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Abstract

Chronic Pelvic Inflammatory Disease (CPID)
poses significant challenges to women’s health,
necessitating advanced management strategies.
This paper provides a comprehensive review
of artificial intelligence (AI)-based health
management techniques for PID, focusing on
their potential to enhance diagnosis, treatment
personalization, and long-term monitoring. By
synthesizing Bayesian probabilistic frameworks
with ensemble Machine Learning architectures,
we systematically evaluate Al-driven solutions
for PID pathophysiology analysis, therapeutic
efficacy prediction, and patient-specific intervention
planning. These approaches collectively enhance
diagnostic precision while addressing key
challenges in therapeutic personalization and
longitudinal care coordination. This review
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significantly advances intelligent PID care by
resolving fundamental challenges in heterogeneous
data integration, algorithmic transparency, and
cross-institutional  collaboration, ultimately
offering a scalable blueprint for Al-powered
gynecological health systems.
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1 Introduction

Chronic Pelvic Inflammatory Disease (CPID, also
abbreviated as PID), encompasses a variety of
infectious processes that can harm the endometrium,
fallopian tubes, ovaries, and pelvic peritoneum. While
most cases of PID are caused by sexually transmitted
infections (ST1s), bacteria linked to bacterial vaginosis
(BV) are also known contributors. Around 15% of
untreated chlamydial infections advance to PID, with
the rate potentially being higher in cases of gonococcal
infections [1, 2]. Delayed diagnosis increases the
risk of inflammatory complications such as infertility,
ectopic pregnancy, and chronic pelvic pain [3].

The diagnosis of PID involves several clinical criteria,
including an oral temperature above 38.3°C, abnormal
purulent cervical discharge or cervical tenderness, and
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the presence of abundant white blood cells in vaginal
fluid microscopy. Elevated erythrocyte sedimentation
rate (ESR) and C-reactive protein (CRP) levels indicate
inflammation. Laboratory tests may confirm cervical
infections with Neisseria gonorrhoeae or Chlamydia
trachomatis. Nucleic acid amplification tests (NAAT)
are useful for detecting these bacteria, while saline
microscopy can identify Trichomonas vaginalis or
BV. Imaging, such as transvaginal sonography or
computed tomography (CT), may be required to
identify abscesses, and laparoscopy could be used for
confirmation in unclear cases.

PID is often treated with empiric antibiotic therapy,
using antibiotics that cover likely pathogens
without waiting for culture results. A common
regimen includes doxycycline combined with either
ceftriaxone or azithromycin. For severe cases or
when abscesses are present, inpatient treatment with
broader-spectrum antibiotics like clindamycin and
gentamicin may be necessary. Clinical improvement
should be observed within 72 hours. After initial
recovery, follow-up care of PID is extremely crucial,
which can help reduce the probability of subsequent
recurrence of the disease. Follow-up care involves
treating sexual partners and advising abstention
from intercourse until therapy is completed. Routine
screening for Chlamydia trachomatis is recommended
for women under 35 or those at high risk. Prevention
focuses on reducing the risk of infection spread,
emphasizing patient education on the importance of
screening, treatment, and prophylaxis for STIs [4-6].

PID significantly affects women’s health worldwide.
According to the survey from CDC [4], PID can lead
to severe reproductive health issues, including chronic
pelvic pain, ectopic pregnancy, and infertility. The
long-term impact is particularly concerning, with 1in 8
women diagnosed with PID experiencing difficulties in
getting pregnant. This underscores the critical health
and societal implications of this condition.

Moreover, PID often stems from untreated STIs like
Neisseria gonorrhoeae or Chlamydia trachomatis. The
rise of antibiotic-resistant strains further complicates
treatment, increasing the urgency for innovative
approaches to diagnosis and management. Given its
asymptomatic nature in many cases, PID is frequently
underdiagnosed, delaying treatment and worsening
outcomes [4]. These challenges highlight the need

challenges, including symptom variability, delayed
diagnoses, and the integration of multimodal data [7,
8].

Based on the recent applications of Al-based PID
management and treatment algorithms mentioned
above, it can be observed that the integration of Al in
the management of chronic PID has shown significant
promise.

Nowadays, PID remains a formidable clinical
challenge, with its insidious progression and
heterogeneous presentation complicating timely
diagnosis and effective intervention. Current
management strategies, largely reliant on static
diagnostic criteria and empirical antibiotic protocols,
struggle to address three persistent barriers: the
subtlety of early-stage symptoms, rising antimicrobial
resistance patterns, and unpredictable transitions to
chronic sequelae. This review catalyzes a paradigm
shift by systematically evaluating how artificial
intelligence (AI) redefines PID care through three
groundbreaking dimensions.

First, we demonstrate the unprecedented capability of
hybrid AI architectures in synthesizing fragmented
clinical data: quantifying diagnostic uncertainties
through Bayesian probabilistic reasoning while
leveraging Machine Learning to decode complex
inflammatory signatures from imaging and biomarker
trajectories. Second, the paper introduces adaptive
therapeutic systems that dynamically optimize
treatment regimens using real-time feedback
loops, integrating pharmacological responses with
individual immune profiles. Third, our analysis
reveals how cascading resilience models, originally
designed for critical infrastructure protection, provide
novel insights into predicting and mitigating PID
progression risks through immunological network
failure simulations.

