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Abstract
This study addresses the challenge of estimating
parameters iteratively in bilinear state-space systems
affected by stochastic noise. A Newton iterative
(NI) algorithm is introduced by utilizing the
Newton search and iterative identification theory
for identifying the system parameters. Following
the estimation of the unknown parameters, we
create a bilinear state observer (BSO) using the
Kalman filtering principle for state estimation.
Subsequently, we propose the BSO-NI algorithm for
simultaneous parameter and state estimation. An
iterative algorithm based on gradients is given for
comparisons to illustrate the effectiveness of the
proposed algorithms.

Keywords: newton search, bilinear system, parameter
estimation, system identification, iterative method.

1 Introduction
System identification involves the theory and
techniques used to explore and develop mathematical
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models of static and dynamic systems based on
observation data [1, 2]. These systems can be linear,
bilinear, or nonlinear [3, 4], with nonlinear systems
frequently appearing in industrial applications. As a
result, the need for effective modeling techniques for
these systems has grown significantly in fields such
as signal processing, system analysis, and control.
Bilinear models, in particular, are advantageous
for industrial applications, as they more accurately
capture the nonlinear characteristics of systems
compared to linear models. This capability makes
them essential in various industrial processes,
including heat exchangers, nuclear reactors, and
chemical operations.
Some classical identification methods have been
applied in the parameter estimation of bilinear systems.
For instance, gradient identification techniques have
been developed by minimizing criterion functions
through negative gradient search [5, 6]. An et al. [8]
proposed a multi-innovation gradient-based iterative
algorithm for parameter estimation. Additionally,
a maximum likelihood multi-innovation stochastic
gradient algorithm was proposed for bilinear systems
affected by colored noise. Least squares methods are
foundational for identifying linear-parameter systems
and have been widely utilized across various fields.
In prior research, we presented a least squares-based
iterative (LSI) algorithm to estimate unknown system
parameters [9].
Recently, several new ideas, theories, and principles
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have emerged in system identification for constructing
mathematical models and determining model
parameters. Notable among these are the
multi-innovation identification theory, hierarchical
identification principle, and filtering identification
concept, all of which contribute to the advancement
of system identification. The multi-innovation
identification theory enhances the accuracy of
estimating parameters. The hierarchical identification
principle significantly improves the computational
efficiency of identification algorithms, particularly for
large-scale complex systems. Meanwhile, the filtering
identification concept addresses parameter estimation
challenges in systems with colored noise, thereby
enhancing estimation accuracy. These approaches are
applicable to bilinear systems. Recently, An et al. [10]
explored various parameter estimation algorithms for
bilinear systems utilizing the maximum likelihood
gradient-based iterative and hierarchical principles.
Additionally, Gu examined an identification algorithm
based on multi-innovation stochastic gradient that
incorporates filtering methods for bilinear systems
utilizing data filtering theory [11].

The Newton method, a classical optimization
tool, is a root-finding algorithm that leverages the
initial terms of a function’s Taylor series expansion
near an estimated root [12]. This method has
been extensively studied over the years and has
diverse applications, including minimization and
maximization problems, solving transcendental
equations, and numerically verifying solutions to
nonlinear equations. For instance, Xu introduced
a separable Newton recursive algorithm based on
dynamically discrete measurements, which utilizes
system responses with progressively increasing data
lengths [13].

Notably, bilinear systems pose a greater challenge
than general linear ones due to the increased number
of parameters that need to be estimated. This
complexity makes standard parameter estimation
methods inadequate for achieving high-precision
estimates. Additionally, the characteristics of bilinear
systems prevent the direct application of conventional
state estimation techniques like Kalman filtering [14–
16] and finite impulse response (FIR) filter [17].
Consequently, there is a need to develop a novel
state estimator utilizing Kalman filtering, specifically
tailored andmodified tomeet the unique requirements
of bilinear systems [18].

