradient-based error reverse compensation
strategy, transforming the "prediction model" into a
"controller".

3.4.1 Optimization Objective Function
To eliminate production errors, an objective function
J is defined, aiming to minimize the Euclidean
distance between predicted quality and the standard
specificationXtarget, while introducing a regularization
term to limit the adjustment range of process
parameters, preventing equipment overload:

min
Q

J =
5∑
i=1

(
X̂i(Q)−Xtarget,i

)2
+ λ

4∑
j=1

Q2
j

3.4.2 Gradient-Based Parameter Inversion
Using the trained LSTM model as a differentiable
function, the adjustment direction of process
parameters Q is guided by calculating the partial
derivative of the objective function J with respect to
Q:

∂J

∂Q
≈ J(Q+ δ)− J(Q)

δ

The parameter update rule follows the gradient

descent method:

Qk+1 = Qk − η ·
(
∂J

∂Q
+ 2λQk

)

Through iterative calculation, the process continues
until the predicted product quality X̂ falls within the
allowable tolerance band [Xmin, Xmax].

3.4.3 Emergency Trigger Mechanism
To avoid frequent equipment adjustments due tominor
prediction fluctuations, the system defines a trigger
mechanism based on the fusion of multi-dimensional
indicators.
Single-item Urgency Score Calculation: First, the
urgency degree Si of the i-th quality dimension is
evaluated. This indicator combines the degree of
deviation of the predicted value from the threshold
and the rate of deviation deterioration:

Si =
Xmin,i − X̂i(t+ 1)

(dXi/dt)2 + ε · e−λt

where ε is a smoothing coefficient and λ is a dynamic
decay factor.
Normalization: Since different quality indicators
(such as volume, mass, dimensions) have inconsistent
units, Si needs to be normalized to obtain a
dimensionless normalized score Snorm,i.
Global Urgency Index Synthesis: A weighted sum
method is used to calculate the comprehensive urgency
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index Eglobal to reflect the overall risk level of the
current production batch:

Eglobal =

5∑
i=1

wi · Snorm,i

In the formula, wi is the weight coefficient of the i-th
quality dimension (satisfying∑wi = 1), set according
to product process requirements. For example, for
precision fitting parts, the weight of the “dimension
deviation” dimension can be increased.
Decision Rule: The backpropagation algorithm
to calculate the process correction amount ∆Q is
activated only when Eglobal ≥ Ethreshold or when any
single item Snorm,i ≥ 0.7 (i.e., a single indicator is
severely deteriorating). Otherwise, the current process
parameters remain unchanged.

4 Experiments and Results
4.1 Experimental Environment and Data

Description
4.1.1 Hardware and Software Environment Configuration
All model training, simulation testing, and control
algorithm verification in this study were completed
on a high-performance computing workstation. To
meet the parallel computing requirements of the
Adaptive Gaussian Process Regression (AGPR) kernel
functions and the gradient backpropagation training
of the dynamic gated LSTM model, the experimental
platform selected a hardware combination of a
high-frequency multi-core CPU paired with a
large-memory GPU. The specific hardware and
software environment configuration details are shown
in Table 1.

4.1.2 Experimental Dataset Description
To validate the effectiveness of the method, the
experimental data comes from a mixed set of real
historical records from a precision injection molding
production line and high-fidelity simulation data. The
dataset covers 5000 consecutive production batches,
of which the first 3500 batches are used for model
training and the last 1500 batches are used for testing
and validation.
Input Process Variables (Q): Sampling frequency 1
Hz, including injection pressure (MPa), holding time
(s), mold temperature (°C), screw speed (rpm).
OutputQualityVariables (X): Due to inspection cost
constraints, set as sparse sampling (one sampling every

10 cycles), including product volume (cm3), mass (g),
key dimension deviation (mm), surface roughness
(Ra), and density (g/cm3).

4.2 Model Parameter Settings
To ensure fairness in comparative experiments, the
hyperparameters of each model were determined on
the validation set using the Grid Search method.

4.2.1 Adaptive Gaussian Process Regression (AGPR)
Parameters

For interpolation and enhancement of industrial data,
the parameter settings of the mixed kernel function
kfinal aim to balance the capture of local fluctuations
and long-term trends:
Initial Kernel Weights: Radial Basis Function kernel
α = 0.5 (capturing nonlinear fluctuations), Periodic
kernel β = 0.3 (capturing production cycles), Linear
kernel γ = 0.2 (capturing equipment thermal drift).
Noise Variance (σ2n): Initialized to 1 × 10−4 and
optimized automatically during training.
Optimizer: Adam, learning rate lr = 0.05.