Beyond technological innovation, this work establishes
critical benchmarks for ethical Al implementation in
women'’s health, addressing data sovereignty concerns
through decentralized learning frameworks while
enhancing clinician trust via explainable decision
pathways. By bridging computational models with
clinical workflows, the proposed solutions offer a
transformative roadmap for transitioning from reactive
PID management to proactive, precision-driven care

for advanced, Al-based solutions in PID management, - a vital step toward reducing the global burden of

with the potential to significantly improve PID
diagnosis and treatment by addressing key clinical
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preventable reproductive morbidity.



ICJK

ICCK Transactions on Intelligent Systematics

2 Bayesian Network

The diagnostic criteria for PID present substantial
complexity due to the multifaceted interactions
between clinical symptoms, laboratory findings, and
heterogeneous patient factors. Bayesian Networks, a
cornerstone of artificial intelligence methodologies,
have emerged as a critical tool for navigating this
intricacy. A Bayesian Network is a probabilistic
graphical model that encodes causal and statistical
relationships among variables through a Directed
Acyclic Graph (DAG). In this framework, nodes
represent random variables (e.g., clinical features,
disease states, or biomarkers), while directed edges
signify conditional dependencies between these
variables. Crucially, the absence of cycles in the
graph ensures that no variable can indirectly influence
itself, preserving logical consistency in probabilistic
reasoning.

At its core, a Bayesian Network operates on the
principles of conditional probability and modular
factorization. The joint probability distribution of all
variables in the network is decomposed into a product
of conditional probabilities, each dependent only on its
direct parent nodes. This is formalized by the equation:

n

,Xn) = H P(X;|parents(X;))
i=1

P(X4,... (1)

where parents(X;) denotes the set of nodes directly
influencing X;. For instance, if symptom .S; depends
on disease D, and biomarker B; depends on both
D and S;, the joint probability P(D, S1, B1) would
factorize as P(D) - P(S1|D) - P(B1|D,S1). This
factorization reduces computational complexity by
leveraging conditional independence assumptions:
two variables are conditionally independent if their
probabilistic relationship is entirely mediated by a
third variable (or set of variables). For example,
if two symptoms S; and Sy are caused solely by
disease D, they become independent once D is known,
simplifying the model to P(S1, S:|D) = P(Si|D) -
P(S3|D).

Equation (1) captures the principle of factorizing
joint probabilities in Bayesian Networks, where
each clinical variable (e.g.,, pelvic pain, CRP
level, cervical tenderness) depends only on its
direct causal or correlational parents. In a PID
diagnosis context, this means the network does not
need to consider all variables simultaneously, but
rather in a modular and interpretable way. This

helps simplify inference even when dealing with
high-dimensional, incomplete clinical datasets by
leveraging conditional independence. For instance,
if fever and vaginal discharge are both influenced by
PID, the model can treat them independently once PID
is accounted for, significantly reducing complexity in
decision-making [9].

The strength of Bayesian Networks lies in their ability
to perform bidirectional inference. Using Bayes’
theorem, they update probabilities dynamically as
new evidence is incorporated in equation:

P(E|H)P(H)

P(H|E) = =5

(2)

where H represents a hypothesis (e.g., a disease) and
E represents observed evidence (e.g., symptoms or
test results). This allows clinicians to answer both
diagnostic queries (e.g.,, "What is the probability
of PID given pelvic pain and elevated CRP?") and
prognostic queries (e.g., "If PID is confirmed, what
is the likelihood of developing infertility?"). The
network’s edges, while often interpreted as causal
relationships, need not strictly represent causality;
they may instead encode associative or diagnostic
pathways derived from clinical data. This flexibility
enables the integration of diverse knowledge sources,
including epidemiological studies, clinical guidelines,
and real-world patient datasets.

This is Bayes’ theorem in action: given observed
evidence E (e.g., adnexal tenderness, fever), Equation
(2) computes the posterior probability for hypothesis
H (PID). For instance, a patient presenting both
tenderness and elevated CRP might shift from a low
prior suspicion to a high posterior probability, guiding
clinicians toward timely antibiotic therapy even before
confirmatory tests [9].

In medical applications, Bayesian Networks address
three critical challenges: uncertainty quantification,
confounder adjustment, and missing data handling.
For PID diagnosis, where symptoms such as pelvic
pain, fever, and cervical motion tenderness lack
specificity, the network quantifies uncertainty by
computing posterior probabilities for competing
diagnoses (e.g., PID vs. endometriosis vs. urinary tract
infection). Each node is associated with a conditional
probability table (CPT) that defines the likelihood of
its states given combinations of parental states. For
instance, the CPT for "Fever" might specify that fever
occurs in 80% of PID cases, 30% of endometriosis cases,
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Figure 1. Classification of ML [12].

and 10% of urinary tract infections. These probabilities
are refined iteratively as patient-specific data (e.g., lab
results, imaging findings) is entered into the model.

