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Abstract
Traditional teach-and-repeat robotic arms,
which rely on pre-programmed trajectories and
manual teaching, struggle to adapt to operational
requirements in unstructured environments where
the position, posture, or type of target objects
may vary unpredictably. In contrast, robot control
technology based on visual servoing empowers
robotic arms with "visual perception" capabilities,
enabling real-time environment sensing and
dynamic action adjustment, which significantly
enhances the flexibility and efficiency of sorting
and assembly operations. This paper designs and
implements a five-degree-of-freedom (5-DOF)
vision-guided picking robotic arm system based
on a distributed control architecture, utilizing
MATLAB as the upper computer for high-level
decision-making and image processing, and an
STM32 microcontroller as the lower computer for
real-time motor control and communication. The
research specifically addresses the key technical
challenges of achieving motion smoothness and
positioning accuracy under low-cost hardware
conditions, where traditional control methods often
fall short due to mechanical limitations and sensor
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inaccuracies. To this end, a quintic polynomial
interpolation algorithm is employed for joint-space
trajectory planning, ensuring continuous velocity
and acceleration profiles and effectively mitigating
the mechanical shock and jitter inherent in low-cost
stepper motors and servos. Furthermore, a
linear regression error compensation model is
proposed to correct the systematic positioning
errors caused by lens distortion and mechanical
flex in monocular vision-based target localization,
achieving high-precision 3D coordinate calculation
without the need for expensive depth sensors.
Experimental results demonstrate that the proposed
system achieves smooth and reliablemotion control,
reduces average positioning error to within ±3 mm,
and attains a 90% success rate in autonomous
grasping tasks, validating its practical value for
automated sorting applications in cost-sensitive
scenarios.

Keywords: machine vision, 5-DOF robotic arm, STM32
microcontroller, trajectory planning, kinematic modeling.

1 Introduction
1.1 Research Background and Significance
Since the beginning of the 21st century, global
manufacturing has undergone a profound
transformation towards intelligent manufacturing.
Strategic initiatives such as Germany’s "Industry
4.0," the United States’ "Industrial Internet," and
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China’s "Made in China 2025" all point towards a
core objective: smart manufacturing. In this context,
industrial robots serve as the core execution units of
automated production lines, and their application
depth is growing exponentially [1].
However, traditional industrial robots mostly operate
in structured environments, relying on trajectories
recorded by teaching pendants or pre-programming
to perform repetitive tasks [2]. Once the position,
posture, or type of the target object changes, these
robots often fail to complete the task. This limitation
severely restricts their application in complex scenarios
such as logistics sorting and precision assembly. To
break through these limitations, introducing external
sensors to endow robots with perception capabilities
has become inevitable. Machine vision, acting as
the "eyes" of the robot, forms a Visual Servo System
when combined with manipulator control [3]. This
"Eye-Hand" synergy allows the system to perceive
environmental changes in real-time and dynamically
adjust actions, which is of great theoretical significance
and engineering value for reducing production costs
and improving efficiency [4, 5].

1.2 Status of Domestic and International Research
Since the birth of the first industrial robot, Unimate,
in 1959, manipulator technology has evolved
from hydraulic to electric drives and from simple
switch control to complex servo control. Currently,
international giants like ABB, KUKA, and FANUC
dominate the field of six-axis general-purpose
manipulators, achieving control precisions within
±0.05 mm. In China, enterprises like SIASUN and
ESTUN are rapidly narrowing the gap. However,
in the field of lightweight, low-cost robotic arms
for light industry and education, problems such
as insufficient motion smoothness and poor
human-machine interaction persist, necessitating
algorithmic optimization [6].
Visual servoing technology is generally categorized
into "Eye-in-Hand" and "Eye-to-Hand" configurations.
The "Eye-in-Hand" setup, where the camera is
mounted on the end-effector, moves with the arm,
making it suitable for high-precision alignment tasks,
though its field of view is limited. The "Eye-to-Hand"
setup fixes the camera externally, providing a global
view. While deep learning-based grasping detection
(e.g., CNNs) is a research hotspot, traditional image
processing algorithms based on color features and
geometric moments remain superior for embedded
scenarios with limited computing power due to their

robustness and low computational load [7].