In this paper, we present a novel identification

algorithm aimed at identifying bilinear stochastic
systems. Our approach introduces a Newton-based
iterative algorithm for parameter estimation.
Subsequently, we employ the bilinear state
observer-based NI (BSO-NI) method to achieve
simultaneous estimation of states and parameters. The
availability of the scheme is validated by comparing
estimation errors with those of gradient-based
algorithms. Below, we summarize the main
contributions of our work.
• For the system with unknown states, a bilinear

state observer is designed based on the Kalman
filtering principle for state estimation.

• To tackle the challenge of estimating unknown
parameters, we propose a Newton iterative
algorithm founded on the Newton search,
which utilizes all sampling data to estimate the
parameters of the bilinear system.

• The performance of the proposed algorithm
is evaluated against a gradient-based iterative
algorithm through a numerical simulation.

2 System description
Focus on a bilinear system in state-space representation
featuring autoregressive noise, described by an
observability canonical model:

x(t+ 1) = Ax(t) +Bx(t)u(t) +Cu(t) + w(t), (1)
y(t) = Dx(t) + v(t), (2)

where x(t) ∈ Rm, y(t) ∈ R, and u(t) ∈ R are the state
vector, output and input variable, and A ∈ Rm×m,
B ∈ Rm×m, C ∈ Rm, and D ∈ R1×m are the
matrices/vectors of the system parameters:

A :=

[
0 Im−1

−am a

]
, (3)

a := [−am−1,−am−2, · · · ,−a1] ∈ R1×(m−1), (4)

B :=


b1
b2
...

bm

 ∈ Rm×m, (5)

bl := [bl1, bl2, · · · , blm] ∈ R1×m, l = 1, 2, · · · ,m, (6)

C :=


c1
c2
...
cm

 ∈ Rm, (7)

D := [1, 0, . . . , 0] ∈ R1×m, (8)
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where Im−1 represents an identity matrix of size (m−
1) × (m − 1), w(t) is the process noise, v(t) is the
measurement noise, let the known dimension of the
state vector bem, and assume that y(t) = 0 and v(t) =
0 for t ⩽ 0. Bilinear systems can be interpreted as linear
systems with time-varying characteristics, exhibiting
stability that changes over time. The stability of these
systems is determined by the time-varying matrix
A + Bu(t). By designing an input sequence that
ensures all eigenvalues of A + Bu(t) remain below
1.
Based on Equations (1)–(8), the subsequent
relationships exist:

xp(t+ 1) = xp+1(t) + bpx(t)u(t) + cpu(t), (9)

xm(t+ 1) = −
m∑
p=1

apxm−p+1(t) + bmx(t)u(t) + cmu(t),

(10)
where p = 1, · · · ,m − 1. To multiply both sides of
Equation (9) by z−p, and sum from p = 1 to p = m− 1,
and then add this to Equation (10), where both sides
are multiplied by z−m, one can derive

x1(t) =−
m∑
p=1

apxm−p+1(t−m) +
m∑
p=1

bpx(t− p)u(t− p)

+

m∑
p=1

cpu(t− p). (11)

Inserting (11) into (2) gives:

y(t) =−
m∑
p=1

apxm−p+1(t−m) +
m∑
p=1

bpx(t− p)u(t− p)

+

m∑
p=1

cpu(t− p) + v(t). (12)

After that, one define the parameter vector θ, along
with the data vector φ(t) as:

θ := [a1, a2, · · · , am, b1, b2, · · · , bm,

c1, c2, · · · , cm]T ∈ Rm2+2m,

φ(t) := [−xm(t−m),−xm−1(t−m), · · · ,−x1(t−m),

xT(t− 1)u(t− 1), · · · ,xT(t−m)u(t−m),

u(t− 1), u(t− 2), · · · , u(t−m)]T ∈ Rm2+2m,

(13)

The expression for y(t) in Equation (12) can be
expressed as follows:

y(t) = φT(t)θ + v(t). (14)

The model for identification is established in Equation
(14). The information vector φ(t) includes x(t − l)
(l = 1, 2, · · · ,m), u(t− l), and the system parameters
al, bl, cl which together form the parameter vector θ.
The goal of this study is to explore novel approaches
for estimating these states and parameters using {u(t)},
{y(t)}, which is affected by white noise v(t). Equation
(14) serves as the basis for deriving the iterative
estimation approach.