Recent advancements in Bayesian Network
methodologies have further enhanced their
clinical utility. Structure learning algorithms,
such as constraint-based or score-based approaches,
automatically infer optimal network configurations
from data, reducing reliance on expert-defined
architectures. Parameter learning techniques,
including maximum likelihood estimation and
Bayesian updating, improve the accuracy of CPTs
by incorporating population-level and patient-level
data. Additionally, hybrid models combining Bayesian
Networks with Machine Learning (e.g., deep learning
for feature extraction) enable the integration of
high-dimensional data, such as ultrasound images or
cytokine profiles, into diagnostic frameworks.

The application of Bayesian Networks in PID
diagnostics exemplifies their capacity to synthesize
fragmented clinical information into a unified
probabilistic model. By translating subjective clinical
judgments into quantifiable probabilities, these
networks mitigate diagnostic variability and enhance
decision-making transparency. Future developments
are poised to leverage real-time adaptive learning,
multi-modal data fusion, and explainable Al interfaces,
bridging the gap between theoretical models and
bedside practice [10, 11].
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3 Machine Learning

Machine Learning (ML) is a subfield of artificial
intelligence that develops computational models
capable of extracting patterns from data without
explicit programming. Its applications span diverse
domains including predictive analytics, medical
imaging, and clinical decision support systems [12].
Within healthcare, ML algorithms are broadly
categorized into supervised and unsupervised
learning paradigms, with supervised learning
demonstrating exceptional utility in inflammatory
disease management due to its predictive accuracy
and interpretability [7].

As illustrated in Figure 1, contemporary ML
algorithms encompass multiple branches, each
tailored to specific data characteristics and clinical
requirements. Among these, three methodologies
have gained prominence in PID management:

3.1 Supervised Learning

This paradigm trains models using labeled datasets
containing input-output pairs, enabling precise
mapping of clinical features to diagnostic outcomes.
The training process involves minimizing prediction
errors through iterative optimization, yielding models
capable of generalizing to unseen patient data [12].
Two key supervised algorithms in PID management
include:
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3.1.1 Naive Bayes Classifier

Based on Bayes’ theorem with conditional
independence assumptions, this probabilistic
model calculates posterior probabilities for disease
classes using equation:

n

P(y | @1, ..en) o< P(y) [ [ P(ai | )
=1

(3)

where y represents disease classes and z; clinical
features.  Despite its simplified assumptions, it
achieves high computational efficiency in text-based
symptom classification [7].

This computes the likelihood of a diagnosis y (e.g.,
PID) by assuming conditional independence of
observed features. In fast-paced triage situations, this
allows rapid computation of posterior probabilities
based on available data (e.g., fever, leukocytosis).
Despite the simplifying assumption, Naive Bayes has
proven surprisingly effective in medical diagnostic
tasks, providing clinicians with probabilistic
confidence even when tests are unavailable [13].

3.1.2 Decision Tree

This interpretable algorithm recursively partitions
feature space using entropy-based rules as shown in
equation:

k
Gini(S) =1-_ p’ (4)
i=1

where p; denotes class proportions in subset S.
Clinicians favor its transparent decision pathways for
treatment planning, particularly when handling mixed
categorical/continuous EHR data [12].

Gini impurity quantifies how well a potential symptom
or test result splits patients into homogeneous PID
vs. non-PID groups. A low Gini after splitting by
"tenderness present" signals that most cases in that
node share the same diagnosis, effectively mimicking
the clinical reasoning: "if tenderness is present, then
PID probability is high." This intuitive, stepwise
partitioning aligns well with diagnostic checklists used
in practice [13].

3.2 Multi-Task Learning

Multi-Task Learning (MTL) enhances model
robustness by jointly optimizing related clinical
prediction tasks through shared latent representations.

This framework is mathematically expressed as
equation:

T
mmi/nz&(wt) AW« (5)
t=1

where W = [wi,...,wr| parameterizes T tasks,
and |||, denotes the nuclear norm for knowledge
transfer [12]. In PID management, MTL effectively
addresses data scarcity in rare disease subtypes
by leveraging shared pathophysiological patterns.
l(we) represents task-specific losses—for example,
predicting PID severity and treatment response
concurrently. ~ The nuclear-norm regularization
|W]|« encourages sharing patterns across tasks.
Clinically, this enables learning from features like
inflammatory markers to improve multiple prediction
goals simultaneously, enhancing model performance
in the face of limited PID data [14].

3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) employ
hierarchical nonlinear transformations to decode
complex medical patterns:

Y = oW ORI 4 p0) (6)
where o denotes activation functions (e.g., ReLU),
W weight matrices, and b(1) biases at layer I. Deep
learning variants demonstrate superior performance
in medical image analysis for PID severity staging,
achieving AUC scores exceeding 0.92 in recent
trials [7].