1.3 Main Contributions
This paper focuses on the development of a low-cost,
high-performance vision-guided robotic grasping
system. The main contributions of this research are as
follows:
Distributed Architecture: A "PC + STM32" distributed
control architecture is established to effectively balance
the computational demands of complex algorithms
with the stringent real-time requirements of motor
control. The PC handles high-level tasks such as image
processing and inverse kinematics, while the STM32
microcontroller manages low-level servo control and
communication.
Kinematic Modeling: The forward and inverse
kinematics of the 5-DOFmanipulator are derived using
the improved Denavit-Hartenberg (D-H) convention.
To address the multi-solution nature of inverse
kinematics for an under-actuated system, a numerical
iterative method is employed, ensuring reliable and
rapid convergence to a feasible joint configuration.
Trajectory Optimization: To mitigate mechanical
shock and ensure smooth motion—issues commonly
encountered with low-cost stepper motors and
servos—a quintic polynomial interpolation algorithm
is implemented in joint space. This approach
guarantees continuous velocity and acceleration
profiles, achieving "zero-speed start and zero-speed
stop" and significantly reducing system jitter.
Visual Positioning: A monocular vision-based
positioning method is proposed, incorporating a
linear regression error compensation model. By
applying a fixed-height constraint and correcting
for systematic errors caused by lens distortion and
mechanical flex, the system achieves high-precision
3D target localization without the need for expensive
depth sensors.

2 System Overall Scheme Design
2.1 Functional Requirement Analysis
The objective of this study is to design a
five-degree-of-freedom manipulator system capable
of performing autonomous visual sorting tasks.
To achieve this goal, the system must satisfy a set
of functional requirements spanning mechanical
design, visual perception, and motion control. From
a mechanical perspective, the manipulator requires
at least five degrees of freedom to approach objects
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within the workspace with arbitrary posture. This
includes the capability for base rotation, shoulder
and elbow pitching, as well as wrist pitching and
rotation, thereby providing sufficient dexterity for
grasping operations in unstructured environments. In
terms of visual perception, the system must be able to
capture images of the workspace, effectively remove
background noise, and reliably identify target objects
based on specific color features, such as red blocks.
Furthermore, it must calculate the three-dimensional
coordinates of the target in the world frame to enable
accurate positioning. Regarding motion control,
trajectory planning is essential to ensure continuous
velocity profiles during both the start and stop phases,
thereby preventing inertial damage to the mechanical
structure or the target object and ensuring smooth and
reliable operation throughout the grasping process.

2.2 Distributed Control Architecture
Given the high computational load of vision
algorithms and the strict real-time requirements
of motor control, a single microcontroller proves
insufficient for the task. To address this limitation,
a distributed architecture is adopted, comprising a
host computer for high-level decision-making and
a slave microcontroller for low-level execution. The
host computer, a PC running MATLAB, is selected
for its powerful matrix operation capabilities and rich
toolbox ecosystem, including the Robotics Toolbox and
Image Acquisition Toolbox, which make it well-suited
for inverse kinematics solving and image processing
tasks. The slave computer, an STM32F103ZET6
microcontroller based on the ARM Cortex-M3 core,
is chosen for its rich peripheral resources, handling
the reception of trajectory points, generation of
high-precision PWM signals for servos, and pulse
sequences for stepper motors [8, 9]. The data flow
follows a closed-loop logic of "Perception — Decision
— Execution," where the camera captures images and
transmits them to MATLAB for processing. MATLAB
then extracts the target coordinates, solves the inverse
kinematics, and plans a smooth trajectory composed
of multiple interpolation points. These points are
transmitted frame-by-frame via UART to the STM32,
which converts them into electrical signals to drive the
motors [10, 11], as illustrated in Figure 1.

2.3 Mechanical Structure and Drive Scheme
The manipulator adopts a serial structure comprising
five rotational joints. The base joint (J1), responsible
for horizontal rotation, bears the weight and inertia of
the entire arm. To ensure stability and repeatability

Figure 1. Block diagram of the distributed control system
architecture.

under such loads, a high-torque 42 stepper motor
is employed in conjunction with a thrust bearing
structure. For the arm and wrist joints (J2 to J5),
analog and digital servos are utilized to minimize
the gravitational load on the cantilever structure.
These servos integrate DC motors, reduction gears,
and position feedback potentiometers, enabling direct
angle control via PWMsignals and thereby simplifying
the closed-loop control design [12]. The physical
experimental platform of the 5-DOF robotic arm is
shown in Figure 2.

