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Abstract
To predict future trends based on the data from
sensors is an important technology for many
applications, such as the Internet of Things, smart
cities, etc. Based on the predicted results, further
decisions and system controls can be made. Raw
sensor data sets are often complex non-linear
data with noise, which results in the difficulty
of accurate prediction. This paper proposes a
distributed deep prediction network based on
a covariance intersection (CI) fusion algorithm
in which the deep learning networks, such as
long-term and short-term memory networks
(LSTM) and gated recurrent unit networks (GRU)
are fused by CI fusion algorithm to effectively
develop the performance of prediction. Moreover,
the variance is obtained to value the prediction
results. The model is validated on the real weather
dataset in Beijing. The experiments show that
LSTM and GRU have their pros and cons for
different data, CI fusion can develop the accuracy
of the final predictions, and the entire framework
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has robust prediction results with a reasonable
estimated variance.
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1 Introduction
Time series data exists in many real-world systems,
and the analysis and prediction of time series data can
provide effective guidance for system control.

For the prediction of time series data, researchers have
proposed some solutions. For example, the traditional
mathematical equation model Autoregressive
Integrated Moving Average model (ARIMA) [1]
can only predict stationary time series data and
mainly focus on processing stationary noise data. For
non-stationary time series data, the modeling process
of ARIMAmodel needs to increase the smoothing step.
At the same time, it is difficult to set the correct model
order. In addition, for nonlinear data relationships,
the ARIMA model is difficult to use. In paper [2],
Thissen et al proposed an SVM algorithm, which is
of certain modeling ability for nonlinear data with a
small amount of noise, but it is difficult to determine
its parameters [3].

With the development of sensor technology, the
information obtained is more and more abundant,
and the data-driven deep learning model has been
widely studied and applied. In particular, the
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recurrent neural network (RNN) [4–6] shows strong
modeling capabilities in nonlinear time series data.
However, due to the long-term dependence of RNN
in capturing data, there are problems such as gradient
disappearance and gradient explosion. Improved
RNNs such as LSTM [7–9] and GRU [10, 11] have
been proposed and applied. LSTM sets three gating
units to control the memory and forgetting of time
series through cell state. LSTM solves the gradient
disappearance and gradient explosion problem of
RNN and realizes the long-term dependence of
capturing data. GRU has reduced a gating unit
based on LSTM, reducing network parameters while
maintaining the modeling capabilities comparable to
LSTM.

At the same time, papers [12, 13] shows that
bidirectional LSTM performs better in periodic time
series data, even if it needs to be trained for a longer
time. In addition, in the case of multiple input
variables, the RNN series network cannot be highly
accurate because it cannot take into account the lateral
relationship in multiple variables. In papers [14–16],
authors combined the convolutional neural network
CNN with LSTM, in which CNN extracts the local
spatial features of multidimensional data, considering
the horizontal relationship of multidimensional time
series.

In addition, different network models have different
performances on different data, and even if the neural
network has been trained, the prediction variance in
different time periods has fluctuations. Moreover,
the output of different neural networks is difficult
to judge by appropriate standards. It is biased only
by using the root mean square error which are often
similar resulting in the reliability of the results cannot
be accurately measured. To this end, we can use
multiple neural networks to model the data to form
a distributed network, but this will cause a problem
that how to integrate these results after obtaining
multiple prediction results. Therefore, the use of
effective fusion methods to synthesize the prediction
results of different models can ensure the accuracy
and stability of the output results. Commonly used
fusion strategies are weighted averagemethod [17, 18],
nonlinear artificial neural network (ANN) fusion [19],
direct addition or addition, and average [20]. For
the weighted average method, it faces the difficulty
of determining the weight. However, for the method
of ANN, although it solves the problem of determining
the weight, it also introduces more parameters, which
increases the complexity of the model and requires

enough data to train the model. At the same time, for
the fusion result of ANN, only a series of predicted
estimates can be obtained. In the real system, we can’t
effectively evaluate the correctness of the estimates. In
paper [21], the author uses the method of covariance
intersection to fuse the features extracted by the neural
network and improve the accuracy. The covariance
intersection fusion algorithm can not only obtain
interpretable suboptimal estimates in multi-source
correlation data fusion but also give the variance of
each estimated value to evaluate the correctness of the
predicted values.

