
ICCK Transactions on Intelligent Systematics
http://dx.doi.org/10.62762/TIS.2025.409447

RESEARCH ARTICLE

Multi-UAV Cooperative Task Allocation Based on
Multi-strategy Clustering Ant Colony Optimization
Algorithm

Rui Wang 1, Yiqing Shan 1, Lianwei Sun1 and Hui Sun 1,*

1 School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300100, China

Abstract
To address the issues of low solving efficiency and
susceptibility to local optima in multi-unmanned
aerial vehicle (multi-UAV) task allocation
algorithmswithin urban areas, this study constructs
a task allocation model aiming to minimize
economic costs for material delivery and reduce the
urgency of rescue task demands. A multi-strategy
clustering ant colony optimization algorithm
(KMACO) is proposed for solution. Specifically,
the K-means clustering method is utilized to
partition the number of rescue tasks assigned
to each UAV. In the ant colony optimization
algorithm, a pheromone update strategy and
a random evolution strategy are introduced
to guide population search directions, thereby
enhancing solving efficiency and avoiding local
optima. Experimental results demonstrate that the
proposed algorithm effectively reduces algorithm
running time and operational economic costs
while satisfying rescue task urgency requirements.
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Compared with conventional methods, KMACO
shows superior performance in convergence speed
and solution quality, thus providing an optimized
decision-making framework for emergency rescue
operations in complex urban environments.
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1 Introduction
Urban disasters such as earthquakes, fires, and floods
are often sudden, complex, and destructive, posing
a serious threat to the lives and property safety
of urban residents. UAV plays an increasingly
important role in urban rescue due to its advantages
of strong mobility, rapid deployment and access to
dangerous areas. However, the ability of a single
UAV is limited, and multi-UAV cooperative operation
has become the key to improving the efficiency
of urban rescue [1]. In the field of urban UAV
emergency rescue, whether UAV can reasonably
allocate material distribution tasks is the key to ensure
rescue efficiency. Considering the urgency of rescue
missions, multiple UAVs are usually required to
perform multiple rescue missions in coordination to
improve the overall material distribution efficiency
[2]. By constructing a UAV cluster, according to
the performance parameters and task requirements
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of the UAV, the task allocation algorithm is adopted
to realize the reasonable allocation of material
distribution tasks, so as to ensure that each UAV
can maximize its effectiveness in the cluster and
avoid idle or excessive load of resources, thus
significantly improving the overall rescue efficiency
[3]. At present, UAV task allocation methods are
mainly divided into two categories: mathematical
programming methods and heuristic methods [4].
Mathematical programming methods ensure the
global optimality of task allocation by accurately
solving the mathematical model, which is suitable for
simple and small-scale task scenarios, including linear
programming method, mixed integer programming
method, dynamic programming and so on [5–7]. The
heuristic method quickly finds a feasible solution
in a complex problem through an approximation
algorithm, which is suitable for large-scale or dynamic
task allocation scenarios. It mainly includes greedy
algorithm, genetic algorithm, ant colony optimization
algorithm, particle swarm optimization algorithm, etc.
Considering the requirements of urban emergency
rescue tasks, it is suitable for heuristicmethods to solve.
Han et al. [8] established a multi-UAV cooperative
task allocation model in logistics transportation by
considering the constraints of UAV operation reliability
and flight performance and taking the minimum
safety risk and logistics cost as the objective function.
Zhou et al. [9] proposed a hybrid particle swarm
optimization algorithm for multi-UAV cooperative
task allocation. Through the improvement of the
particle swarm optimization algorithm, a variety of
strategies are introduced to enhance the search ability
of the algorithm, and the speed and quality of task
allocation are improved. Devi et al. [10] realized the
discretization of UAV through binary matrix coding
and applied particle swarm optimization to solve
the multi-UAV task allocation problem. Jiang et al.
[11] developed amulti-constraint model incorporating
distribution time windows to address task allocation
issues in logistics UAV applications. The model was
solved using an improved PSO algorithm. Liu et
al. [12] established a multi-objective function for
the path coordination of a multi-unmanned aerial
vehicle cruise system. Aiming to minimize both
the number of UAVs and the total flight distance, a
multi-objective evolutionary algorithm was employed
to address thismodel. Although extensive research has
been conducted on task allocation algorithms, the ant
colony algorithm remains a prominent solution due to
its strong robustness, maintaining its status as a classic
approach in this field. Although extensive research

