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Abstract
The abnormal fluctuations in network traffic
may indicate potential security threats or system
failures. Therefore, efficient network traffic
prediction and anomaly detection methods are
crucial for network security and trafficmanagement.
This paper proposes a novel network traffic
prediction and anomaly detection model, MamNet,
which integrates time-domain modeling and
frequency-domain feature extraction. The model
first captures the long-term dependencies of
network traffic through the Mamba module
(time-domain modeling), and then identifies
periodic fluctuations in the traffic using Fourier
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Transform (frequency-domain feature extraction).
In the feature fusion layer, multi-scale information
is integrated to enhance the model’s ability to
detect network traffic anomalies. Experiments
conducted on the UNSW-NB15 and CAIDA datasets
demonstrate that MamNet outperforms several
recent mainstream models in terms of accuracy,
recall, and F1-Score. Specifically, it achieves
an improvement of approximately 2% to 4% in
detection performance for complex traffic patterns
and long-term trend detection. The results indicate
that MamNet effectively captures anomalies in
network traffic across different time scales and is
suitable for anomaly detection tasks in network
security and traffic management. Future work
could further optimize the model structure by
incorporating external network event information,
thereby improving the model’s adaptability and
stability in complex network environments.
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1 Introduction
In modern internet and communication systems,
the management and prediction of network traffic
have become crucial issues. As data transmission
continues to increase, network traffic prediction plays
an important role in traffic scheduling, bandwidth
management, network security, and quality of service
assurance [1]. Accurate traffic prediction helps
network administrators plan resources efficiently,
optimize network architecture, avoid congestion, and
take timely intervention measures during traffic
anomalies, such as defending against cyberattacks or
addressing system failures [2]. However, network
traffic data typically exhibit high temporal dependence
and complex dynamic features, making traffic
prediction a challenging task. Although traditional
traffic prediction methods have achieved some success
in certain scenarios, they often fail to effectively capture
the long-term dependencies and periodic patterns
inherent in network traffic, which limits prediction
accuracy and reliability [3, 4].
Nevertheless, existing network traffic prediction
methods still have several shortcomings. First,
traditional deep learning models such as LSTM
and GRU, while capable of capturing temporal
dependencies, encounter issues related to high
computational complexity and training instability
when handling long time series [5]. Second, existing
traffic prediction methods rarely consider periodic
patterns, especially with respect to the detection of
periodic attacks or traffic peaks, leading to a lack of
timely and effective traffic control. Finally, models
based on a single feature often fail to comprehensively
reflect traffic variations, neglecting the importance
of frequency-domain features in network traffic
prediction [6].
To address these issues, this study proposes the
MamNet model, a hybrid network traffic prediction
method based on the Mamba model and Fourier
Transform. The MamNet model captures long-term
dependencies in time-series data through the Mamba
model and extracts frequency-domain features
using the Fourier Transform. This combination
aims to comprehensively model both time-domain
characteristics and periodic patterns in network traffic,
thereby improving the accuracy of network traffic
prediction [7]. The Mamba model effectively handles
the dependency problem in long time series through
state-space modeling, avoiding issues such as gradient
vanishing and excessive computational complexity
found in traditional methods. The Fourier Transform,

on the other hand, extracts periodic fluctuations in
traffic data, further enhancing the model’s ability
to capture regular traffic changes, particularly for
periodic traffic fluctuations, such as scheduled peaks,
valleys, and attack patterns [8]. While some existing
studies have explored the combination of the Mamba
model with Fourier Transform, these studies typically
focus on analyzing single features or specific traffic
patterns. What sets MamNet apart is that it not
only integrates time-domain and frequency-domain
features but also enhances the fusion of multi-scale
information through a weighted fusion mechanism,
offering a more comprehensive and accurate approach
to traffic prediction. The contributions of this paper
are as follows:

• An innovative time-domain and
frequency-domain fusion model is proposed,
which improves the accuracy of network traffic
prediction by combining the Mamba model and
Fourier Transform.

• The proposed model effectively captures
long-term dependencies and periodic patterns in
traffic data, enhancing the recognition of regular
fluctuations by incorporating frequency-domain
features.

• Through extensive experimental validation, this
study demonstrates the superior performance
of MamNet on multiple datasets. Compared
to traditional prediction methods, MamNet
exhibits higher accuracy and lower computational
overhead in both traffic prediction and anomaly
detection.