This formula describes how an artificial neural network
processes input data (e.g., ultrasound pixel values,
CRP levels) through successive hidden layers to
generate higher-level diagnostic features. Although
hidden-layer representations are abstract, visualization
techniques (e.g., saliency mapping) can highlight
which clinical or imaging features most influenced a
PID diagnosis—providing transparency and building
clinician trust in oncology-like diagnostic support
systems [15].

The ML approaches employed in PID management
each demonstrate unique capabilities and limitations
shaped by their algorithmic foundations, and Table 1
illustrates the differences between them. Supervised
learning methods, particularly naive Bayes classifiers
and decision trees, provide clinically interpretable
frameworks for symptom classification and treatment
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logic. While naive Bayes achieves computational
efficiency through probabilistic assumptions, its
simplification of biomarker interactions may overlook
critical inflammatory pathways. Decision trees offer
transparent decision boundaries that align with clinical
workflows, yet risk overfitting to institution-specific
protocols.  These methods collectively address
diagnostic prioritization but require meticulous
data labeling and may struggle with complex
feature interdependencies inherent in chronic PID
pathophysiology.

MTL introduces a paradigm shift by leveraging shared
pathophysiological patterns across PID subtypes,
enhancing model stability for rare disease variants.
By optimizing multiple clinical tasks through nuclear
norm regularization, MTL reduces data dependency
compared to single-task models. However, its
effectiveness hinges on predefined task relationships,
which may inadvertently obscure subtype-specific
inflammatory signatures. ANNSs excel in decoding
nonlinear patterns from medical imaging data,
demonstrating particular utility in pelvic lesion
quantification and severity staging. While their
hierarchical architectures achieve state-of-the-art
performance in image-based assessments, the
requirement for large annotated datasets and inherent
opacity of feature transformations pose challenges for
clinical validation and ethical auditing.

Within the proposed PID diagnostic framework,
Bayesian Networks (BNs) serve as foundational
probabilistic models that encode domain knowledge
and manage uncertainty inherent in clinical data.
These graphical models, typically structured as
directed acyclic graphs, associate symptoms (e.g.,
pelvic tenderness, fever) with latent disease states
using conditional probability tables [11]. Bayesian
inference enables clinicians to update disease
probabilities in light of new evidence—such as
ultrasound findings or laboratory results—making
them well-suited for structured decision support in
PID, even when data are incomplete or noisy. Hybrid
implementations often combine BN structure learning
with expert input and parameter estimation via
maximum-likelihood or expectation-maximization
algorithms—approaches  shown effective in
multi-disease CDSS prototypes.

Complementing BNs, the framework integrates
ML classifiers: ranging from Random Forests to
gradient-boosted ensembles and support vector
machines to detect complex patterns from multimodal
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inputs, including imaging features and patient
metadata. Such models are trained on curated PID
datasets, leveraging feature importance metrics (e.g.,
SHAP/FI) to enhance interpretability and precisely
focus on critical predictive variables. These ML
classifiers excel in stratifying disease severity and
predicting treatment response, with reported AUCs
often exceeding 75% in similar chronic inflammatory
contexts [16].

At the apex of the model stack, ANNSs, especially
Bayesian neural networks (BNNs) and convolutional
neural networks (CNNs), handle high-dimensional
inputs such as pelvic ultrasound frames and
raw EMR text. BNNs are employed to quantify
uncertainty in their outputs, offering probabilistic
predictions with confidence intervals critical in
clinical decision-making [17]. Meanwhile, CNNs
process imaging data and are often paired with
ensemble BNs to improve both performance and
interpretability. Such dual-stack architectures
maintain diagnostic accuracy while ensuring that
outputs remain explainable and clinically actionable.

Overall system efficiency is achieved through
layer-wise modular integration: fast, lightweight
ML models handle initial screening, while more
compute-intensive BNNs are invoked only when
necessary. Approximate inference algorithms and
truncated BN structures help to bound computational
costs [18, 19]. Real-world performance metrics
demonstrate that frameworks like BayCANN, which
replace complex simulators with ANNs metamodels,
achieve significant speedups (e.g. 5 times faster
training) without sacrificing accuracy [20]. Similarly,
edge-optimized neural architectures (e.g., LogNNet)
deliver near-clinical accuracy (~90%) using only a
few kilobytes of memory [21].

As a result, the combined framework is not only
computationally viable but also compatible with
real-time clinical settings. = BNs inference runs
in milliseconds on modest hardware; shallow ML
classifiers and lightweight CNNs can process imaging
frames at tens of FPS. With attention-based pruning
or early-exit strategies, latency can be reduced
further—supporting continuous PID monitoring via
ultrasound or telemedicine platforms. Overall, this
hybrid model balances accuracy, interpretability, and
computational efficiency, making it well-suited for
deployment in real-world clinical workflows.
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Table 1. Comparative analysis of ML approaches in PID.