has been conducted on task allocation algorithms, the
ant colony algorithm remains a prominent solution in
this domain due to its strong robustness, maintaining
its status as a classic approach for addressing such
problems [13]. Ning et al. [14] proposes an improved
pheromone updatemechanism based on the ant colony
algorithm, as well as a novel pheromone smoothing
mechanism to address the task allocation problem.
By dynamically tracking changes in the optimal
path’s pheromones during the iterative process of
the ant colony algorithm, this approach accelerates
convergence speed. Additionally, the smoothing
mechanism reinitializes the pheromone matrix to
enhance population diversity and strengthen the
global search capability of the algorithm. Tian
et al. [15] addresses the issues of low utilization
and uneven load distribution in task scheduling
strategies. It proposes a high-performance scheduling
algorithm based on a genetic-ant colony approach,
aimed at reducing node load rates and significantly
enhancing algorithm efficiency. Wu et al. [16]
proposed a fusion-enhanced ant colony algorithm
to address the issue of low task allocation efficiency
for multiple UAVs in dense urban environments. By
incorporating an adaptive pheromone mechanism and
an extended heuristic strategy, the algorithm guides
the population search direction and enhances task
allocation performance in complex urban scenarios.

Liu et al. [17] proposed an enhanced ant colony
algorithm with adaptive variable step size. This
algorithm employs a novel pheromone concentration
modification strategy, which is intended to address
the limitations of the traditional ant colony algorithm,
including its suboptimal convergence speed and
vulnerability towards local optima.

To address these challenges, this paper proposes a
task allocation model incorporating UAV operation
costs and rescue mission urgency, along with
a multi-strategy-enhanced clustering ant colony
optimization algorithm. First, K-means clustering
is applied to improve computational efficiency.
Subsequently, a stochastic evolution strategy combined
with a pheromone concentration update mechanism
is implemented to guide population search directions.
This framework enables the determination of optimal
allocation schemes for multi-UAV systems. Finally,
simulation experiments validate the algorithm’s
optimization performance and operational stability.
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Figure 1. Diagram of UAV task allocation for emergency rescue.

2 Multi-UAV task allocation modeling
After an urban disaster occurs, the rescue center
receives material requests from multiple rescue
points. Given the known locations of these rescue
points, emergency rescue drones are deployed for
material distribution. This study aims to optimize
the spatiotemporal allocation of emergency material
distribution tasks and assign them efficiently to
multiple drones, thereby improving rescue efficiency.

The problem is described as follows: There are N
drones in the emergency rescue material reserve
center, each with different models and performance
parameters. These drones must deliver supplies to
M rescue mission points, which vary in geographical
location, material demand, and urgency. Each
UAV must depart from the reserve center, follow a
pre-planned task allocation route to deliver supplies
to assigned mission points, and return to the
reserve center upon completion. No new tasks are
accepted after a drone departs. Through multi-UAV
task allocation, rescue resources can be reasonably
distributed, and rescue efficiency can be enhanced. The
schematic diagram of UAV task allocation is shown in
Figure 1.

2.1 Decision Variable
The main purpose of using multiple UAVs to carry out
rescue missions is to make full use of rescue resources,
improve rescue efficiency and ensure the safety of
affected people by reasonably planning the rescue
mission objectives and rescue sequence for each UAV.
Assuming that the set of material rescue points is
X = X1, X2, · · · , XM , the set of emergency rescue
drones is Y = Y1, Y2, · · · , YN , after satisfying that all

rescue tasks can be performed by the drone to ensure
that the rescue tasks can be successfully performed,
the rescue task allocation decision variable Z is set to
represent the execution relationship between the drone
Y and the material rescue point X .