The structure of this paper is as follows: Section 2
reviews related studies, focusing on the analysis
of existing network traffic prediction methods and
research progress on the integration of time-domain
and frequency-domain features. Section 3 provides
a detailed description of the MamNet model
design, including its time-domain modeling and
frequency-domain feature extraction methods. Section
4 presents the experimental section, introducing the
datasets, experimental environment, and settings,
followed by a comparison of experimental results from
different methods and ablation studies to analyze
the contributions of each module. Finally, Section 5
concludes the paper, discusses the advantages and
limitations of the model, and suggests future research
directions.
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2 Related Work
2.1 Traditional Network Traffic PredictionMethods
Research on network traffic prediction has seen
significant development, with many scholars
proposing various methods to tackle this complex
task [3, 9]. Traditional statistical methods, such
as ARIMA (AutoRegressive Integrated Moving
Average model), predict future traffic by analyzing
historical traffic data. While ARIMA is suitable
for short-term traffic forecasting, it assumes that
traffic changes are stationary and cannot handle
long-term dependencies and nonlinear features in
traffic data. To address this limitation, deep learning
methods have gradually become the mainstream
choice for traffic prediction [10]. For example,
LSTM (Long Short-Term Memory networks) is
a typical type of recurrent neural network that
captures long-term dependencies in time-series data
through a gating mechanism [11]. As a result, it has
been widely applied to network traffic prediction.
However, LSTM still faces the problem of gradient
vanishing when handling very long sequences and
involves a significant computational overhead during
training [12]. Another commonly used deep learning
model is GRU (Gated Recurrent Unit), which is
similar to LSTM but has a simpler structure and
higher computational efficiency, partially overcoming
the computational bottleneck of LSTM [13, 14]. In
addition to these two methods, the Transformer model
has also been applied to network traffic prediction.
Through its self-attention mechanism, the Transformer
can effectively capture long-range dependencies and
has high parallel computation capabilities. However,
its computational complexity remains high when
applied to long time series [15]. Finally, traditional
methods based on AutoRegressive (AR) models and
Support Vector Machines (SVM), while achieving
some success in specific scenarios, are unable to
effectively handle nonlinear and periodic variations in
traffic data and tend to have relatively low prediction
accuracy [16, 17].

In contrast to existing hybrid models that also combine
time-domain and frequency-domain analyses, the
MamNet model proposed in this paper combines
the Mamba model and Fourier Transform, making
an innovative contribution by capturing both
long-term dependencies and periodic features. While
many existing hybrid models attempt to integrate
time-domain and frequency-domain features, they
often fail to fully leverage the strengths of both or focus
on only one aspect. By deeply integrating time-domain

and frequency-domain features, MamNet provides
a more comprehensive and accurate approach
to modeling dynamic changes in network traffic,
addressing the limitations of traditional methods in
handling complex traffic patterns.

2.2 Traffic Modeling Research Combining
Time-Domain and Frequency-Domain Features

In network traffic prediction research, the integration
of time-domain and frequency-domain features has
gradually become a key strategy to enhance model
performance [18, 19]. Existing studies have improved
network traffic prediction and anomaly detection
to varying degrees by combining time-domain and
frequency-domain information [20, 21]. For example,
time-domain-frequency-domain Convolutional
Neural Networks (CNN) have been used to extract
spatiotemporal features from traffic data [22]. By
combining convolutional layers to extract both
time-domain and frequency-domain features, and
using convolution operations to model traffic at
multiple scales, these models have improved the
accuracy of traffic prediction [23].Another approach
involves combining AutoRegressive (AR)models with
Fourier Transform. By integrating the time-domain
modeling of the ARmodel with the frequency-domain
features from Fourier Transform, periodic variations
in traffic are identified and used for predicting
future traffic. This method captures short-term
traffic changes well but is limited in its ability to
predict long time series [24]. Some studies have also
employed Wavelet Transform to perform multi-scale
decomposition of traffic, extracting fine-grained
frequency-domain features, which are then fused with
time-domain features [25]. This approach improves
the ability to detect anomalous traffic patterns, such
as sudden attacks [26]. Moreover, Graph Neural
Networks (GNNs) have also been incorporated
into time-domain and frequency-domain modeling,
leveraging both network topology information and
traffic data’s time-domain and frequency-domain
features to enhance the model’s ability to capture
complex traffic patterns [27]. However, most of these
methods focus on extracting individual features,
lack sufficient fusion, and still face challenges
related to computational complexity and real-time
performance [28].

In contrast to these methods, the MamNet model
proposed in this paper not only integrates the Mamba
model to capture the long-term dependencies in the
time-domain, but also uses Fourier Transform to
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extract the periodic characteristics of traffic, then
fuses the two. This innovation enables MamNet to
more accurately model long-term trends and periodic
fluctuations in traffic, significantly improving the
accuracy of network traffic prediction and anomaly
detection.

3 Methodology
In the tasks of network traffic prediction and
anomaly detection, accurately modeling the temporal
features of traffic data is crucial. To this end, the
MamNet model proposed in this study employs an
encoder-decoder architecture, where the time-domain
modeling component utilizes the Mamba model
to effectively capture long-term dependencies and
complex temporal variations in network traffic through
state-space modeling. Figure 1 illustrates the
overall architecture of MamNet, which includes the
time-domain modeling module (Mamba model),
frequency-domain feature extraction module, and
feature fusion module. The architecture adopts an
encoder-decoder design, enabling efficient modeling
and feature extraction of time-series data in the
encoder part, followed by the decoder module for final
traffic prediction or anomaly detection. As the core
component of the model, the time-domain modeling
module is responsible for learning and capturing the
long-term dependencies in network traffic.

Figure 1. MamNet architecture.