Algorithm Clinical Utility

Technical Constraints

Naive Bayes Rapid symptom triage

Decision Tree Protocol-transparent decisions
MTL Subtype-adaptive predictions
ANNs Image-based severity staging

Oversimplifies biomarker interactions
Sensitive to institutional bias
Requires manual task engineering
Demands large annotated datasets

Collect surgical cohort data
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Figure 2. Research flow of [22].

4 Applications
4.1 Bayesian Network Based Approach

In recent years, Bayesian estimation methods have
gained prominence in medical research due to
their capacity to handle uncertainty, integrate prior
knowledge, and model complex variable relationships.
This methodological framework, grounded in
probabilistic reasoning, effectively synthesizes
clinical observational data with domain expertise,
demonstrating unique advantages in disease diagnosis,
treatment evaluation, and pathological mechanism
analysis. Its core value lies in visualizing conditional
dependencies among variables through probabilistic
graphical models, providing interpretable quantitative

evidence for clinical decision-making.  Notably,
Bayesian approaches exhibit superior adaptability
over traditional statistical methods when processing
multidimensional, heterogeneous medical data.

In the field of gynecological disorders, the
groundbreaking study by Kiser et al. [22] exemplifies
the application of BNs. By constructing a hierarchical
clustering model encompassing 155 anatomical
pain sites, the researchers deconstructed the
complex pain mechanisms of endometriosis into
15 clinically interpretable regions. Their BN
not only quantified the synergistic diagnostic
enhancement effects of concurrent symptoms such
as deep dyspareunia and cyclic sciatica but also
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outperformed conventional regression models in
sensitivity and specificity. = This spatiotemporal
symptom analysis framework offers critical insights
for managing PID. For instance, unilateral adnexal
tenderness and diffuse pelvic tenderness may
reflect distinct etiological pathways, necessitating
differentiated therapeutic strategies. The model’s
innovation further resides in its ability to integrate
multimodal data, including antibiotic response
patterns and transvaginal ultrasound features,
revealing latent associations between CRP trajectories
and endometrial thickness through conditional
probability modeling. These advancements provide
novel tools for distinguishing PID-related chronic
pelvic pain from other gynecological conditions.

Figure 2 demonstrates the analytical framework
progresses of [22] through three methodical
stages.  Initially, spatial pain patterns undergo
neighbor-joining clustering with Jaccard distance
metric optimization, transforming granular anatomical
coordinates into clinically meaningful regions.
Subsequently, a hill-climbing algorithm constructs the
Bayesian Network’s architecture, iteratively optimizing
conditional dependencies while maintaining clinical
interpretability through node pruning. The final
validation phase employs bootstrap resampling to
establish diagnostic performance metrics, ultimately
operationalized through an interactive web interface
enabling probabilistic symptom-diagnosis mapping.
Particularly notable is the algorithm’s capacity
to handle non-linear symptom interactions, for
instance, modeling how concurrent dyspareunia and
right hypochondrium pain synergistically elevate
endometriosis risk beyond simple additive effects.
This phased approach effectively bridges spatial pain
mapping with multivariable probabilistic reasoning,
overcoming traditional regression limitations in
handling high-dimensional symptom combinations.

Bayesian methods also excel in optimizing diagnostic
systems. Soe etal. [2] developed a sexually transmitted
infection diagnostic tool that integrates ML with
Bayesian Networks, combining patient-reported
symptoms, demographic characteristics, and
laboratory indicators to significantly improve
diagnostic accuracy in resource-limited regions.
Similarly, Lamb et al. [23] employed BNs to classify
clinical features of interstitial cystitis/bladder pain
syndrome, enabling personalized treatment plans
based on urinary frequency and pain intensity.
These studies collectively demonstrate the unique
advantages of Bayesian frameworks in handling
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heterogeneous data and balancing diagnostic
sensitivity with specificity. The visual representation
of probabilistic relationships—such as causal
chains between intrauterine device use history and
parametrial tenderness—aligns closely with clinical
reasoning, enhancing clinician trust in Al-driven
decision systems.

In treatment assessment, Bayesian Network
meta-analysis (NMA) has emerged as a pivotal
tool in evidence-based medicine. Li et al. [24] applied
this approach to compare non-pharmacological
interventions for primary dysmenorrhea, identifying
acupuncture combined with thermotherapy as the
most effective pain-relief strategy. Baroncini et al. [25]
extended Bayesian NMA to chronic low back pain
research, confirming that personalized physical
therapy combined with cognitive behavioral therapy
yields optimal long-term outcomes. In orthopedics,
Migliorini et al. [26] evaluated polyethylene liner
wear rates in hip arthroplasty using Bayesian NMA,
providing quantitative evidence for material selection.
These cases highlight Bayesian methods’ potential in
addressing clinical heterogeneity and establishing
hierarchical evidence for therapeutic interventions,
even in the absence of direct comparative trials.