Z = {Zn,m | Zn,m ∈ {0, 1}}N×M (1)

where Zn,m is the UAV decision variable. When the
value is 1, the rescue taskXm is assigned to the UAV Yn.
When the value is 0, the rescue taskXm is not assigned
to the UAV Yn.

2.2 Objective Function
2.2.1 Economic Cost
Economic cost is one of the key factors that must
be considered in the emergency rescue mission of
UAV. The economic cost of UAV emergency rescue
mainly involves the cost of UAV material distribution
and transportation, that is, the costs incurred by
UAV in the transportation process, including battery
energy consumption, depreciation maintenance, etc.
As the length of the transportation distance of the
UAV has a direct impact on the economic cost, it
can be deducted that the farther the distance, the
higher the economic cost will be. Therefore, in the
context of emergency rescue missions, it is essential
to optimize the flight path of drones and minimize
unnecessary travel distances. This approach aims to
reduce the overall economic costs associated with such
operations.

G1 =
N∑
n=1

M+1∑
m=1

δnLn,mZn,m (2)
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where δn represents the transportation cost per unit
distance of the UAV Yn; Ln,m is the Euclidean distance
from the current position of the UAV Yn to the rescue
task Xm.

2.2.2 Demand Urgency Degree
As a new type of transportation for material
transportation, drones play an increasingly critical role
in emergency rescue. Considering the urgency of the
UAV’s emergency rescue mission, it is necessary to
conduct a comprehensive and in-depth analysis from
the perspective of the overall material distribution
route when performing its rescue mission. Demand
urgency is the core index to determine the allocation
of rescue resources and the order of task execution.
Accurate assessment of demand urgency can ensure
that limited rescue resources can be used efficiently,
improve rescue efficiency, and minimize casualties
and property losses. To scientifically determine the
priority of UAV rescue mission location priorities,
the evaluation metric of demand urgency has been
introduced.

G2 =
N∑
n=1

M∑
m=1

o(prin,m)×q(prin,m) (3)

o(prin,m) = k1× | prin,m+1 − prin,m | (4)

q(prin,m) =

{
1 if(prin,m < prin,m+1)

0 if(prin,m ≥ prin,m+1)
(5)

where o(prin,m) is the demand urgency penalty
coefficient function of UAV Yn to perform rescue tasks;
q(prin,m) is an indicator function, which means that
when the emergency coefficient prin,m of the current
rescue mission point Xm is lower than that of the next
rescue mission pointXm+1 in the task allocation order,
the value is 1, otherwise it is 0.

Considering that there is a large difference in the value
range of the above two sub-objective functions, the
value of the sub-objective function is between [0,1] by
using the min-max standardization method.

G′ =
G−Gmin

Gmax −Gmin
(6)

In summary, the task allocation objective function of
assigning M tasks to N drones is:

minG = o1G
′
1 + o2G

′
2 (7)

where o1 is the economic cost weight coefficient; o2
is the weight coefficient of demand urgency. G′1 and
G′2 are the economic cost and demand urgency after
standardization, respectively.

2.3 Constraint Condition
2.3.1 Rescue mission constraints
Considering the nature of the rescue task, it is
necessary for the emergency rescue drone to complete
all material distribution tasks. At the same time, each
logistics distribution task can only be performed by
a certain drone, and all tasks can only be performed
once.

N∑
n=1

M∑
m=1

Zn,m = M (8)

N∑
n=1

Zn,m = 1, ∀m = 1, 2, · · · ,M (9)

2.3.2 UAV flight range constraints
Limited by the physical condition of the drone itself,
when each drone performs a task, its flight range
cannot exceed the rated range, otherwise the dronewill
fail to return successfully, and the departure position
of each drone is used as the return point of the drone.

M+1∑
m=1

Ln,mZn,m ≤ Ln(max) (10)

where Ln(max) is the maximum flight range of UAV Yn;
Ln,m+1 is the voyage of UAV Yn to return to the rescue
center after completing all tasks.

2.3.3 UAV load constraints
Due to the limitation of the UAV’s own conditions,
it is required that the total weight of the material
requirements of eachUAV’s rescue point cannot exceed
the load limit.

qn =

M∑
m=1

qmZn,m ≤ Qn(max) (11)

where qm is the amount of relief materials needed for
the rescue mission point; Qn(max) is the maximum
material weight that UAV Yn can carry.