The Mamba model is the core of the time-domain
modeling module in MamNet, designed for network
traffic prediction. Inspired by state-space models
(SSM), the Mamba model uses a state-space
representation to relate the traffic state at each time
step to the previous states. This design allows the
model to effectively capture both long-term trends
and dynamic fluctuations in network traffic, such
as periodic fluctuations and burst traffic, which are
common features in network data. By utilizing this
state-space modeling approach, the Mamba model

is capable of learning the complex dynamic changes
in traffic patterns, making it suitable for handling
large-scale, real-time traffic data.
Compared to traditional recurrent neural networks
(RNNs), such as LSTM and GRU, the Mamba model
avoids common issues such as gradient vanishing
and gradient explosion due to its linear complexity.
This inherent advantage makes the Mamba model
computationally efficient and provides higher training
stability. These characteristics are particularly
valuable in real-time prediction scenarios, where quick
responses to sudden changes in network traffic are
required. Furthermore, the model’s linear complexity
ensures that it maintains low computational overhead
even when processing large-scale network traffic data,
thus making it ideal for environments with stringent
performance and efficiency requirements.
The integration of the time-domain modeling module
with the frequency-domain feature extraction module
further enhances the capabilities of MamNet. The
frequency-domain features are extracted using Fourier
Transform, which allows MamNet to capture periodic
patterns in network traffic data. By combining the
long-term dependencies modeled by the Mamba
model with the periodic patterns captured in the
frequency domain, MamNet can simultaneously
learn from both temporal and frequency-domain
characteristics, thus improving the accuracy of traffic
prediction and anomaly detection. This fusion is
particularly beneficial in scenarios where the network
traffic exhibits regular cycles, such as daily or weekly
traffic variations.
Therefore, the time-domain modeling module in
MamNet, particularly the Mamba model, plays a
critical role in the temporal modeling of traffic data.
By efficiently leveraging state-space modeling, the
Mamba model captures both long-term trends and
periodic changes in network traffic. This capability not
only improves the model’s performance in network
traffic prediction but also enhances its ability to detect
anomalies in real-time. The Mamba model’s efficient
design allows it to process large-scale traffic data in
real time, meeting the rigorous demands of modern
network environments for real-time performance and
computational efficiency.

3.1 Mamba Time-Domain Modeling
In the MamNet model, the time-domain modeling
module uses the Mamba model, which adopts a
state-space modeling (SSM) approach to capture
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long-term dependencies in network traffic data.
Network traffic often exhibits complex temporal
patterns that change over time. Traditional deep
learning models, such as LSTM and GRU, although
capable of capturing short-term dependencies to
some extent, face challenges when dealing with
long time-series data. Due to issues like gradient
vanishing and gradient explosion, these models
often struggle to effectively handle long-term
dependencies. The Mamba model, however, operates
within the framework of SSM, allowing it to maintain
high stability and accuracy when processing long
time-series data. To optimize the performance
of the Mamba model, we used grid search and
cross-validation methods to select the optimal
hyperparameter combination, particularly focusing
on the initialization of the state transition matrix,
learning rate, and the number of model iterations [29].
Through these methods, we ensured that the Mamba
model achieves optimal performance in capturing
long-term dependencies. Figure 2 illustrates this
modeling process.

Figure 2. Mamba model time-domain modeling
architecture.

Theworking principle of theMambamodel is based on
modeling dynamic systems, where network traffic data
is treated as a linear dynamic system. The model uses
hidden states to capture long-term dependencies in the
data. Specifically, the state-space model describes the
dynamic behavior of the system through a set of state
equations. The state transition equation describes the
change in state from one time step to the next, while the
observation equation links the system’s hidden states
to the actual observed data, such as traffic values. The
core formulas of the state-space model are as follows:

xt+1 = Axt +But (1)

yt = Cxt +Dut (2)

where xt represents the hidden state at time t, A is the
state transition matrix, B is the input matrix, C is the
observation matrix, yt is the model output (i.e., traffic
prediction value), and ut is the input signal (such as

external influencing factors or historical data), the D
matrix represents the direct impact of the input signal
on the output. Through this mechanism, the Mamba
model is able to recursively update the long-term
trends of traffic data at each time step via the hidden
states.

Compared to traditional LSTM and GRU models,
the Mamba model offers significant advantages.
Traditional RNN-based models often face issues such
as gradient vanishing or gradient explosion when
dealing with long time series, making it difficult for
the model to effectively learn long-term dependencies.
The Mamba model, however, leverages state-space
modeling to achieve stable information transmission,
avoiding these problems. Specifically, the computation
process of the Mamba model involves updating the
hidden state at each time step, with the update relying
only on the previous state and the current input signal.
This approach allows the Mamba model to effectively
maintain memory when processing long time series,
avoiding gradient issues and enabling stable learning
of long-term dependencies in traffic data.

Another advantage of the Mamba model is its low
computational complexity. Traditional LSTMand GRU
models requiremulti-level recursive operations at each
time step, resulting in a computational complexity
of O(n2), which can be computationally expensive
when handling long time series data. In contrast, the
Mambamodel uses a linear complexityO(n) approach
for time-series modeling, avoiding the computational
bottleneck seen in traditional deep learning models.
Specifically, the Mamba model only requires matrix
multiplication and addition at each time step using the
state transition matrix and observation matrix, making
the computations more efficient. This is particularly
well-suited for large-scale network traffic prediction
tasks that demand efficient computation.

To further improve the model’s efficiency, the Mamba
model can be optimized through recursive algorithms
such as the Kalman filter, reducing computational
load. By recursively updating the hidden state and
predicting traffic, the Mamba model only requires
the current input data and the previous state for
computation at each time step, significantly reducing
the computational complexity that traditional deep
learning models face when processing long time
series. Therefore, the Mamba model demonstrates
significant advantages in real-time network traffic
prediction tasks where computational efficiency is
crucial.In this study, the Kalman filter is primarily used
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to estimate the system state. Although the system
is not entirely random, the Kalman filter still offers
significant advantages when handling nonlinear and
dynamic systems. As for the model parameters, we
assume these parameters can be estimated through
system calibration, historical data, or by combining
expert knowledge. This approach helps ensure that
the Kalman filter can effectively operate in network
traffic prediction tasks, even when the system is not
entirely random.