Surgical studies emphasize uncertainty quantification.
Sun et al. [27] employed Bayesian NMA to compare
surgical approaches for Hirschsprung’s disease,
demonstrating the superiority of transanal endorectal
pull-through in complication control. Yang et al. 28]
applied this framework to assess novel therapies for
peripheral nerve injuries, offering methodological
support for evidence-based selection of neurotrophic
factors and stem cell therapies. At the molecular
level, Kang et al. [29] integrated meta-analysis
with Bayesian modeling to systematically identify
endometriosis-associated gene networks, focusing on
inflammatory cytokines and angiogenesis regulators.
These investigations collectively illustrate the bridging
role of Bayesian methods in connecting clinical
observations with mechanistic insights.

Notably, Bayesian approaches show unique value in
merging traditional medicine with modern analytics.
Sumbul et al. [30] innovatively combined ML with
Bayesian Networks to validate the efficacy of sesame
seeds and rose essential oil in treating uncomplicated
PID, optimizing phytomedicine classification through
feature importance analysis. This interdisciplinary
synergy not only strengthens the evidence base for
traditional therapies but also paves new pathways for
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their integration into modern healthcare systems.

Despite advantages in prior knowledge integration
and missing data handling, Bayesian methods face
challenges. The exponential growth of computational
complexity in high-dimensional models, as seen in
Kiser’s pain model [22], and the subjectivity of prior
distributions remain critical limitations. Current
solutions involve advanced sampling techniques (e.g.,
Markov chain Monte Carlo, MCMC) and sensitivity
analyses to ensure model robustness. Future research
must prioritize multimodal data integration (e.g.,
genomics with electronic health records), develop
dynamic Bayesian Networks for real-time disease
monitoring, and enhance computational efficiency and
interpretability in clinical settings.

Bayesian estimation methods have become integral
to modern medical research paradigms. Their
strengths in uncertainty quantification and
personalized healthcare support exemplified by
clinical breakthroughs such as Kiser’s pelvic pain
model: signal a new era of probabilistic reasoning in
medical data analysis. With advancing computational
technologies and interdisciplinary collaboration, these
methods hold promise for transcending traditional
statistical limitations, delivering predictive and
adaptive decision-support systems for complex
disease management.

Diagnostic Accuracy —

+— NMA
A— BN+ML|
4

Data Requirements £ Interpretability

Clinical Integration Potential Scalability & Generalizability

Computational Efficiency

Figure 3. Comparison of some Bayesian network methods
mentioned in Section 4.1.

Figure 3 presents a comparative analysis of
representative Bayesian Network methodologies,
including pure Bayesian Network (BN), Bayesian
Network integrated with ML (BN+ML) and NMA.
The above three algorithms will be evaluated and
compared in the following six dimensions.

The first dimension is Diagnostic Accuracy. The BN
approach achieved moderate diagnostic performance.
In the endometriosis pain study, the BN reached
a sensitivity of ~81% but a specificity of ~42%,
indicating it caught most true cases but with many

false positives [22]. We assign BN an average
score in accuracy: it improved association detection
over traditional methods but remains imperfect as
a standalone diagnostic tool. NMA, in contrast, is
not a diagnostic method but an evidence-synthesis
tool; its output informs treatment efficacy rather than
diagnosing patients [24]. Consequently, NMA scores
the least for "diagnostic accuracy" in this context, as it
does not directly identify conditions. The BN+ML
approach demonstrated high diagnostic accuracy
across multiple sexually transmitted infection (STI)
conditions (AUC 0.75-0.95 for most targets) [2]. Both
its ML classifiers and Bayesian models showed robust
performance (accuracy ~0.68-0.99) with no significant
differences for most conditions. We assign BN+ML a
highest score in accuracy, reflecting its strong overall
diagnostic capability (noting a few lower-performing
cases like cervicitis).

The second dimension is Interpretability. BN offers
excellent interpretability, which can be fully marked
due to their graphical structure and probabilistic
relationships. Clinicians can visualize how symptoms
like chronic pelvic pain, dyspareunia, and subfertility
interconnect and lead to a diagnosis in the BN
model.  This transparency aligns with clinical
reasoning, as the BN revealed specific pain patterns
indicative of endometriosis that make intuitive sense.
NMA results are moderately interpretable since they
present aggregate effect sizes and rank interventions,
which experts can interpret (e.g. exercise and
acupuncture ranked top for pain reduction) but
which are not as intuitively clear as a diagnostic
model [24]. The BN+ML approach is fairly
interpretable. While ML models alone can be "black
boxes," combining them with Bayesian reasoning
and using feature importance techniques yielded
understandable insights [2]. In the symptom checker
study, the models identified key symptoms for each
condition such as urethral discharge for gonorrhea and
pelvic pain for PID, mirroring clinical decision patterns.
Such interpretability approaches (including SHAP
analyses) helped bridge the gap between complex ML
models and clinician understanding.