4.2.2 Dynamic Gated LSTM Prediction Model Parameters
For the quality state prediction model, benefiting from
the powerful computing power of the RTX 4070 SUPER,
we can construct a deeper network structure without
sacrificing real-time performance:
• Time Sliding Window: 12 (uses the states of the

past 12 cycles to predict the next moment).
• Network Structure: 2-layer stacked LSTM,

hidden layer dimension is 128 (higher than
conventional configuration to capture more subtle
features).

• Dropout Rate: 0.2 (preventing overfitting).
• Batch Size: 64 (fully utilizing the 12GB VRAM).
• Optimizer: RMSprop, initial learning rate 0.001,

decaying 5% every 50 epochs.
• Process Correction Gate: The activation function

uses Sigmoid, used to dynamically adjust the
weight of process parameters’ influence on the
memory cell.

4.3 Quality State Prediction Performance
Comparison Experiment

4.3.1 Comparison Baselines and Evaluation Metrics
To evaluate the prediction accuracy of the proposed
method, the following three mainstream industrial
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Table 2. Performance error comparison of different prediction models.

Model Name Product
Volume RMSE

Product
Volume MAE

Dimension
Deviation RMSE

Dimension
Deviation MAE

Inference
Time (ms/batch)

SVR 0.852 0.645 0.042 0.035 1.2
Standard LSTM 0.412 0.305 0.021 0.018 4.5

GRU 0.435 0.321 0.023 0.019 4.1
Proposed Method 0.208 0.152 0.011 0.008 5.8

Figure 2. Prediction comparisonon dimension deviation (mm).

prediction models are selected as comparison
baselines:
• SVR (Support Vector Regression): Traditional

machine learning method using RBF kernel.
• Standard LSTM: Standard Long Short-Term

Memory network without the Process Correction
Gate structure.

• GRU (Gated Recurrent Unit): A variant of
LSTM, commonly used for lightweight prediction.

Evaluation metrics used are Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE).

4.3.2 Experimental Results Analysis
Figure 2 shows the prediction effect of different models
on "Key Dimension Deviation" on the test set.
Table 2 details the error statistics of each model on core
quality indicators. Accuracy Advantage: The method
proposed in this paper (Proposed Method) reduces
RMSE by approximately 47.6% to 49.5% (average
48.6%) across key indicators compared to the standard
LSTM. This is mainly attributed to the effective

completion of sparse data by AGPR and the accurate
capture of the dynamic impact of process parameter
changes on quality by the "Process Correction Gate".
Real-time Performance Guarantee: Although the
structure of the proposedmodel is more complex, with
the support of Ryzen 7 9700X andRTX 4070 SUPER, the
inference time is only 5.8ms, fullymeeting the real-time
control requirements of production lines (typically
requiring <100ms).

4.4 Active Compensation for Production Errors and
Optimization Experiment

This section verifies the system’s ability to "eliminate
errors". That is, using the trained model as a
differentiable environment to inversely solve for
optimal process parameters through gradient descent.

4.4.1 Optimization Process and Computing Performance
The experiment simulated a scenario of “gradually
exceeding tolerance in product dimensions”. The
system’s goal is to calculate the optimal injection
pressure and holding time correction amounts to bring
the product dimensions back to the standard value.

46



ICCK Transactions on Intelligent Cyber-Physical Systems

Figure 3. Convergence of controlLoss during parameter inversion.

Using PyTorch’s automatic differentiation engine,
parameter inversion is performed on the GPU.
Convergence Speed: As shown in Figure 3, thanks
to the parallel acceleration of the RTX 4070 SUPER,
the gradient descent algorithm converges within 12
iterations, with a total time of only 0.38 seconds.
Compared to traditional CPU-based genetic
algorithms (typically requiring seconds to tens
of seconds), the computational efficiency of this
method is improved by two orders of magnitude,
achieving millisecond-level online correction.
Optimization Result: The system automatically
outputs correction commands:

∆P = +2.1 MPa (increase pressure),
∆T = +0.5 s (extend holding time).

After executing these commands, the prediction error
rapidly converges to the 10−3 level.

4.4.2 Emergency Trigger Mechanism Test
To avoid frequent adjustments, the system introduced
an Urgency Score mechanism. Experimental results
show:
• During stable phases with small errors (t =

0 ∼ 40), the comprehensive urgency index Eglobal
is below the threshold. The system remains
in “silent monitoring”, avoiding ineffective
interventions.