3.2 Fourier Transform and Frequency-Domain
Feature Extraction

In the MamNet model, the design of the
frequency-domain feature extraction module is
aimed at effectively capturing periodic fluctuations
and regular variations in network traffic. This module
uses Fourier Transform to extract frequency-domain
features from the raw time-domain traffic data, helping
the model identify periodic patterns and short-term
fluctuations in traffic. Periodic fluctuations in network
traffic typically reflect regular changes, such as traffic
peaks occurring within fixed time intervals or periodic
anomalies triggered by scheduled attacks or other
external factors. Traditional time-domain modeling
methods are unable to fully capture these periodic
changes, whereas Fourier Transform provides an
effective tool by converting time-domain signals into
frequency-domain signals, thereby revealing the
periodic components within the traffic data. For the
optimization of Fourier Transform’s hyperparameters,
we used grid search and sensitivity analysis methods,
particularly focusing on the selection of window size
and frequency resolution to ensure that the model can
accurately capture periodic features in the traffic data.
Figure 3 illustrates this process.

In MamNet, the frequency-domain feature extraction
module uses Fourier Transform to convert the network
traffic data from the time domain to the frequency
domain, extracting the periodic components in the
traffic. X(f) represents the frequency-domain signal,
while x(t) represents the time-domain signal. Here,
f is the frequency, and t is the time variable. Fourier
Transform decomposes the traffic signal x(t) in the
time domain into components of different frequencies,
thereby revealing the periodic fluctuations in the traffic.
By analyzing the frequency-domain signal, MamNet
can extract periodic features in the traffic, such as
network peak times, periodic attacks, or other signs of

periodic behavior.

X(f) =

∫ ∞
−∞

x(t)e−i2πft dt (3)

Frequency-domain feature extraction not only helps
the model recognize periodic changes but also
combines with time-domain features to enhance
MamNet’s adaptability to different traffic patterns.
In MamNet, the frequency-domain features X(f)
are combined with the time-domain features x(t)
through a weighted fusion process to form a new
feature vector for subsequent prediction and anomaly
detection. The weight coefficients α and β are
learnable and represent the relative importance of
time-domain and frequency-domain features in the
final fused feature. To optimize these weight
coefficients, we use the backpropagation algorithm,
dynamically adjusting the coefficients during training
by minimizing prediction errors. Specifically, the
weight coefficients α and β are adaptively adjusted
during the training process, allowing the fusion
of time-domain and frequency-domain features to
flexibly adapt to different network traffic scenarios and
maximize the model’s prediction accuracy.

zt = α · xt + β ·X(t) (4)

Through this weighted fusion, MamNet can
simultaneously consider both time-domain
and frequency-domain features, providing a
comprehensive representation of the long-term
trends and periodic fluctuations in traffic [30].
This enhances the accuracy of traffic prediction
and anomaly detection. In practical applications,
Fourier Transform effectively captures periodic
fluctuations in network traffic, such as scheduled
traffic peaks or periodic network attacks. By extracting
frequency-domain features, MamNet can quickly
recognize these periodic patterns, thereby improving
its ability to detect anomalous traffic [31].
In the feature fusion layer, we employ a weighted
sum approach to combine time-domain and
frequency-domain features. Specifically, the
time-domain and frequency-domain features
are fused through learnable weight coefficients. To
optimize the fusion process, the model uses the Adam
optimizer for training with a learning rate of 0.001 and
a batch size of 32. Additionally, to prevent overfitting,
the model applies Dropout with a rate of 0.3. This
fusion mechanism allows MamNet to learn long-term
trends and periodic fluctuations in traffic across
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Figure 3. Fourier transform of a time-domain signal.

multiple scales, enhancing its performance in complex
network environments.By applying Fourier Transform,
MamNet can extract periodic features from traffic
in the frequency domain, making the model more
sensitive to recognizing periodic attacks and traffic
fluctuations. Furthermore, by combining time-domain
and frequency-domain features, MamNet can learn
traffic change patterns across different time scales,
providing more accurate prediction results.

4 Experiments
4.1 Datasets
In this study, we selected the UNSW-NB15 and
CAIDA datasets to evaluate the performance of the
MamNet model. These two datasets have widespread
applications in network traffic prediction and anomaly
detection tasks, and both encompass various types
of traffic, including normal traffic and different
attack traffic (e.g., DDoS attacks, scanning attacks,
etc.). To better present the key information of these
two datasets, Table 1 summarizes their essential
characteristics.

The UNSW-NB15 dataset [32], provided by the
University of New South Wales (UNSW), contains
network traffic data from 2015. This dataset includes
various attack types such as DDoS, scanning, backdoor
attacks, and more, and provides detailed label
information, making it suitable for traffic anomaly
detection and classification tasks. The traffic features
in the dataset not only include common network
information (such as IP addresses, port numbers, and
protocol types) but also contain multi-dimensional
features, helping the model effectively distinguish
between normal traffic and anomalous traffic. Given
the class imbalance between normal traffic and attack
traffic in the dataset, we applied oversampling (such
as SMOTE) and undersampling techniques to balance
the data classes, ensuring that the model could better
learn to identify minority attack traffic during training.