We designed a distributed deep learning network
model combining traditional time series data
decomposition technology and a fusion scheme. We
use three models of LSTM, GRU, and ConvBiLSTM to
perform multi-step prediction on the same time series
variable respectively, and then use the covariance
intersection fusion algorithm to fuse the prediction
results of the threemodels to ensure the accuracy of the
prediction results and give predictions. Quantitative
evaluation of the results. In implementing the variance
required for CI fusion, the step estimation variance for
each prediction time step is obtained by overlapping
the prediction data. Finally, by estimating the variance
of the step size, the covariance intersection algorithm
is designed to fuse the prediction results, and the
more accurate prediction results are given, and the
possible fluctuation range is also displayed.

Niehsen et al. [22] verified that covariance
cross-filtering provides a general framework for
information fusion because it can produce consistent
estimates for any degree of cross-correlation. In paper
[21], covariance intersection algorithm was used
in neural networks feature level fusion effectively
improves the accuracy of the experiment. Hurley et
al. [23] extended the covariance crossover to the fusion
of any two probability density functions, and gave
the minimum of the covariance matrix of the fusion,
thus verifying the covariance intersection algorithm
in multiple data. In paper [24], the authors compare
the covariance intersection algorithm with other
fusion algorithms. The interpretability of the CI is
verified and the correct minimum estimated variance
is given. Li et al. [19] applied the CI algorithm to
the field of vehicle positioning. In multiple vehicle
cooperative tasks, the different states of different
vehicles were estimated and merged using the CI
algorithm. In the case of unknown correlation,
CI obtained the best agreement. It is estimated
that there are clear advantages over other fusion
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methods. However, although the CI fusion method
can obtain better results when the data source has an
unknown correlation, the variance of the different
data is required to be known in the application. For
most sensor data, the variance can be passed. The
measurement is estimated, and the variance of the
output of the deep network model is not scientifically
defined and cannot be used directly.

Based on the above analysis, we can know that in
the face of real highly nonlinear data, neither the
traditional mathematical equation model nor the
data-driven deep network model can obtain the best
results. Therefore, the introduction of appropriate
time series data decomposition technology. The
complexity of the original data can be effectively
reduced, and in the case of insufficient data, the
effective feature components are more conducive to
the training of the model in the deep network model.
However, neural networks are also not universal.
Different time series variables and different time
periods will lead to differences in the prediction
performance of neural network networks. For this
reason, in the face of themulti-step prediction problem
of complex time series data, it is very meaningful to
use the appropriate fusion method to synthesize the
prediction results of different neural network models
to obtain a more stable final prediction result. In the
existing linear fusion method, there is a problem that
the weight is difficult to determine, and the nonlinear
ANNmodel will increase the complexity of the model.
However, the correlation of the output of the neural
network is unknown, so the CI fusionmethod becomes
a natural choice. The research shows that the method
still has suboptimal consistent estimation for data
sources with unknown correlations. Faced with the
problem that it is difficult to the variance required
by the CI algorithm. When we model the time
series to predict certain values in the future, we can
simultaneously model some known observations and
unknown to-be-predicted values by enlarging the
number of prediction steps, that is, in a prediction
Multi-step, both obtaining forecasts of observations
also includes predictions of future values. In this way,
we can estimate the prediction estimation variance
for the prediction period, and based on this variance,
design the CI fusion algorithm to obtain more accurate
results and quantitative evaluation.

Therefore, this paper proposes a distributed multi-step
predictive depth network model based on CI fusion
and uses LSTM, GRU, and ConvBiLSTM three
models as sub-models. Among them, when using

ConvBiLSTM, the decomposition method of STL
is added to decompose the time series data into
three feature components to improve the accuracy.
Compared to the existing methods, we use different
models for prediction and use CI fusion to obtain the
final result after separately obtaining the prediction
results. The CI fusion strategy also gives the variance
of the predicted values at eachmoment, and the results
are more reasonable and interpretable. This paper
mainly has two contributions by following:

1. This paper establishes a general framework for
the prediction of complex time series data, which
combines the data-driven deep network model
and CI fusion strategy to ensure the accuracy and
quantitative evaluation of the prediction results.