3 Multi-strategy K-means Ant Colony
Optimization Algorithm

The traditional ant colony algorithm is prone to
problems such as low efficiency, slow convergence
speed and easy to fall into local optimumwhen solving
the problem of multi-UAV task allocation. In view of
the above problems, the K-means clustering idea is
used to allocate the number of rescue tasks for each
UAV in advance [18]. The multi-strategy K-means
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Ant Colony Optimization Algorithm (KMACO) is
obtained by using the random evolution strategy
and the pheromone concentration update strategy
and improving the ant colony path node selection
probability and the pheromone concentration update
method respectively.

3.1 K-means Clustering
K-means clustering is an unsupervised machine
learning algorithm. The fundamental principle
underlying this algorithm is to divide the data set into
K clusters and to continuously update the centroid
position of each cluster through iteration until there
is no change in its position, thereby achieving the
division of the data set [19]. For solving the problem
of multi-UAV multi-task point allocation, the K-means
clustering idea is introduced. The rescue point
X = X1, X2, · · · , XM that needs to perform material
delivery can be clustered into Y = Y1, Y2, · · · , YN
clusters Ck by the ratio of the total rescue task demand
and the maximum load of the UAV. According to the
given number of clusters, each UAV is divided into
a corresponding rescue task point set. Considering
that the ant colony algorithm has the disadvantages
of slow operation speed and unstable solution results
in dealing with task allocation problems, especially
in dealing with large-scale allocation problems, the
introduction of clustering ideas can effectively solve
the above problems.

The flowchart of the K-means clustering algorithm is
shown in Figure 2. The steps for applying K-means
clustering to solve multi-UAV task allocation are as
follows:

Step 1: Based on the data set X = X1, X2, · · · , XM

of rescue task points, determine the total amount of
rescuematerials. The number of clusters is determined
by calculating the ratio of the total rescue materials to
the maximum load capacity of the drones.

Step 2: Randomly selectN rescue point positions as the
initial cluster centers. Calculate the distance between
each rescue task point and the cluster centers. Assess
whether the residual capacity of each cluster center
meets the specified requirements. Assign the rescue
point to the cluster center with the smallest distance,
ensuring that the material quantity assigned to the
cluster center does not exceed the maximumUAV load.
If this condition is not met, assign the rescue point to
the next closest cluster center.

Step 3: Recalculate the cluster centers based on the
newly formed clusters by taking the mean position of

Figure 2. K-means clustering flow chart.

all rescue points assigned to each cluster.

Step 4: Check whether the difference between the
coordinates of the new cluster centers and the original
cluster centers exceeds a predefined threshold. If the
difference is greater than the threshold, return to Step
2. If the difference is within the threshold, save the
clustering results and terminate the algorithm.

3.2 Random Evolutionary Strategy
In the ant colony algorithm for multi-UAV task
allocation, the path selection probability mutation
critical threshold REF and the node selection
probability random adjustment factor EDT are
introduced to change the path selection probability
qkij(t) of the ant colony, which introduces more
randomness and evolutionary ability to the ant
colony algorithm [20]. This approach is designed to
circumvent the algorithm’s tendency to fall into the
local optimal solution. It enhances the algorithm’s
global search capabilities and facilitates exploration of
potential complex task allocations.

qkÿ (t) =


[τẏ(t)]

α·[ωẏ]
β∑

s∈allowedk
[τis(t)]

α·[ωẋ]β
· rand if REF > EDT

[τẏ(t)]
α·[ωẏ]

β∑
s∈allowedk

[τis(t)]
α·[ωẋ]β

if REF ≤ EDT

(12)

153



ICCK Transactions on Intelligent Systematics

where α and β are pheromone weight factor and
heuristic function weight factor respectively; allowedk
is the set of all feasible nodes of the current ant; the
critical threshold EDT of path selection probability
mutation is used to determine whether the probability
of the ant colony needs to mutate when selecting the
next path node. The random adjustment factor REF
of the node selection probability is a parameter with
a range between values, which is used to adjust the
probability of ants selecting the next path node.