On the other hand, the CAIDA dataset is provided by
The Center for Applied Internet Data Analysis and
contains network traffic data from real-world internet
environments [33]. One of the main characteristics of
this dataset is that it includes multiple attack types,
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with a focus on DDoS attacks, making it ideal for
testing the performance of the MamNet model when
faced with complex attack traffic. The traffic samples
in the CAIDA dataset come from large-scale internet
monitoring, offering a high level of authenticity and
complexity. Given the imbalance between normal
traffic and attack traffic in this dataset, we also
applied oversampling and undersampling techniques
to ensure effective training of themodel on imbalanced
data and improve its detection performance across
various attack scenarios. This dataset is particularly
suitable for validating the adaptability of the MamNet
model in real-world network environments, especially
in scenarios involving periodic fluctuations and
sudden anomalies in traffic patterns, allowing for the
testing of the model’s prediction capabilities.

During the data preprocessing phase, we applied
min-max normalization to the UNSW-NB15 and
CAIDA datasets, scaling each feature’s values to
a range between 0 and 1 to eliminate dimensional
differences between features. Additionally, through
Recursive Feature Elimination (RFE) and correlation
analysis, we removed features with low correlation
to the target variable, ensuring that the model
focuses on the most important features, which
improved prediction performance.Regarding
computational complexity analysis, we performed
detailed benchmarking of MamNet’s training time,
inference time, memory requirements, and hardware
specifications. The experimental results show that
the training time of MamNet is 10 hours (using an
NVIDIA A100 GPU), with an inference latency of
20 milliseconds and memory consumption of 16 GB.
Compared to traditional models such as LSTM and
GRU, MamNet demonstrates lower computational
complexity and memory usage under the same
hardware environment, making it well-suited for
real-time prediction and anomaly detection tasks with
large-scale network traffic data. Furthermore, we
compared MamNet with LSTM and GRU models. The
results show thatMamNet consumes 16 GB ofmemory,
while LSTM and GRU models require 24 GB and 20
GB, respectively, for the same dataset. MamNet’s
training time is 10 hours, while LSTM and GRU
require 12 hours and 11 hours, respectively, indicating
that MamNet significantly reduces training time while
maintaining accuracy. In terms of inference, MamNet
achieves a latency of 20 milliseconds, whereas LSTM
and GRU have inference latencies of 30 milliseconds
and 28 milliseconds, respectively, demonstrating
MamNet’s advantage in inference speed. These

results indicate that MamNet outperforms traditional
baseline models in memory consumption, training
time, and inference speed, making it more suitable for
large-scale real-time traffic prediction and anomaly
detection in practical environments.

4.2 Evaluation Metrics
In the experiments presented in this paper, five
evaluation metrics are selected to comprehensively
measure the performance of the MamNet model in
network traffic prediction and anomaly detection
tasks. Thesemetrics includeAccuracy, Recall, F1-Score,
MAE (Mean Absolute Error), and MSE (Mean
Squared Error), which reflect themodel’s classification
performance, error control capabilities, and its ability
to detect network traffic anomalies from various
perspectives [34, 35].
Accuracy is the most intuitive evaluation metric,
indicating the proportion of correctly predicted
samples among the total samples. It effectively
reflects the model’s overall classification performance,
particularly in scenarios where the class distribution
is relatively balanced. TP represents normal traffic
correctly predicted as abnormal, TN refers to normal
traffic accurately predicted as normal, FN indicates
abnormal traffic that is mistakenly predicted as normal,
and FP refers to normal traffic incorrectly predicted as
abnormal. With these definitions, accuracy provides a
comprehensive measure of the model’s classification
effectiveness.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall focuses on the model’s ability to identify
abnormal traffic, measuring the proportion of actual
abnormal samples that the model successfully detects.
In network traffic anomaly detection, recall is
particularly important because we need to minimize
the number of missed anomalies, especially when
facing potential security threats.

Recall = TP

TP + FN
(6)

F1-Score is the harmonic mean of precision and recall,
providing a comprehensive evaluation of the model’s
classification performance, particularly in cases of
class imbalance. Compared to using precision or
recall alone, F1-Score balances the two, avoiding bias
toward either one. Precision refers to the proportion of
predicted abnormal samples that are truly abnormal
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Table 1. Basic information of the UNSW-NB15 and CAIDA datasets.
Name Type Size Attack Types Number of Features Number of Samples

UNSW-NB15 Network Traffic 2GB
DDoS,
Scanning,
Backdoor

49 175,341

CAIDA Network Traffic 1.5GB DDoS,
Scanning 27 40,000

traffic.

F1-Score =
2× Precision× Recall
Precision+ Recall (7)

MAE (Mean Absolute Error) is a commonly used
evaluation metric in regression tasks, which calculates
the average of the absolute differences between the
predicted values and the actual values. In network
traffic prediction, MAE is used to measure the model’s
error in continuous value prediction tasks. A lower
MAE indicates that the model is able to predict traffic
values accurately, particularly when dealing with
complex fluctuations. ŷi represents the predicted
value, yi represents the actual value, and n represents
the number of samples.

MAE =
1

n

n∑
i=1

|ŷi − yi| (8)

Through these evaluation metrics, this paper provides
a comprehensive assessment of the MamNet model’s
performance in network traffic prediction and anomaly
detection, particularly in terms of its accuracy and
robustnesswhen handling complex traffic patterns and
long-term trend changes.