3 KinematicModeling andTrajectory Planning
3.1 Improved D-HModeling
To describe the geometric relationship of the serial
manipulator, the improved Denavit-Hartenberg (D-H)
parameter method is used. Based on the physical
dimensions of the experimental platform (d1=10.5 cm,
a2=10.5 cm, a3=10.0 cm, d5=15.5 cm), the coordinate
systems were established, and the corresponding D-H
parameters are presented in Table 1 [13].

Table 1. D-H Parameters of the 5-DOF Manipulator.
Joint
i

Twist
αi − 1

Link Length
ai − 1(cm)

Offset
di(cm)

Angle
θi

1 0 0 10.5 q1
2 π/2 0 0 q2
3 0 10.5 0 q3
4 0 10.0 0 q4
5 −π/2 0 15.5 q5

The transformation matrix i−1Ti between adjacent
links is derived using standard D-H conventions.
The total transformation matrix 0T5, describing the
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Figure 2. Physical experimental platform of the 5-DOF
robotic arm.

end-effector’s pose relative to the base, is obtained by
chain multiplication:

0T5 =0 T1 ·1 T2 ·2 T3 ·3 T4 ·4 T5 (1)

Based on the derived kinematic model, a simulation
model of the 5-DOF robotic arm was constructed in
MATLAB using the Robotics Toolbox, as shown in
Figure 3. This simulation environment allows for
visualization of the manipulator’s configuration under
different joint angles and verification of the kinematic
calculations prior to physical implementation.

3.2 Inverse Kinematics with Numerical Iteration
Inverse kinematics (finding joint angles q from
end-effector pose) is complex for 5-DOF arms as they
are under-actuated regarding the full 6-DOF spatial
description. Analytical solutions are often difficult to
derive. Therefore, this system employs a numerical
iterative approach using the ikine function in the
MATLAB Robotics Toolbox.
Specifically, a mask vector M = [1, 1, 1, 0, 1, 0] is
introduced. The mask vector corresponds to the
Cartesian DoF sequence [x, y, z, θx, θy, θz]. M =

Figure 3. Kinematic simulation model of the 5-DOF robotic
arm in MATLAB.

[1, 1, 1, 0, 1, 0] indicates that the solver prioritizes the
translation (x, y, z) and the pitch angle (θy), ignoring
roll (θx) and yaw (θz) constraints. This mask instructs
the solver to prioritize the 3D position (x, y, z) and
the pitch attitude (rotation about Y) while ignoring
constraints on X and Z rotation. This strategy reduces
the solution dimension, ensuring rapid convergence
to a valid configuration for grasping tasks [14].

3.3 Joint Space Quintic Polynomial Interpolation
Directly sending the target angles calculated by inverse
kinematics to the lower-level controller results in a
“step” signal. The servos would attempt to move at
maximum speed, causing infinite acceleration spikes,
mechanical shock, and potential gear damage.
To solve this, a quintic polynomial interpolation
algorithm is applied in the joint space. The angle
function for each joint is defined as:

q(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 (2)

The six coefficients c0 ∼ c5 are determined by six
boundary conditions:
• Initial position q0 at t0
• Initial velocity v0 = 0

• Initial acceleration a0 = 0

• Final position qf at tf
• Final velocity vf = 0
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Figure 4. Kinematic simulation results in joint space: (a) Angle position; (b) Angular velocity; (c) Angular acceleration.

• Final acceleration af = 0

This formulation ensures “zero-speed start and
zero-speed stop.” The resulting velocity curve is a
smooth bell shape, and acceleration is continuous.
In the software implementation, the motion from
start to finish is set to 3.0 seconds. The trajectory is
discretized into 150 sampling points with a period of
40ms. MATLAB generates these 150 sets of angles and
sends them sequentially, ensuring the servos track a
smooth path without jitter [15].
The simulation results of the planned trajectory are
shown in Figure 4. As observed in Figure 4(b) and (c),
the velocity and acceleration curves are continuous and
smooth without mutation. Specifically, the velocity
follows a bell-shaped profile with zero velocity at
both the start and end points, effectively eliminating
mechanical shock.