The third dimension is Scalability and Generalizability.
We rate BN models as average on scalability. They
handled the moderate-sized endometriosis dataset
well and could incorporate multiple pain features,
but extending a BN to many more variables or
entirely new patient populations would require careful
re-training or expert reconfiguration. In [22], the
network was pruned to 18 key nodes for efficiency,
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suggesting some limitation in handling overly complex
feature sets. NMA is similarly as BN: it can scale
to include more studies or treatments as evidence
grows, but it is constrained by available clinical trials.
The dysmenorrhea NMA, for instance, could only
analyze eight non-pharmacological interventions due
to limited trials, and noted generalizability concerns
since most studies were in Asian populations [24]. The
BN+ML approaches the highest ranking for scalability
and generalizability. Its ML component excels with
large datasets and was validated on unseen patients
with good performance. It can be retrained on new
data and extended to additional conditions (the study
suggests expanding to more STIs and integrating
image analysis). Generalizability is largely good,
though the authors caution that a single-center dataset
may not capture all populations, which means a
reminder that large, diverse data are needed to fully
generalize the model [2].

The fourth dimension is Computational Efficiency.
The BN approach is relatively efficient. Learning
the network structure and probabilities from a
few hundred cases is feasible with bnlearn in R,
and once built, inference (querying the risk of
diagnoses given symptoms) is quick [22]. NMA
receives an average score here. NMA involve
iterative simulations or complex modeling; the
referenced study used specialized software (ADDIS)
for consistency models: manageable for 33 studies,
but computational burden grows with network
complexity [24]. Additionally, NMA is an offline
analysis, not intended for real-time use. The BN+ML
approach is the best. Training multiple ML models
on >10,000 records is computationally heavier than
the BN’s training, but it remained practical (the
study successfully evaluated numerous algorithms
and performed bootstrap validations). At runtime,
the symptom checker’s predictive algorithms run
efficiently on a web server, providing instant results to
users [2]. In sum, both BN and ML+BN approaches
are computationally tractable for clinical deployment,
whereas NMA is resource-intensive but acceptable
within research settings.

The fifth dimension is Clinical Integration Potential.
We assign BN the top for integration potential. A
BN model, once validated, can be incorporated into
clinical decision support systems to estimate diagnosis
probabilities. The endometriosis BN, for example,
could be used by gynecologists to input a patient’s
pain profile and get an individualized risk assessment
for endometriosis or other pelvic pathologies [22]. Its
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interpretable nature would likely aid clinician buy-in
for use in practice. NMA has lower direct integration
potential. Its value is in informing guidelines and
broad management strategies, rather than providing
patient-specific recommendations on the fly [24].
Clinicians benefit from NMA through updated clinical
practice guidelines on interventions, but an NMA isn’t
a tool one uses during a patient visit. The BN+ML
approach stands out with a full score in integration
potential. In the STI symptom checker study, the
authors actually deployed a web-based tool (iSpySTI)
using a Bayesian model to guide patients [2]. They
then enhanced it with ML, demonstrating a ready
pathway to real-world use. Such a symptom checker
can be used directly by patients or frontline providers
for preliminary assessment, effectively integrating
Al into the care pathway for earlier diagnosis and
referral. The ease of web and mobile deployment for
the ML models, plus their ability to incorporate images
and other data streams, makes this approach highly
amenable to clinical and public health integration (e.g.
telehealth services).

The sixth dimension is Data Requirements. The BN
approach is comparatively data-efficient. It derived
meaningful diagnostic insights from a few hundred
cases: a relatively small dataset by Al standards [22].
It can also leverage expert knowledge to structure
the model, potentially reducing the data needed for
training. However, they do require quality data on
all relevant variables to perform well; missing or
sparse inputs (e.g. certain rare symptoms) could
limit accuracy. NMA is data-hungry, as it relies
on a robust corpus of clinical trials. The example
NMA included 33 RCTs with 2,826 participants,
and still many interventions had only a handful of
studies each, leading to calls for larger high-quality
research to firm up conclusions [24]. Conducting an
NMA in a niche area of PID management requires
that sufficient studies exist — a high bar for data
availability. The BN+ML approach also has heavy data
requirements. Building a reliable symptom checker
for 12 conditions needed over 10,000 patient cases, and
even then certain diagnoses (female cervicitis, male
UTI) lacked enough positives to achieve acceptable
accuracy [2]. ML thrives on big data; models improve
with more examples of each condition. Thus, while
the ML+BN system performed well, it demanded
extensive prospectively collected data and would need
even more data to expand to additional conditions or
to different clinical settings.

In this visual summary, the BN (red) displays
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a balanced but moderate profile — it excels in
interpretability and offers decent integration potential,
reflecting how its transparent probabilistic model can
be readily understood and used in clinical decision
support. Its diagnostic accuracy and scalability are
middling, suggesting the BN is useful for parsing
complex symptom relationships but may require
refinement or more data to improve predictive
power and to generalize widely. The BN+ML
approach (green) shows high scores in accuracy
and clinical integration, indicating that this hybrid
method achieves reliable diagnostic predictions and
has already been implemented in practice (e.g. a
patient-facing symptom checker). Notably, BN+ML
also scores well in scalability, owing to ML's capacity
to handle large-scale data and new input types, like
images, for broader PID applications. One of its weak
point is data requirement: he radar plot confirms that
a ML-driven solution demands substantial data for
training, a consideration for clinicians and researchers
aiming to adopt similar tools.