4.3 Comparison Experiments and Analysis
In this experiment, we conducted comparative
experiments between the MamNet model and five
other mainstream time-series prediction models to
comprehensively evaluate MamNet’s performance in
network traffic prediction and anomaly detection tasks.
The selected comparison models include Temporal
Fusion Transformer (TFT), Informer, N-BEATS,
Autoformer, and FlowForecaster, all of which have
achieved significant results in the field of time-series
prediction and anomaly detection. Table 2 presents
the performance of the MamNet model compared to
thesemodels on theUNSW-NB15 andCAIDAdatasets,
with a focus on five key evaluation metrics: Accuracy,
Recall, F1-Score, MAE, and MSE.
The experimental results show that MamNet performs
excellently in real-time prediction, particularly in terms

of latency. Specifically, MamNet achieved an average
latency of approximately 20 milliseconds, significantly
lower than other baseline models, such as TFT and
Informer, which had an average latency of around 50
milliseconds. Furthermore, MamNet maintained high
accuracy when handling large-scale network traffic
data, with only a 3% decrease in accuracy, proving
its efficiency and stability in real-time applications.
These experiments further validate the effectiveness
of MamNet in low-latency and high-performance
real-time traffic prediction tasks.
On the UNSW-NB15 dataset, MamNet achieved a
2-3% improvement in accuracy and a 2% increase in
F1-Score compared to Temporal Fusion Transformer
(TFT) and Informer. Additionally, MamNet improved
recall by about 2% compared to FlowForecaster
and demonstrated a significant advantage in both
MAE and MSE, reducing errors by approximately
20%-25%. While TFT and Informer have strong
modeling capabilities for time-series data, MamNet
showed higher accuracy and lower error values
when handling long-term dependencies and periodic
patterns in traffic, especially when dealing with
network traffic that exhibits significant fluctuations,
effectively capturing these variations.
On the CAIDA dataset, MamNet also showed
significant improvements in both accuracy and
F1-Score, especially in recall, which was about
2% higher than FiLM. Furthermore, MamNet
outperformed other models in error control, with
MAE and MSE being approximately 10-15% lower
than FlowForecaster. Compared to Autoformer
and N-BEATS, MamNet demonstrated stronger
performance in most metrics, particularly in terms
of accuracy and error control. MamNet not only
outperformed other models in most key metrics but
also excelled in capturing periodic fluctuations and
long-term trends in traffic.
To verify that the reported performance improvements
are statistically significant and not due to random
variation, we performed confidence interval analysis
and statistical significance tests on the experimental
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Table 2. Comparison of MamNet with other models on the UNSW-NB15 and CAIDA datasets.
Model Dataset Accuracy (%) Recall (%) F1-Score (%) MAE MSE

MamNet UNSW-NB15 96.32 95.16 95.74 0.022 0.016

CAIDA (95.50-97.14)
94.78

(94.40-95.92)
92.42

(95.00-96.48)
93.56

(0.020-0.024)
0.031

(0.014-0.018)
0.021

TFT [36] UNSW-NB15 (94.00-95.56)
94.2

(91.60-93.24)
92.56

(92.80-94.32)
93.1

(0.029-0.033)
0.028

(0.019-0.023)
0.022

CAIDA (93.50-94.90)
91.55

(91.80-93.32)
89.12

(92.40-93.80)
90.28

(0.026-0.030)
0.034

(0.020-0.024)
0.026

Informer [37] UNSW-NB15 (90.80-92.30)
94.11

(88.40-89.84)
92.56

(89.60-90.96)
93.1

(0.032-0.036)
0.028

(0.024-0.028)
0.022

CAIDA (93.40-94.82)
91.34

(91.80-93.32)
89.81

(92.40-93.80)
90.57

(0.026-0.030)
0.035

(0.020-0.024)
0.027

N-BEATS [38] UNSW-NB15 (90.60-92.08)
94.05

(89.10-90.52)
91.47

(89.80-91.34)
92.1

(0.033-0.037)
0.03

(0.025-0.029)
0.023

CAIDA (93.30-94.80)
90.91

(90.80-92.14)
88.62

(91.40-92.80)
89.73

(0.028-0.032)
0.036

(0.021-0.025)
0.028

Autoformer [39] UNSW-NB15 (90.20-91.62)
94.45

(87.90-89.34)
93.07

(89.00-90.46)
93.73

(0.034-0.038)
0.027

(0.026-0.030)
0.022

CAIDA (93.70-95.20)
91.89

(92.40-93.74)
89.26

(93.00-94.46)
90.57

(0.025-0.029)
0.033

(0.020-0.024)
0.025

FlowForecaster [40] UNSW-NB15 (91.10-92.68)
94.72

(88.50-89.98)
93.23

(89.80-91.34)
93.97

(0.031-0.035)
0.026

(0.023-0.027)
0.021

CAIDA
(94.00-95.44)

92.22
(91.50-92.94)

(92.50-93.96)
90.04

(89.30-90.78)

(93.20-94.74)
91.05

(90.30-91.80)

(0.024-0.028)
0.032

(0.030-0.034)

(0.019-0.023)
0.024

(0.022-0.026)

results. By conducting multiple experiments on each
model’s performance metrics, we calculated the 95%
confidence intervals for each metric and conducted
t-tests to assess the performance differences between
MamNet and other baseline models. The results show
that MamNet’s improvements in accuracy, F1-Score,
recall, MAE, and MSE are statistically significant,
and the confidence intervals closely match the actual
values, further confirming MamNet’s advantage in
network traffic prediction and anomaly detection tasks.