3 The NI algorithm for parameter estimation
Parameter estimation for different types of systems
has been tackled using stochastic gradient methods,
iterative methods based on gradients, and various
other gradient-based approaches [19]. In order to
enhance the precision of parameter estimation further,
the use ofNewton search has been suggested. Based on
the iterative identification idea, a Newton iterative (NI)
algorithm has been developed specifically for bilinear
systems.
Considering the data length h, we define the criterion
function

J1(θ) :=
1

2

h∑
r=1

[y(r)−φT(r)θ]2

=
1

2
∥Y (h)−Φ(h)θ∥2, (15)

where the stacked observed data Y (h) and the stacked
information matrix Φ(h) are defined as:

Y (h) := [y(1), y(2), · · · , y(h)]T ∈ Rh, (16)
Φ(h) := [φ(1),φ(2), · · · ,φ(h)]T ∈ Rh×(m2+2m). (17)

Calculating the partial derivative of J1(θ) in relation
to θ produces

grad[J1(θ)] :=
∂J1(θ)

∂θ

=

[
∂J1(θ)

∂al
,
∂J1(θ)

∂bl
,
∂J1(θ)

∂cl

]T

∈ Rm2+2m.

(18)

Define θ̂k as the approximation of θ during iteration k,
where k = 1, 2, 3, · · · represents an iterative parameter.
Set the estimate of the stacked informationmatrixΦ(h)
at iteration k as follows:

Φ̂k(h) = [φ̂k(1), φ̂k(2), · · · , φ̂k(h)]
T, (19)

where

φ̂k(t) =[−x̂m,k−1(t−m), · · · ,−x̂1,k−1(t−m),
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x̂T
k−1(t− 1)u(t− 1), · · · , x̂T

k−1(t−m)u(t−m),

u(t− 1), u(t− 2), · · · , u(t−m)]T, (20)

From Equation (15), we can calculate the gradient of
J1(θ) at θ = θ̂k−1:

grad[J1(θ̂k−1)] := Φ̂T
k(h)[Y (h)− Φ̂k(h)θ̂k−1]. (21)

The gradient method relies on the first derivative,
whereas the Newton method exhibits quadratically
convergence. To enhance the accuracy of parameter
estimation, we calculate the secondpartial derivative of
the criterion function J1(θ)with respect to θ, resulting
in the Hessian matrix

H(θ) =
∂2J1(θ)

∂θ∂θT =
∂grad[J1(θ)]

∂θT

= ΦT(h)Φ(h). (22)

Using the Newton search and iterative identification
idea to minimize J1(θ), we can obtain the following
iterative relation of computing θ:

θ̂k = θ̂k−1 +H−1[J1(θ̂k−1)]grad[J1(θ̂k−1)]. (23)

Substituting (21) into the above equation, we obtain:

θ̂k = θ̂k−1 +H−1[J1(θ̂k−1)]

× Φ̂T
k(h)[Y (h)− Φ̂k(h)θ̂k−1]. (24)

From Equations (16)–(24), we can summarize the
Newton iterative (NI) algorithm for the bilinear
stochastic systems as follows:

θ̂k = θ̂k−1 +H−1[J1(θ̂k−1)]Φ̂
T
k(h)

× [Y (h)− Φ̂k(h)θ̂k−1], (25)
H[J1(θ̂k−1)] = Φ̂T

k(h)Φ̂k(h), (26)
Φ̂k(h) = [φ̂k(1), φ̂k(2), · · · , φ̂k(h)]

T, (27)
φ̂k(t) = [−x̂m,k−1(t−m), · · · ,−x̂1,k−1(t−m),

x̂T
k−1(t− 1)u(t− 1), · · · ,

x̂T
k−1(t−m)u(t−m), u(t− 1),

u(t− 2), · · · , u(t−m)]T, (28)
Y (h) = [y(1), y(2), · · · , y(h)]T ∈ Rh, (29)

θ̂k = [â1,k, â2,k, · · · , âm,k, b̂1,k, · · · , b̂m,k,

ĉ1,k, ĉ2,k, · · · , ĉm,k]
T ∈ Rm2+2m.