• When a quality deterioration trend caused
by temperature drift is detected (t = 41),
Eglobal quickly exceeds the threshold, triggering
the optimization algorithm, demonstrating the

Table 3. Production effect comparison of different control strategies.

Control Strategy Rejection
Rate (%)

Cpk (Process
Capability Index)

Average
Response Time (s)

Parameter Adjustment
Frequency (times/hour)

Manual
Experience
Adjustment

5.2% 0.98 320.5 2.5

Traditional PID
Control

2.1% 1.15 5.2 45.0 (frequent oscillation)

Proposed Method 0.58% 1.45 0.75 8.5 (precise intervention)
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sensitivity of the mechanism.

4.5 Comparative Analysis of Effects Before and
After Optimization

To comprehensively evaluate the practical application
value of the system, we conducted a 24-hour simulated
production comparison between the proposed method
and "Manual Experience Adjustment" and "Traditional
PID Control".

4.5.1 Comparison Results
The statistical results are shown in Table 3.

4.5.2 Results Discussion
• Significant Quality Improvement: The

optimized system (Proposed Method) reduces
the rejection rate from 5.2% under manual
adjustment to 0.58%, and the Cpk value increases
to 1.45, indicating the production process has
achieved extremely high stability.

• Ultra-fast Response: Relying on the
high-frequency processing capability of Ryzen
9700X and the AI acceleration of RTX 4070 SUPER,
the system’s average response time is compressed
to 0.75 seconds, essentially achieving “perception
is control”.

• Equipment-friendly: Compared to PID control,
the adjustment frequency of the proposedmethod
is significantly reduced (from 45 times/hour to 8.5
times/hour), and each adjustment is the optimal
solution based on prediction, effectively avoiding
frequent start-stop cycles and mechanical wear of
equipment.

5 Conclusion
With the in-depth development of Industry 4.0 and
intelligent manufacturing, fine-grained control of
production processes has become key to enhancing
the competitiveness of the manufacturing industry.
Addressing the pain points in traditional discrete
manufacturing such as sparse quality inspection
data, strong coupling of multi-dimensional process
parameters, and lag in error correction, this paper
takes the injection molding production line as the
research object and proposes a multi-dimensional
data learning-based production quality prediction and
active error compensation method. The main research
work of this paper is summarized as follows:
1. Constructed a data enhancement framework based
on Adaptive Gaussian Process Regression (AGPR).

Addressing the problem of discontinuous quality data
caused by the inability to conduct full inspection of all
products in industrial settings, this paper introduced
a mixed kernel function combining Radial Basis
Function, Periodic, and Linear kernels. By minimizing
the loss function to update kernel weights online,
the AGPR model interpolates and completes sparse
quality inspection data, successfully constructing a
high-density time series training dataset, laying a
data foundation for the training of subsequent deep
learning models.

2. Designed a dynamic gated LSTM prediction model
with a "Process Correction Gate". To explicitly model
the dynamic impact of process parameter adjustments
on product quality state, this paper improved the
traditional LSTM unit structure. Through the newly
added "Process Correction Gate (Correction Gate)",
the model can dynamically adjust the state update of
the memory cell based on current control inputs such
as pressure and temperature. Experimental results
show that for predicting indicators such as product
volume and key dimension deviation, the RMSE of
this model is reduced by about 47% compared to the
standard LSTM, significantly improving prediction
accuracy under unsteady operating conditions.

3. Proposed an active error compensation strategy
based on gradient inversion. Breaking the limitation
of traditional quality management that only "monitors
but does not control", this paper uses the trained
differentiable prediction model as an environment
proxy to construct an optimization function aiming to
minimize quality deviation. Leveraging the computing
power of the high-performance computing platform
(AMD Ryzen 9700X + NVIDIA RTX 4070 SUPER),
the optimal process parameter correction amount is
solved inversely via gradient descent. Experimental
verification shows that this method can reduce the
rejection rate from 5.2% under manual adjustment to
below 0.6%, with an average response time controlled
within 0.8 seconds.

The innovation of this paper lies in establishing
a dynamic causal mapping mechanism between
"process" and "quality". Unlike traditional black-box
models that only treat process parameters as ordinary
feature inputs, the "Process Correction Gate" designed
in this paper endows control variables with the
physical meaning of changing the system state at the
network structure level. This enables the model not
only to "predict the future" but also to "understand
intervention", improving the model’s generalization
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ability under varying working conditions.
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