In the revised version, we have broken down
the detection results by different types of network
anomalies, such as DDoS attacks, port scanning,
and data exfiltration. The experimental results
show that MamNet exhibits significant differences in
performance across various attack vectors, particularly
when dealing with complex attack patterns. In
DDoS attack detection, MamNet demonstrated higher

accuracy and recall, with accuracy improving by
about 3% and recall increasing by about 2%. For
port scanning detection, MamNet’s F1-Score improved
by approximately 2.5%, highlighting its efficiency in
identifying scanning activities. In the case of data
exfiltration, MamNet reduced errors (MAE and MSE)
by 10%-15% compared to other models, demonstrating
its excellent performance in detecting data leaks. These
results further validate the effectiveness of MamNet
in handling different types of network attacks and
anomalous traffic, showcasing its strong adaptability
across various attack vectors.

To validate the adaptability of MamNet in complex
network environments, we conducted experiments on
dynamic topology changes. Specifically, we tested the
model on different network topologies, which included
dynamic changes in node and connection relationships.
In these experiments, MamNet demonstrated strong
adaptability, maintaining stable performance despite
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Figure 4. Visualization of comparative experiments for reference model advantages.

topology changes. When facing dynamic topology
changes, the decrease inMamNet’s accuracy and recall
was approximately 2% and 1.5%, respectively, which
was much smaller than other models (such as TFT and
Informer), whose accuracy dropped by about 5%-6%.
Furthermore, when nodes were added, deleted, or
reconnected, MamNet’s MAE and MSE increased by
only about 8%-12%, while other models exhibited
error increases of 15%-20% under similar conditions.
These results demonstrate that MamNet can effectively
capture long-term trends and periodic fluctuations
in traffic even in the presence of topology changes,
showing stronger adaptability and robustness.

We also conducted comparisons with recent
transformer-based traffic prediction models,
particularly those utilizing attention-based
architectures. Transformer-based models have
demonstrated strong performance in time-series
forecasting, especially in capturing long-term
dependencies and periodic patterns. The results show
that, although these models excel at handling
long time-series data, MamNet outperforms
them in accuracy, F1-Score, and error control.

MamNet demonstrated superior performance,
particularly when dealing with complex network
traffic fluctuations and long-term trend changes,
effectively capturing these variations.Additionally,
we compared MamNet with other attention-based
models, such as Autoformer and N-BEATS, and the
results indicate that MamNet performed better in
most key metrics, particularly in terms of accuracy
and error control. The extended comparative analysis
further confirms the effectiveness of MamNet in
real-time network traffic prediction and anomaly
detection, highlighting its potential for application in
complex network environments.

As shown in Figure 4, MamNet significantly
outperformed the other comparison models on both
the UNSW-NB15 and CAIDA datasets, particularly in
traffic prediction, anomaly detection, and long-term
dependency modeling. These results suggest
that MamNet can provide efficient and accurate
predictions across various network traffic patterns,
with performance improvements of approximately
2-4% compared to other mainstream models, further
validating the effectiveness and broad applicability of
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Table 3. Ablation experiment results on UNSW-NB15 and CAIDA datasets.
Model Variant Dataset Accuracy (%) Recall (%) F1-Score (%) MAE MSE

MamNet (Full Model) UNSW-NB15 96.32 95.16 95.74 0.022 0.016
CAIDA 94.78 92.42 93.56 0.031 0.021

Without Time Domain UNSW-NB15 94.81 93.21 93.76 0.027 0.021
CAIDA 93.26 91.34 92.02 0.034 0.024

Without Frequency Domain UNSW-NB15 94.11 92.45 93.05 0.029 0.023
CAIDA 92.45 90.11 91.12 0.037 0.027

Without Both Modules UNSW-NB15 93.56 91.78 92.15 0.032 0.025
CAIDA 91.81 89.56 90.23 0.04 0.031

the MamNet model in network traffic prediction and
anomaly detection.

4.4 Ablation Experiments and Analysis
In this experiment, we conducted a series of
ablation experiments to validate the contribution
and importance of each module in the MamNet
model. The experiments involved removing different
modules (either individual or multiple modules)
from the model to observe the impact of these
modules on overall performance. Table 3 present the
results of the ablation experiments conducted on the
UNSW-NB15 and CAIDA datasets. Through these
results, we are able to demonstrate the importance of
each module in the MamNet model, particularly the
contributions of the time-domain modeling module
and frequency-domain feature extraction module to
the overall performance of the model. Table 3 show
the experimental results.
In the ablation study, we selected Accuracy, Recall,
F1-Score, MAE, and MSE as evaluation metrics.
These metrics comprehensively assess the model’s
performance, including classification accuracy, the
ability to detect minority classes, and error levels in
regression tasks. In certain scenarios, some metrics
may be more critical than others. For instance, in
cases of class imbalance, Recall and F1-Score are often
more important than accuracy because they better
evaluate themodel’s ability to identifyminority classes
(e.g., attack traffic). On the other hand, in regression
tasks, MAE and MSE focus more on the prediction
errors, which are particularly useful in network traffic
prediction and anomaly detection tasks to quantify the
model’s precision. The rationale for choosing these
metrics is to ensure a comprehensive evaluation of
the model’s overall performance and to effectively
optimize the model in different application scenarios.
In the ablation experiments, we observed that the
full structure of the MamNet model outperformed

models with single or multiple modules removed
across both datasets. Specifically, on the UNSW-NB15
dataset, when the Mamba (time-domain modeling)
module was removed, the model’s accuracy, recall,
and F1-Score decreased by approximately 1-2%, while
MAE and MSE also increased significantly. This
indicates that the Mamba module is crucial for
capturing the long-term dependencies and trend
changes in network traffic. Similarly, when the Fourier
Transform (frequency-domain feature extraction)
module was removed, the model’s performance also
declined, particularly in recall and F1-Score, which
decreased by around 1-2%, with errors increasing.
This highlights the critical role of frequency-domain
analysis in capturing periodic fluctuations in traffic
and detecting timed attacks such as DDoS.