2. For sensor data, it is often difficult to obtain
the variance, so the prediction results of the
data-driven deep network model are not easy to
evaluate. Therefore, we predict the value of the
time atwhich the observed data has been obtained
by expanding the step size backwards and based
on this, a covariance fusion strategy is designed.
Furthermore, the use of CI fusion variance to give
a quantitative evaluation of the prediction results
has a more important reference significance in
practical applications.

Our highlights are as follows: First, we have
established a general distributed network framework
for nonlinear complex time series data prediction. By
using the covariance intersection fusion scheme, the
prediction results of the three models are integrated to
ensure the stability of the framework ondifferent data. ,
improve the prediction accuracy of the neural network,
and use the variance to give a quantitative evaluation
of the results. Secondly, the estimated variance of
one step in multi-step prediction is estimated by the
prediction of overlapping data in adjacent modeling
steps, and an interpretive CI fusion algorithm is
designed based on this variance. The CI fusion
algorithm gives the variance of the predicted values
that is considered a more reasonable prediction.

The following parts of this paper are organized as
follows: Section 2 presents the existing prediction
methods and improvement ideas in the field. Section
3 introduces the method of this article, as well as the
detailed process of each part. Section 4 verifies and
evaluates the proposed method on the real weather
dataset in Beijing through experiments. We draw
conclusions and prospection in Section 5.
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2 Methodology
We have built a generic prediction model, as shown
in Figure 1. The three sub-predictors are trained
in a supervised learning manner. The input and
output of the sub-predictor are historical data from
one step and future data from one step, respectively.
We can see that the whole model consists of four main
components: The three neural network submodels are
GRU, LSTM, and ConvBiLSTM. Among them, when
using the ConvBiLSTM model, due to the abstract
feature extraction ability of the convolution operation,
we use the STL decomposition method to decompose
the original data into more efficient three-feature
components, and train the predictor based on this data.

Figure 1. Model framework.

Recurrent neural networks (RNNs) maintain a
memory based on historical contextual information,
which makes them a natural choice for processing
sequential data. Long Short-Term Memory network
adds cells as the information storage module, which
realizes long-term memory of the sequence data, and
solves the problem of gradient disappearance and
gradient explosion of RNN network.

LSTM uses a gating mechanism to enable the
circulatory neural network to not only remember
past information but also to selectively forget some
unimportant information to model long-term time
dependencies. GRU is based on the idea of retaining
long-term sequence information. Reduce the problem
of gradient disappearance. The principle of GRU
is very similar to that of LSTM, which uses gated
mechanism to control input, memory and other
information to make predictions at the current time
step. The GRU has two gate units, a reset gate and

an update gate. Intuitively, the reset gate determines
how the new input information is combined with the
previous memory, and the update gate defines the
amount of the previous memory saved to the current
time step.

Using the three sub-models to strongly model the
nonlinear data ensures the prediction performance
of completely different data sources. Finally, using
the covariance intersection algorithm for three data
sources, the prediction results of the three sub-models
are combined to further improve accuracy, at the
same time, the covariance intersection algorithm will
give a possible range of fluctuations as a quantitative
evaluation of the prediction results.

In the CI fusion algorithm, we add some time sensor
data obtained to the forward one-step prediction,
compare the predicted result of the obtained data with
the true value of the moment, and estimate the overall
variance of the prediction result in the previous step.
Based on the variance, the ci algorithm is designed to
fuse the results. Our data format is shown in Figure 2.

Figure 2. Data format.

Using the three sub-models to strongly model the
nonlinear data ensures the prediction performance
of completely different data sources. Finally, using
the covariance intersection algorithm for three data
sources, the prediction results of the three sub-models
are combined to further improve accuracy, at the
same time, the covariance intersection algorithm will
give a possible range of fluctuations as a quantitative
evaluation of the prediction results.