3.3 Pheromone update strategy
The pheromone update in ant colony algorithm
mainly includes pheromone evaporation update
and pheromone concentration enhancement.
Pheromone evaporation can prevent the algorithm
from converging too quickly and getting stuck in a
local optimal solution. Pheromone concentration
enhancement rewards ants that find better paths,
making subsequent ants more inclined to choose paths
with stronger pheromone concentrations. However,
the above pheromone update methods have problems
of imbalance between global exploration and local
exploitation as well as loss of diversity. Therefore,
this paper proposes dynamic evaporation factor
adjustment and elite population strategy to improve
the above problems.

3.3.1 Dynamic volatile factor regulation mechanism
When the traditional ant colony algorithm updates
the pheromone, in order to avoid the supersaturation
phenomenon caused by the continuous accumulation
of pheromone, the pheromone volatilization
mechanism is usually introduced, in which the
volatilization factor is often set to a fixed constant [21].
However, this fixed volatilization factor settingmethod
has certain limitations in practical applications, and
cannot effectively meet the exploration needs of
ant colonies at different stages. Therefore, the
dynamic volatilization factor adjustment mechanism
is introduced, and the ant colony algorithm is used
to find the optimal task allocation process. In the
different iteration stages, the demand for the size of the
volatilization factor is different, and the pheromone
volatilization factor is dynamically adjusted.

ρ =


ρmin ρ < ρmin

ρ0 · e
r(i)
r(i−1)

−1 · k2 · tT ρmin < ρ < ρmax

ρmax ρ > ρmax

(13)

where ρmin and ρmax are the minimum and maximum
pheromone volatilization coefficients; ρ0 is the initial

pheromone volatilization coefficient; r(i) and r(i− 1)
are the i iteration and the i − 1 iteration respectively
to solve the optimal allocation results; k2 is the
pheromone adjustment coefficient; t is the current
iteration number of ant colony algorithm; T is the
maximum iteration number of the algorithm.

3.3.2 Elite ant colony strategy
In the ant colony algorithm used in multi-UAV task
allocation, the pheromone update phase is crucial.
At this stage, the pheromone concentration of the
path through which the elite ant colony performs the
task will be strengthened [22]. After the pheromone
concentration is increased, based on the guiding
role of the pheromone, the subsequent ant colony
will obviously be more inclined to choose the path
of the elite ant colony when performing the search
task. Through this mechanism, the subsequent ant
colony increases its preference for these paths in the
search process and then accelerates the aggregation of
high-quality task allocation results, which is conducive
to the algorithm to jump out of the local optimal
solution and improve the overall performance and
search efficiency of multi-UAV task allocation.

τij(t+ 1) = (1− ρ) · τij(t) + ∆τ eliteij (t) (14)

∆τkij(t) =

{
Q
Lk

+ e
Lses

Through the best path
Q
Lk

otherwise
(15)

where ∆τkij(t) denotes the pheromone of the kth ant
from the path node to the node; Q is a constant, which
is the amount of pheromone left by the ant colony
under the unit path length; Lk represents the length of
the path taken by the k ant in this cycle;Lbest represents
the best path of the k ant in this cycle; e is the elite ant
colony weight parameter.

3.4 KMACO algorithm flow
The flow chart of KMACO algorithm is shown in
Figure 3. Themain steps of KMACO algorithm to solve
multi-UAV task allocation are as follows:

Step1: To accomplish the mission, mission-relevant
information must first be acquired. The K-means
clustering algorithm is subsequently employed to
determine cluster quantities, with a critical constraint:
the total material demand of all task points within
each cluster must not exceed the UAV’s maximum
payload capacity. This approach ensures that every
cluster comprehensively contains the mission-specific
data required for UAV operations.
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Figure 3. Flow chart of KMACO algorithm.

Step2: Initialize the parameters such as the number
of ant populations, the number of iterations, and
the pheromone volatilization factor to construct an
initial pheromone matrix, which contains the initial
pheromone concentration assigned to each task point
by each drone.