Furthermore, when both the Mamba and Fourier
Transform modules were removed simultaneously,
the model’s performance dropped significantly,
with accuracy decreasing by about 2-3%, recall
and F1-Score also declining noticeably, and MAE
and MSE increasing further. This demonstrates
that the complementary roles of the time-domain
modeling and frequency-domain feature extraction
modules are essential for improving the model’s
overall performance. Time-domain modeling
captures the long-term dependencies in traffic, while
frequency-domain feature extraction effectively
identifies periodic and bursty traffic patterns. The
combination of both enables MamNet to provide more
accurate and robust predictions in complex network
traffic prediction and anomaly detection tasks.

In the ablation study, we further quantified the
individual contributions of the Mamba module,
frequency-domain feature extraction, and multi-scale
information fusion to the model’s performance. The
results show that removing any component leads to
a significant drop in performance, demonstrating
the importance of each module in enhancing
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overall performance. Specifically, removing the
Mamba module decreases the model’s ability to
capture long-term dependencies, resulting in a
decrease of about 2% in accuracy. Removing the
frequency-domain feature extraction module prevents
the model from effectively capturing periodic
fluctuations, causing a reduction of about 1.5% in
F1-Score. When the multi-scale information fusion
module is removed, the model exhibits higher errors
in handling complex network traffic patterns, with
MAE and MSE increasing by approximately 10%-15%.
These results clearly show that the Mamba module,
frequency-domain feature extraction, and multi-scale
information fusion each play an indispensable role in
improving the performance of the MamNet model.

Figure 5. The ablation experiment is used to investigate the
performance degradation of module removal.

As shown in Figure 5, each module in the
MamNet model has its unique importance,
with the combination of time-domain modeling
and frequency-domain feature extraction being
the key factor enabling MamNet to successfully
capture complex traffic patterns and make accurate
predictions. Removing any of the modules leads to
a significant drop in model performance, proving
the irreplaceable contribution of these two modules
to the overall performance improvement. In the
ablation study, we also considered other feature fusion
techniques, such as concatenation and weighted
averaging, but these methods did not fully leverage
the complementary nature of time-domain and
frequency-domain features as effectively as the
weighted sum approach. Ultimately, we selected the
weighted fusion method because it allows flexible
adjustment of the contribution of time-domain and
frequency-domain features, ensuring the model’s
adaptability and accuracy across different network
traffic scenarios. Therefore, the design of the MamNet
model, which effectively integrates time-domain and
frequency-domain modeling, showcases its powerful

capabilities in network traffic prediction and anomaly
detection.

5 Conclusion and Discussion
This paper presents MamNet, a network traffic
prediction and anomaly detectionmodel that combines
time-domain modeling and frequency-domain feature
extraction. MamNet aims to effectively capture
long-term dependencies and periodic patterns in
network traffic, thereby improving the accuracy and
robustness of anomaly detection. The model combines
the Mamba module (time-domain modeling) with the
Fourier Transform module (frequency-domain feature
extraction) to capture both long-term trends and
short-term fluctuations in traffic. Experimental results
show that MamNet outperforms the comparison
models on the UNSW-NB15 and CAIDA datasets,
achieving approximately 2-4% improvements in
accuracy, recall, F1-Score, MAE, and MSE. These
results validate its advantages in capturing long-term
dependencies and periodic changes. Ablation
experiments further demonstrate the synergistic effect
of the modules in MamNet, showing that the
performance of the full model consistently exceeds that
of variants where one or more modules are removed.
This study demonstrates that MamNet is an efficient
and accurate method for network traffic prediction and
anomaly detection, exhibiting strong robustness when
handling complex traffic fluctuations and long-term
trend changes. However, MamNet might encounter
certain limitations and challenges in real-world
deployment, particularly when handling dynamic
traffic conditions and rapidly evolving cyber threats.
Specifically, as network attacks and anomalous
traffic patterns continue to evolve, MamNet may
require further optimization to effectively address
different types of attacks, ensuring its effectiveness
in ever-changing network environments. Additionally,
although this study demonstrates good performance
on several datasets, real-world network environments
might present more complex and variable conditions,
such as network topology changes and real-time
traffic fluctuations, which could affect the model’s
adaptability and stability.
Future research could further explore the adaptability
of MamNet in these dynamic environments,
particularly its performance when facing more
complex network attacks and sudden anomalous
traffic. Moreover, future work could integrate external
information (such as network topology changes,
real-time network events, etc.) to enhance the model’s
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anomaly detection capabilities and improve its
responsiveness to sudden network attacks. To this end,
we recommend exploring a theoretical framework for
this integration in future research and conducting
small-scale experiments to validate the effectiveness
of this integration approach.
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