In the target tracking, in order to avoid errors caused
by the influence of information redundancy in the
Kalman filter estimation, the covariance information
must be maintained, but in a fully distributed system,
the cross-covariance information cannot be uniformly
maintained. In order to solve the above problems,
Julier et al. [24] proposed a data fusionmechanism that
does not require independence assumptions, which
can be applied to the covariance cross-fusion algorithm
of arbitrary complex distributed systems. We
designed a covariance intersection algorithm that uses
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three sources of information. A general covariance
algorithm can fuse multiple sources of information.
Suppose multiple information source data is ym, m
represents the number of information sources. The
intersection represents the convex combination of
covariance, and the covariance intersection algorithm
are following:

P−1 = ω1P
−1
1 + ω2P

−1
2 + . . .+ ωmP−1

m (1)

P−1y = ω1P
−1
1 y1 + ω2P

−1
2 y2 + · · ·+ ωmP−1

m ym

s.t. 1) ω1, ω2, . . . , ωm ∈ [0, 1] (2)
2) ω1 + ω2 + · · ·+ ωm = 1

where, ωm represents the weight of the m data source,
Pm represents the variance of the m data source, y
represents the fusion result. When using the convex
optimization algorithm to get the appropriate weight,
you can get the best fusion result.

In our paper, three sub-predictors were chosen, so
there are three data sources. The estimated variance
of the three sub-predictors is obtained by prediction
of repeated data of adjacent step sizes. The values at
the same time are predicted by three sub-predictors,
and the results are ŷ1n, ŷ2n, ŷ3n, respectively. Where n
represents the moment. The estimated variance is P1,
P2, P3 which are calculated by formula (3) respectively
and covariance P is calculated by formula (4).

P̂i =

√√√√ 1

13

13∑
r=1

(
ŷi,r24 − ŷr37

)2
(3)

P−1 = ω1P
−1
1 + ω2P

−1
2 + ω3P

−1
3 (4)

where ω1, ω2, ω3 represent the weights respectively of
different predicted values of each model.

min
ω1,ω2,ω3

P−1 = ω1P
−1
1 + ω2P

−1
2 + ω3P

−1
3

s.t. 1) ω1, ω2, ω3 ∈ [0, 1] (5)
2) ω1 + ω2 + ω3 = 1

We use Sequential Least Squares Programming [25]
to optimize P−1 under the constraints of ω1, ω2, and
ω3, to get the best value for each weight according to
formula (5). Then, calculate the result of the fusion
according to formula (6).

P−1ŷn = ω1P
−1
1 ŷ1n + ω2P

−1
2 ŷ2n + ω3P

−1
3 ŷ3n (6)

where ŷn represents the fusion result at time n.

The flow of our entire algorithm is as follows pseudo
code, where the symbol convention is as follows: the
agreed symbols of t, T are set to 24, 37 respectively,
representing the forward 24 step prediction. y1 to y37
represent 37 real values of historical moments. ŷ24 to
ŷ37 represent 13 predicted values of historicalmoments
and ŷ38 to ŷ61 represent 24 forward predicted values.

3 Experiments
3.1 Dataset
The data in our experiments come from the
meteorological dataset used in a Global AI Challenge
contest in 2018, which focuses on real-world
meteorological data observed at a weather station
in Beijing, including meteorological factors such
as temperature, relative humidity, and wind speed.
The data set has high continuity with fewer missing
values. Our experiments are based on two variables,
temperature and wind speed. These two variables
have distinct trends, the temperature changes have
obvious periodicity rather than the wind speed has
obvious abrupt changes. Data is collected every hour.
We selected continuous 200-day data as the data
source and filled in the missing values with data from
the previous moment of the missing moment. We use
170 days of data as a training set for network models,
and the remaining 30 days of data as a test set.