(30)

In the aboveNI algorithm for the parameter estimation,
we assume that the system states in the information
vector are known. Thus, we design the state estimator
to estimate them.

4 Bilinear state observer based NI algorithm
Let xi(t) := Bx(t) + C. This type of bilinear
state-space framework can be represented in the form
of a linear time-varying model:

x(t+ 1) = Ax(t) + xi(t)u(t) + w(t), (31)
y(t) = Dx(t) + v(t), (32)

According to the NI algorithm, the obtained parameter
estimates âl,k, b̂l,k and ĉl,k from θ̂k can be used to
construct the estimates Âk, B̂k and Ĉk of the system
matrices/vectorA,B and C, respectively. According
to the Kalman filtering principle and referencing to [7],
we can design the bilinear state estimator as follows:

x̂k(t+ 1) = Âkx̂k(t) + x̂ik(t)u(t)

+Lk(t)[y(t)−Dx̂k(t)], (33)
Lk(t) = ÂkPk(t)D

T[1 +DPk(t)D
T]−1, (34)

Pk(t+ 1) = ÂkPk(t)Â
T
k −Lk(t)DPk(t)Â

T
k, (35)

Âk =

[
0 Im−1

−âm,k −âk

]
, (36)

âk = [âm−1,k, âm−2,k, · · · , â1,k], (37)
x̂ik(t) = B̂kx̂k(t) + Ĉk, (38)

B̂k = [b̂T
1,k, b̂

T
2,k, · · · , b̂T

m,k]
T, (39)

Ĉk = [ĉ1,k, ĉ2,k, · · · , ĉm,k]
T. (40)

Equations (33)–(40) form the state estimator for
bilinear systems, enabling the computation of the state
estimation vector denoted by x̂k(t). The initial values
x̂k(1) andPk(1) can be chosen arbitrarily. For instance,
we can set x̂k(1) = 1m and Pk(1) = Im.
Based on the above preparations, Equations (25)–(30)
and (33) to (40) form the bilinear state estimator-based
NI (BSO-NI) algorithm, and the joint state and
parameter estimation is realized. Here, we can
summarize the BSO-NI algorithm in Algorithm 1:

5 Bilinear state estimator based GI algorithm
To highlight the advantages of the proposed BSO-NI
algorithm, this section presents the bilinear state
observer based GI (BSO-GI) algorithm for comparison.
When the measurement data are collected from the
system outputs, it is important to utilize these data
effectively to update the parameter estimates [20].
Consider the Y (h) and the Φ(h) defined in Section 3.
Utilizing negative gradient search [21] andminimizing
J1(θ) get

θ̂k = θ̂k−1 − µkgrad[J(θ̂k−1)]
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Algorithm 1: The BSO-NI algorithm for bilinear
stochastic systems
Data: u(t) and y(t), t = 1, 2, · · · , h
Result: The BSO-NI estimates θ̂k and x̂k(t)
Initialization: Data length h, parameter
estimation accuracy ε, the maximum iteration
kmax, â0 = ĉ0 = 1m/p0, b̂0 = 1m2/p0, p0 = 106.
for k = 1 : kmax do

Form φ̂k(t) using Equation (28);
Construct Φ̂k(h) and Y (h) using Equation (27)
and Equation (29);
Compute H[J1(θ̂k−1)] using Equation (26);
Update θ̂k using Equation (25);
Read out âl,k, b̂l,k and ĉl,k from θ̂k using
Equation (30);
Construct Âk, B̂k and Ĉk using Equations
(36)–(40);
for t = 1 : h do