Step3: Determine the paths that ants will continue to
search based on the improved transition probability
formula defined in Formula (12).

Step4: Update the pheromone levels in Ant colony
paths based on the improved pheromone update
strategy defined in Formulas (13-15).

Step5: All ants complete the path selection in turn,
in which each ant constructs a set of task allocation
schemes. By calculating the fitness value of each
group of schemes, the optimal task allocation results of
each iteration are compared to determine the current
optimal allocation scheme.

Step6: Reiterate steps 3-5 until the termination
condition is fulfilled, subsequently producing the
optimal task allocation result.

4 Simulation Experiment and Analysis
4.1 Simulation Parameter Setting
To validate the mathematical model for multi-UAV
task allocation and evaluate the effectiveness of the
K-means Multi-strategy Ant Colony Optimization
(KMACO) algorithm, simulation experiments were
conducted using MATLAB R2022a on a computer
equipped with 8 GB RAM and an Intel Core i7
processor. The experimental setup assumes a rescue
center deploying three DJI Fly Cart 30 drones, with
performance parameters provided in Table 1, to
execute 15 rescue missions, where mission parameters
are detailed in Table 2. The configuration parameters
of themulti-strategy clusteredAnt colony optimization
algorithm are listed in Table 3.

Table 1. UAV parameter setting.

DJI Fly Cart 30 Parameter value

Airplane weight 42.5kg
Maximum flight distance 8km

Protective level of whole machine IP55
Maximum wind speed 12m/s
Maximum load capacity 30/kg

Table 2. Parameters setting for rescue mission points.

Serial
number

X
/m

Y /
m

Z /
m

demand
/ kg urgency

T0 25 25 0 - -
T1 25 425 10 5 3.5
T2 850 700 50 4 5.0
T3 275 450 10 5 1.6
T4 900 900 40 7 3.2
T5 550 900 40 8 3.9
T6 200 800 70 3 3.4
T7 950 100 10 7 2.5
T8 50 900 10 8 3.6
T9 400 975 80 5 1.7
T10 400 100 40 5 3.3
T11 925 450 50 5 4.0
T12 700 50 10 3 4.0
T13 425 575 40 4 7.0
T14 50 600 10 5 7.0
T15 450 950 10 4 3.0

4.2 Algorithm effectiveness analysis
To validate the effectiveness of the proposed approach,
we conducted comparative experiments using three
algorithmic implementations: KACO (only clustering
but not improved ant colony algorithm), KMACO
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Table 3. Ant colony optimization algorithm
parameter setting.

Parameter name Parameter
value

Pheromone heuristic factor 1
Heuristic function factor 3
Pheromone volatilization coefficient 0.2
Pheromone concentration
enhancement coefficient 100

Number of ants 30
The maximum number of iterations
of the algorithm 200

(clustering and improved ant colony algorithm)
and traditional ant colony algorithm ACO are used
to compare and verify the task allocation model.
Considering the contingency of the algorithm, each
algorithm runs 50 times under the condition that the
number of all ant colonies and the number of iterations
are the same, and the box line diagram of the task
allocation results obtained by the three algorithms is
drawn as shown in Figure 4.

Figure 4. Task allocation result box plot.

To more effectively assess the performance advantages
of the KMACO algorithm and examine the distribution
characteristics and variability across different datasets,
a boxplot comparing the task allocation results
of the three algorithms is presented in Figure
4. As illustrated, the box corresponding to the
KMACO algorithm is relatively compact, with data
points densely clustered around it. This suggests
that KMACO achieves low variance in objective
function values, indicating high data consistency, low
dispersion, and strong robustness. In comparison, the
KACO algorithm exhibits a moderately sized box with
a slightlywider spread of data points, reflecting greater

variability than KMACO but still maintaining a more
stable distribution than the ACO algorithm.

The ACO algorithm, however, shows a longer box
length, with scatter points widely dispersed and some
outliers far from the main cluster. This suggests that
the objective function values of the ACO algorithm
are highly discrete, leading to relatively poor stability.
Overall, the boxplot analysis demonstrates that the task
allocation results obtained by the KMACO algorithm
are more densely distributed, yielding higher-quality
solutions. This further highlights the superiority of
the KMACO algorithm in addressing multi-UAV task
allocation problems.