3.2 Experiment setup
The experiment hardware and software environments
are set up to run the proposed prediction model. The
open source deep learning library Keras, based on
TensorFlow, is used to build all learning models. All
experiments are performed on a PC with an Intel(R)
CORE(TM) CPU i5-4200U 1.60 GHz and 4 GB of
memory.

In order to model the deep neural network effectively,
a large number of hyper parameters need to be set.
In experiments, the default parameters in Keras are
used for deep neural network initialization such as
weight initialization and Learning rate. Usually, when
we use neural networks to build models, the size of
the network layer and the number of neurons are
not strictly defined. Instead, the complexity of the
model structure is determined based on the data.
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We determine the parameters of each layer of the
model through multiple experimental adjustments.
In addition, We use the commonly used activation
function Tanh as the activation functions of the
LSTM, GRU and BP. The convolution layer’s activation
function is set ReLu. The size and hyper parameter
details of each network model are shown in Table 1.

A detailed introduction of the three sub-predictors is
as follows.

1. GRU: In this model, the raw data was not
processed except for data preprocessing-related
operations, and it was used to train the GRU
network to build a predictive model.

2. LSTM: Train the network with exactly the same
data as the submodel of GRU.

3. ConvBiLSTM:Using the samedata as the previous
two models as the data source, the three
feature components are obtained through the STL
decomposition method before the data enters the
network. Use this feature component to train this
network to get a predictor.

The method proposed in this paper mainly used
the fusion idea of distributed network, obtains
the prediction results of the same time period
through three sub-models, and designs the covariance
intersection fusion algorithm at the end, so as to
synthesize the results of the three models and obtain
the final predictions. The prediction performance of
different models was evaluated by comparison with
real values. The root mean square error (RMSE) was
used to estimate the performance of models. RMSE
is frequently used to measure the difference between
values predicted by a model and the values actually
observed from the environment. A value of 0 indicates
that the observed value exactly fits the predicted value.
The calculation is as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

where ŷi represents the predicted value, yi represents
the truth value, and n represents the number of test
data.

We have designed two experiments. Experiment 1
verifies the effectiveness of the CI fusion algorithm.
In the prediction of two variables, the fusion algorithm
is improved compared to the sub-predictor. In
experiment 2, we used bp fusion to compare with ci
results. The results show that the ci fusion algorithm

not only gives more accurate prediction values, but
also gives a reasonable range of fluctuations, which is
more practical.

3.3 Results of Case No. 1
We completed two experiments on a real dataset, each
of which included predictions of two meteorological
variables, temperature (T) and wind speed (WS). We
process the data into pairs of data with overlapping
moments, recording 37 moments per day, with 13
observations being historical values and 24 moments
being observations for the next day. We use the data
from the previous day to predict the trend of the next
day, thus building a forward 24 step prediction model.
Results of the first experiment are shown in Figure 4
and Figure 3. The prediction results of T and WS are
shown in Figure 4 (a) and (b) respectively. The red line
presents the ground truth of T and WS, and the blue
line presents fusion results by CI. The green, yellow,
and black lines are the predictive results with LSTM,
GRU and ConvBiLSTM models, respectively.

(a) Temperature predictions absolute error.

(b) Wind speed predictions absolute error.

Figure 3. Results of two fusion methods.

Figure 3(a) compares the ground truth (real) datawith
the 24-step forward predictions of two non-stationary
time series generated by four models. The results
indicate that a single GRU or LSTM model is not
suitable for predicting non-stationary time series data.
This is because the trend of different variables is
often very different, for example, the temperature has
obvious periodicity, and the peak of wind speed is
often very large. Although the ConvBiLSTM model
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Table 1. Hyperparameters details for all experiments.

Model Number of layers size Experiment setup

GRU 2 GRU {37}, {37} Batch size: 20
Epochs: 4000

LSTM 2 LSTM {37}, {37} Batch size: 20
Epochs: 4000

ConvBiLSTM 2 CNN & 1 BiLSTM {3,3}, {3,3}, Batch size: 20
&1 LSTM & 1 Dense {37}, {37}, {37} Epochs: 4000

BP 3 Dense {3}, {5}, {1} Batch size: 30
Epochs: 100

combines CNN and BiLSTM to achieve extract features
of local spatial dimension and temporal dimension,
there is no ideal accuracy on the real data set. Themain
reason is that the ConvBiLSTM network is relatively
large with more parameters, and it is easy to overfit on
small data sets.