Calculate Lk(t) and Pk(t+ 1) using
Equation (34) and Equation (35);
Calculate x̂k(t+ 1) using Equation (33) ;

end
if ∥θ̂k − θ̂k−1∥ > ε then

k = k + 1;
else

Obtain θ̂k and x̂k(t), break;
end

end

= θ̂k−1 + µkΦ
T(h)[Y (h)−Φ(h)θ̂k−1], (41)

where the iterative step-size µk satisfies

µk ⩽ 2λ−1
max[Φ

T(h)Φ(h)].

Nevertheless, similar issues occur. The information
matrix Φ(h) includes the unknown terms xi(t − m)
and x(t− i). Following the similar method from the
BSO-NI algorithm, we replace these unknowns with
their estimates x̂i,k(t − m) and x̂k(t − i). Following
this, we can derive the estimated information matrix
Φ̂k(h). By substituting the unknown information
matrix Φ(h) in (41) with its estimate Φ̂k(h), and
referring to the bilinear state estimator in (33)–(40),
the BSO-GI algorithm for bilinear systems, based on
BSO, can be outlined as follows:

θ̂k = θ̂k−1 + µkΦ̂
T
k(h)Ek(h), (42)

Ek(h) = Y (h)− Φ̂k(h)θ̂k−1, (43)
Y (h) = [y(1), y(2), · · · , y(h)]T, (44)

Φ̂k(h) = [φ̂k(1), φ̂k(2), · · · , φ̂k(h)]
T, (45)

φ̂k(t) = [−x̂m,k−1(t−m), · · · ,−x̂1,k−1(t−m),

x̂T
k−1(t− 1)u(t− 1), · · · ,

x̂T
k−1(t−m)u(t−m), u(t− 1),

u(t− 2), · · · , u(t−m)]T, (46)
0 < µk ⩽ 2λ−1

max[Φ̂
T
k(h)Φ̂k(h)], (47)

x̂k(t+ 1) = Âkx̂k(t) + x̂ik(t)u(t)

+Lk(t)[y(t)−Dx̂k(t)], (48)

Lk(t) =
ÂkPk(t)D

T

1 +DPk(t)DT , (49)

Pk(t+ 1) = ÂkPk(t)Â
T
k −Lk(t)DPk(t)Â

T
k, (50)

Âk =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

−âm,k −âm−1,k −âm−2,k · · · −â1,k

 ,

(51)
x̂ik(t) = B̂kx̂k(t) + Ĉk, (52)

B̂k =


b̂1,k
b̂2,k
...

b̂m,k

 , (53)

Ĉk =


ĉ1,k
ĉ2,k
...

ĉm,k

 . (54)

Equations (42)–(54) form the BSO-GI algorithm. The
algorithmic procedure for bilinear systems are outlined
below:
1. Initialization: Set the data length h, the parameter

estimation accuracy ε and the maximum iteration
kmax. Let x̂i,0(t − m) = 1/p0, and x̂0(t − i) =

1m/p0, i = 1, 2, . . . ,m, ϑ̂0 = 1m2+2m/p0, p0 = 106.
2. Set k = 1, gather the input-output data u(t) and

y(t), where t = 1, 2, · · · , h. Construct the stacked
output vector Y (h) using Equation (44).

3. Construct φ̂k(t) using Equation (46), and form
Φ̂k(h) using Equation (45). ComputeEk(h) using
Equation (43).

4. Update θ̂k by Equation (42).
5. Extract âi,k, b̂i,k and ĉi,k from θ̂k, construct Âk, B̂k

and Ĉk using Equations (51)–(54).
6. Set t = 1 and initialize x̂k(1) = 1m, Pk(1) = Im.
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7. Calculate Lk(t) and Pk(t+ 1) through Equations
(49)–(50).