4 Vision Recognition and Positioning
Algorithms

4.1 Camera Imaging Model and Calibration
The system uses the Pinhole CameraModel to describe
the projection of 3D points onto the 2D image plane.
The relationship involves the camera’s intrinsic matrix
K, which contains the focal lengths (fx, fy) and the
principal point (u0, v0) [16].
To obtain accurate intrinsics, the MATLAB Camera
Calibrator toolbox was used. 15 images of a
checkerboard pattern were captured at different
angles. The calibration process minimized the
reprojection error, yielding precise values for the
intrinsic matrix stored in myCamParams.mat for runtime
use. The calibration process, including the detected
checkerboard corners and reprojection errors, is
illustrated in Figure 5.

4.2 Image Preprocessing and Segmentation
Denoising: Industrial environments introduce noise.
Median filtering is selected overmean filtering because
it effectively removes salt-and-pepper noise while
preserving the sharp edges of the target object, which
is crucial for contour extraction [17].
Color Segmentation: The target is a red block. An
analysis of RGB components showed that in the target
area, the R component is significantly higher than G
and B. A combined threshold logic was designed:
Binary(u, v) = 1, if (R > 100)∩(R > 1.5G)∩(R > 1.5B)

(3)
This strict logic prevents false positives from white
backgrounds or other interferences.
Feature Extraction: Morphological opening (erosion
followed by dilation) is applied to remove small noise
artifacts. The bwareaopen function removes areas
smaller than 300 pixels.
Finally, the centroid (utarget, vtarget) of the largest
connected domain is calculated.

4.3 Coordinate Mapping and Linear Error
Compensation

Since a monocular camera loses depth information,
3D reconstruction requires a constraint. The system
uses a “Fixed Height Constraint.” Since the grasping
plane is flat and the object height is known, the vertical
distance Zc from the camera to the object top surface
is fixed and known:

Zc = (Look Z + ∆offset)− Block_Height (4)

Based on similar triangles, the raw physical
coordinates (Xraw, Yraw) can be calculated.
However, initial tests showed significant errors. When
the object was moved 50 mm physically, the vision
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Figure 5. Camera Calibration.

system only measured a change of 35 mm in X and
40 mm in Y . This error is linear and stems from radial
distortion and mechanical flex. To correct this, a linear
regression compensation model was established based
on calibration data:

Kscale_x = Dreal_x/Dmeasure_x ≈ 50/35 ≈ 1.43 (5)

Kscale_y = Dreal_y/Dmeasure_y ≈ 50/40 ≈ 1.25 (6)

The final corrected coordinates are derived as:

Rel_X = Xraw · 1.43 ·DirX (7)

Rel_Y = Yraw · 1.25 ·DirY (8)

Application of this model reduced the average
positioning error from ±15 mm to ±3 mm.

5 System Debugging and Experimental
Verification

System debugging is a critical link in translating
theoretical models into engineering practice.
Following the construction of the hardware and
software platforms, this study followed a "local

to global, open-loop to closed-loop" principle.
The debugging process sequentially verified the
lower-level motion control, the upper-lower computer
communication interface, the visual perception
algorithms, and finally, the integrated autonomous
grasping process.

5.1 Lower Computer and Communication
Debugging

The primary goal of the lower computer debugging
was to ensure that the STM32 microcontroller could
generate correct drive signals. Using an oscilloscope,
the PWM signals for the servos were verified. Initially,
irregular jitter was observed in the servos due to
voltage ripple from the USB power supply. This
was resolved by integrating a strictly regulated
5V/3A independent power supply and establishing
a common ground, stabilizing the PWM period at 20
ms with a linear controllable pulse width between
0.5 ms and 2.5 ms. For the distributed control
architecture, communication stability is paramount.
The system uses a baud rate of 115200 bps. During
the transmission of trajectory points generated by
the quintic polynomial interpolation (150 sets of

56



ICCK Transactions on Intelligent Cyber-Physical Systems

data), it was found that continuous burst transmission
caused buffer overflows in the STM32, resulting in
packet loss and motion lag. To address this, a "Time
Slice" synchronization mechanism was introduced
in the MATLAB transmission module. A forced
delay of 40 ms was inserted after sending each frame,
matching the 50Hz control cycle of the lower computer.
This optimization ensured smooth trajectory tracking
without data congestion [18].