The multi-UAV cooperative task allocation results,
solved by different algorithms, are presented in
Figure 5, while the allocation sequence for three
emergency rescue drones across 15 mission scenarios
is shown in Table 4. By combining the information
from both sources, it is clear that the allocation
scheme derived from the KMACO algorithm is the
most optimal. In urban disaster scenarios requiring
multi-UAV task allocation, this scheme ensures that
each drone operates within its physical constraints
while effectively optimizing the objective function. It
strikes a balance between economic efficiency and the
urgency of rescue tasks, highlighting the rationality
and feasibility of the KMACO algorithm in addressing
multi-objective constraint problems.

4.3 Simulation experiments and analysis under
different data scales

To further demonstrate the applicability of the
proposed algorithm in large-scale data scenarios, 30,
40, and 50 rescue task points were randomly selected
in an 1km × 1km area for simulation experiments.
Meanwhile, the three comparison algorithms were
independently executed 20 times to ensure the stability
and reliability of the results. The relevant experimental
data and statistical results are shown in Table 5.

Experimental data demonstrate that the KMACO
algorithm exhibits significant advantages in both
task allocation effectiveness and computational
efficiency. In terms of the objective function G-values,
KMACO maintains the lowest optimal and average
values across all problem scales. Particularly at
n=50, its optimal G-value shows reductions of
13.8% and 28.7% compared to KACO and ACO
respectively, highlighting its stability. Regarding
computational efficiency, the runtime of the ACO
algorithm increases significantly as the problem scale
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Figure 5. Multi-UAV task allocation scheme.

expands, demonstrating a 14-fold speed disadvantage
against KMACO at n=50. By implementing clustering
strategies, KMACO optimizes time complexity
from O(n2) to O(kn) while maintaining solution

variance 60% lower than KACO. These findings
conclusively validate the effectiveness of KMACO’s
integrated clustering and enhanced pheromone
mechanisms in balancing global exploration with local
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Table 4. Optimal delivery sequence of multi-UAV task allocation.

UAV number KMACO KACO ACO

U1 T0-T1-T14-T3-T13-T10-T0 T0-T4-T5-T9-T8-T0 T0-T3-T13-T6-T8-T10-T1-T0
U2 T0-T12-T7-T11-T2-T4-T0 T0-T6-T2-T11-T7-T12-T0 T0-T14-T15-T9-T5-T4-T0
U3 T0-T5-T15-T9-T6-T8-T0 T0-T1-T14-T15-T13-T3-T10-T0 T0-T2-T11-T7-T12-T0

Table 5. Statistical data of each algorithm under different
data scales.

Algorithm Indicators n=30 n=40 n=50

optimal
value G 0.88 1.16 1.12

KMACO average
value G 0.95 1.21 1.21

running
time/s 8.65 11.89 15.15

optimal
value G 0.88 1.19 1.30

KACO average
value G 0.97 1.28 1.43

running
time/s 8.93 12.16 13.75

optimal
value G 1.03 1.25 1.57

ACO average
value G 1.09 1.35 1.64

running
time/s 115.81 209.90 211.97

exploitation, providing an efficient and stable solution
for large-scale multi-UAV task allocation problems.

5 Conclusion
The present paper principally studies the multi-UAV
task allocation problem based on the KMACO
algorithm. Firstly, a mathematical model of multi-UAV
task allocation considering the urgency and economy
of rescue mission requirements is constructed.
Subsequently, the traditional ant colony algorithm is
enhanced via the integration of K-means clustering,
pheromone concentration update, and random
evolution strategy. The incorporation of K-means
clustering contributes to a substantial reduction in
the algorithm’s execution time, while the pheromone
concentration update and random evolution strategy
serve to direct the ant colony’s exploratory efforts,
augment its global search capability, and expedite
the convergence of the algorithm. The superiority
of the KMACO algorithm is substantiated by
simulation experiments, and based on this algorithm,

a multi-rescue task point UAV material rescue task
allocation scheme under multi-constraint conditions
is generated.
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