8. Compute x̂k(t+ 1) according to Equation (48).

9. If t ⩽ h− 1, increment t by 1, return to Step 7.

10. If ∥θ̂k−θ̂k−1∥ > ε, then, increment k by 1, return to
Step 3; otherwise, obtain θ̂k and x̂k(t), terminate.

6 Simulations
The following consider a second-order bilinear system
defined by the equations:

x(t+ 1) =

[
0 1

−0.30 0.17

]
x(t) +

[
2.00
1.20

]
u(t)

+

[
0.10 0.08
0.35 −0.21

]
x(t)u(t) + w(t),

y(t) =[1, 0]x(t) + v(t),

The system parameters will be estimated are

ϑ = [a1, a2, b11, b12, b21, b22, c1, c2]
T

= [−0.17, 0.30, 0.10, 0.08, 0.35,−0.21, 2.00, 1.20]T.

For the simulation, the sequence {u(t)} is set as
an independent persistent excitation signal that has
a mean of zero and unit variance, while {v(t)} is
modeled as a white noise sequence, exhibiting zero
mean and variances σ2 = 0.502, σ2 = 1.002 and
σ2 = 1.502, respectively. We define h as 500 for the
data length and establish a maximum of 30 iterations,
represented by kmax.
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Errors for BSO-NI algorithm

Figure 1. The estimation errors δ versus k for the BSO-NI
and BSO-GI algorithms.
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Figure 2. The A vector parameter estimates versus k for the
BSO-NI and BSO-GI algorithms.
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Figure 3. The B matrix parameter estimates versus k for the
BSO-NI and BSO-GI algorithms.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

True parameters
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Figure 4. The C vector parameter estimates versus k for the
BSO-NI and BSO-GI algorithms.

For the state estimation of this bilinear system, the
BSO-NI algorithm is utilized to estimate each state.
The true state values and the state estimates are shown
in Figure 5. With the length of the data increasing, the
state estimates tend toward the actual values.
Apply the BSO-NI algorithm Equations (25)–(30) and
Equations (33)–(40) to estimate the parameters θ
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Figure 5. The true states and their estimates for the BSO-NI algorithm.

and the states x. For comparison, we also utilize
the BSO-GI algorithm Equations (42)–(54) for the
bilinear system estimation. The parameter estimation
errors δ = ∥θ̂k − θ∥/∥θ∥ for both algorithms
are presented in Figure 1. From it, it is evident
that the parameter estimation errors δ gradually
decreases with the increase of k. Additionally, as
the noise levels diminish, both algorithms yield
more accurate parameter estimates. Under the same
noise conditions, the BSO-NI algorithm demonstrates
greater parameter estimation accuracy compared to
the BSO-GI algorithm.

In order to better demonstrate the estimation effect
of each parameter for the bilinear system, we use
two algorithms to predict each parameter matrix or
vector respectively, and show the comparison results
in Figures 2–4. Figure 2 shows true parameters and
the estimation results of the parameters in the A

matrix. Figure 3 displays the parameter estimation
values for two algorithms in the B matrix, and
the parameter estimates in the C vector are clearly
presented in Figure 4. These figures clearly illustrate
that the BSO-NI algorithm outperforms the BSO-GI
algorithm in terms of parameter estimation precision.
Furthermore, the BSO-NI algorithm converges to the
parameter estimates more rapidly.

7 Conclusion
This paper studies the combined estimation of states
and parameters for bilinear systems. By means of the
Newton search and batch data, we derive a Newton
iterative (NI) algorithm to estimate the parameters that
are not known. Drawing inspiration from the Kalman
filtering, the bilinear state estimator (BSO) is created
for estimating the unknown states, and a BSO based
NI (BSO-NI) algorithm is proposed for the bilinear
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systems. In comparison to gradient-based algorithm,
this NI algorithm achieves higher estimation accuracy.
Simulation results illustrate the validity of the
suggested method.
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