Figure 3 shows the absolute error of the predictive
results and ground truth of non-stationary time series.
The blue line represents the fusion results byCI and the
green, yellow, black lines are the predictive resultswith
LSTM, GRU and ConvBiLSTM models, respectively.
The closer the difference is to the value of 0, the more
accurate the predictions.

The quantitative results are shown in Table 2, alongside
RMSE comparative analysis of four models.

Table 2. The RMSE of five results from different models.

Model RMSE(T) RMSE(WS)

ConvBiLSTM 2.4131 2.4843
CI fusion 2.3235 2.4784

As indicated in Table 2, the smallest RMSE for
multi-step forward prediction also reflects our CI
fusionmethod’s superior performance. In temperature
predictions, compared to the single LSTM, GRU and
ConvBiLSTM models, our CI fusion results’ RMSE
is reduced by 1.3%, 6.2% and 3.7%, respectively.
The primary reason for this is that the proposed
CI based model can give an improved predicted
value even if the correlation between the predicted
value and the true value is unknown. At the same
time, the CI algorithm comprehensively considers the
predicted value and variance information of each data
source when merging multiple data sources, thereby
increasing the reliability of the results. In addition, in
the prediction of wind speed data, the results of the CI
fusionmethod is also slightly improved. This is mainly

because the sampling interval of the wind speed is 1
hour and the data is extremely abrupt. Therefore, in
multi-step prediction, it is difficult to correctly predict
the peak point. Even so, the CI fusion model gives
stable and better results than a single predictor such
as LSTM and GRU.

3.4 Results of Case No. 2

(a) Fusion results of T predictions.

(b) Fusion results of WS predictions.

Figure 4. Results of two fusion methods.

In the second experiment, we mainly compared the
results of the two fusion methods of linear fusion
method CI and nonlinear backpropagation neural
network (BP). In Section III, we can see that the CI
fusion method gives an optimal variance of the results,
while the BP fusion algorithm can only give a series of
predicted values. Figure 4 shows the prediction results
of the two fusion methods. Based on this, we propose
a more reasonable evaluation method, which uses the
optimal variance of the predicted values to estimate
the possible fluctuation range of the predicted values.
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As can be seen from Figure 4, most of the values in the
predicted sequence are within reasonable fluctuations.
A few outliers can be understood as noise of data.

The root mean square error of the two fusion
algorithms is shown in Table 3. As can be seen from
Table 3, the CI fusion algorithm is improved by 11%
when predicting temperature. 21.9

Table 3. The RMSE of BP and CI fusion algorithm.

Model RMSE(T) RMSE(WS)

ConvBiLSTM 2.4131 2.4843
CI fusion 2.3235 2.4784

4 Conclusion
This paper mainly establishes a general multi-step
prediction network framework for complex sensor
timing data. Firstly, three sub-models of LSTM,
GRU, ConvBiLSTM are used to model the same
data in time synchronization. In the sub-predictor
ConvBiLSTM, the original data is decomposed into
simple sub-sequences by using STL decomposition
technology to reduce the influence of noise on
network training, and then the combined convolution
and BiLSTM network is established to extract the
features on the two dimensions of the horizontal
and time stamps for the multi-feature components.
By designing the CI fusion algorithm, the results of
the three sub-models are combined to obtain better
prediction accurate. This not only ensures the accuracy
of different variables, but also gives a reasonable
quantitative evaluation method. The three sub-models
have different performances in different variables and
different prediction periods. For this reason, we use CI
methods to synthesize different prediction results to
ensure the accuracy of the framework. In the CI fusion
module, we calculate the step size estimation variance
by overlapping data, and finally obtain more accurate
prediction results and range of variation, which can
explain the prediction result comprehensively instead
of the evaluation with only prediction values.
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