5.2 Visual System Debugging and Error
Compensation

The visual debugging focused on validating the
coordinate mapping model and the effectiveness of
the linear error compensation coefficient. First, for
color thresholding, analysis of the RGB distribution
under laboratory lighting conditions determined that
a single component threshold was insufficient. A
combined strategy of (R > 1.5G) ⋂ (R > 1.5B)
was adopted. As shown in Figure 6, this strategy
successfully extracted the red block contours while
suppressing white reflections from the background,
resulting in a clean binary mask.

Figure 6. Camera recognition of the red target object.

Second, the positioning accuracy was verified. In
a “blind grasp” test without compensation at a
specific observation height (Z = 20 cm), the average
centripetal deviation was approximately 15 mm due to
lens distortion and mechanical flex. After applying
the linear regression compensation model derived
in Chapter 4 (Kscale_x ≈ 1.43,Kscale_y ≈ 1.25), 20
repeated grasping tests were conducted. The results
showed that the average error between the end-effector
center and the target centroid converged to within
±3mm, meeting the grasping tolerance requirements.

5.3 Integrated Autonomous Grasping Experiment
5.3.1 Experimental Setup
A comprehensive joint experiment was conducted to
verify the system’s overall performance. The target
object was a red cubic block with a side length of 20
mm. The workspace was defined as a sector area in
front of the robotic arm, with X ∈ [15, 30] cm and
Y ∈ [−15, 15] cm. The experiment involved placing the
target randomly within this area 30 times. A typical
successful grasping sequence, showing the robotic arm
approaching, grasping, and lifting the target object, is
presented in Figure 7.

Figure 7. The robotic arm successfully grasping and lifting
the target object.

5.3.2 Results and Analysis
Out of 30 grasping trials, the system successfully
grasped and transported the object 27 times, achieving
a success rate of 90%. To validate the statistical
significance of this result, the 95% confidence interval
was calculated using the Wilson Score method,
yielding a success rate range of approximately
[74.4%, 96.5%]. This confirms the reliability of
the error compensation model.The analysis of the
three failed attempts reveals two main causes:Lens
Distortion at Edges: When the target was located at
the extreme edge of the camera’s field of view, the
coordinate calculation error exceeded 5 mm due to
non-linear distortion, causing the gripper to close
without securing the object.Signal Interference: In
rare instances, transient electromagnetic interference
affected the serial communication, causing the loss
of critical trajectory frames, which resulted in minor
end-effector jitter that knocked the target over.In
conclusion, the experimental results demonstrate
that the trajectory planning algorithm ensures
smooth motion, and the vision algorithm with linear
compensation effectively overcomes monocular
positioning errors, proving the system’s capability for

57



ICCK Transactions on Intelligent Cyber-Physical Systems

autonomous sorting in unstructured environments.

6 Conclusion
To address the limitations of traditional teaching
robotic arms regarding poor adaptability and low
positioning accuracy in unstructured environments,
this paper designed and implemented a 5-DOF
visual grasping system based on a distributed control
architecture. Specifically, targeting the issues of rigid
impact and mechanical jitter inherent in low-cost drive
units, a joint-space quintic polynomial interpolation
algorithm was proposed. This method successfully
ensured continuous velocity and acceleration
profiles, effectively realizing smooth motion control
and reducing mechanical wear. Furthermore, to
overcome the non-linear distortion and lack of depth
information in monocular vision, a linear regression
error compensation model was developed based on a
fixed-height constraint. This approach significantly
corrected coordinate deviations, converging the
average grasping error from ±15 mm to within ±3
mm and achieving a 90% success rate in autonomous
sorting tasks. Ultimately, integrated with a time-slice
synchronization mechanism, the system achieved a
stable and precise "perception-decision-execution"
closed loop, validating its practical value for
automated sorting applications.
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