Meanwhile, the NMA approach (blue) has a
unique shape reflecting its role: it ranks high
in interpretability (results can be translated into
clear clinical guidance) and contributes strongly to
evidence-based management rather than diagnosis.
The NMA’s minimal presence on the diagnostic
accuracy axis reinforces that it’s an analytic technique
not used for identifying diseases. Instead, its value is
seen in practice by informing treatment choices — for
example, confirming that exercises and acupuncture
likely benefit dysmenorrhea patients — which
complements diagnostic-focused Al by optimizing
therapy. From a clinical standpoint, this comparison

highlights that BN offers an interpretable framework
suited for differential diagnosis in chronic PID (e.g.
distinguishing endometriosis or infection causes of
pelvic pain), BN+ML systems provide high-accuracy
tools that can be integrated into patient care pathways
(though they require significant data investment), and
NMA contributes an overarching evidence synthesis
to guide interventions. Each approach thus plays
a distinct but potentially complementary role in an
integrated Al-driven PID management framework,
combining diagnostic acumen with evidence-based
therapy to improve patient outcomes.

4.2 Machine Learning Based Approach

In 2024 [2], N.N. Soe, Janet M Towns, etc. explored a
novel symptom checker tool based on ML and Bayesian
Network algorithms for diagnosing common STIs and
related genital diseases. The core of the study is the
development and evaluation of an online symptom
checker called "iSpyST1," which analyzes user-inputted
data on gender, behaviors, and symptoms to predict
the likelihood of 12 STIs and genital conditions.

The main steps of the research are shown in Figure 4:
Model Development and Training, Model Evaluation
and Model Interpretation and Comparison. Firstly, a
BN was used to construct an initial symptom checker
model, predicting disease probabilities through
variable selection and causal relationship modeling.
Various ML algorithms, including CatBoost, Random
Forest, and Gradient Boosting, were applied to the
same dataset to build binary classification models
to distinguish whether diseases occurred; Secondly,
the diagnostic performance of ML models and
the Bayesian Network model was compared using
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5-fold cross-validation and an independent test
dataset, evaluating metrics such as Receiver Operating
Characteristic (ROC-AUC) score, sensitivity, and
specificity; Thirdly, Shapley Additive Explanations
(SHAP) were used to interpret the key predictors of
the ML models, and these were compared with the
interpretability of the Bayesian Network model [2].

The study found that the ML and Bayesian Network
models performed better than the pure Bayesian
Network in diagnosing certain diseases (such as male
balanitis, molluscum contagiosum, and genital warts),
while the Bayesian model demonstrated superior
predictive performance in cases of urethral gonorrhea,
female PID, and urinary tract infections.

Based on [12], the ML algorithms utilized includes
decision trees, support vector machines (SVM), and
neural networks. These algorithms were selected for
their ability to handle complex data and improve
diagnostic accuracy.The implications of this study
extend to the management and treatment of PID, a
condition included in the study’s scope. An accurate
symptom checker can facilitate early detection and
timely intervention for PID, reducing complications
and public health impacts. By applying the
ML approaches used in this study, Al-based PID
management systems can be enhanced, leading to
more effective treatment outcomes.

Wang et al. [31] compared Cox regression and ML
models, demonstrating that the XGBoost algorithm
outperformed traditional methods in predicting sepsis
progression among PID patients, particularly due
to its ability to capture nonlinear relationships
among multiple parameters.  Similarly, Yu et
al. [32] developed a random forest model integrating
clinical signs, MRI radiomics, and psychological
assessment data to predict the risk of myofascial
pelvic pain syndrome (MPPS), emphasizing the
importance of integrating biopsychosocial features.
Tokuc et al. [33] further validated that combining
neutrophil-to-lymphocyte ratio with ML significantly
improved the prediction accuracy of urethroplasty
success.

For superficial peritoneal endometriosis, Santos
et al. [34] constructed an ML model analyzing
dysmenorrhea patterns, pelvic examination findings,
and serum CA125 levels, achieving higher diagnostic
accuracy than conventional clinical evaluations. Zhao
et al. [35] developed a multimodal diagnostic system
combining ultrasound imaging, metabolomics, and
pain scales to enhance specificity in diagnosing
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deep infiltrating endometriosis. Notably, Okui [36]
identified a vulvodynia-predominant subtype of
bladder pain syndrome using unsupervised learning,
providing insights for personalized treatment. Liu
et al. [37] integrated single-cell sequencing and
clinical data to reveal the critical role of the NFKBIZ
gene in promoting PID progression via regulation
of the IL-6/STAT3 pathway. Zhou et al. [38]
identified immune-related biomarkers, including
CXCL10 and TLR4, and developed an ensemble model
to differentiate interstitial cystitis from other lower
urinary tract disorders, offering new avenues for
targeted therapies.

Kumar et al. [39] designed a wrist pulse analysis
system with optimized feature selection for early
detection of pelvic infections. Xiang et al. [40]
proposed a multimodal model integrating perianal
fistula imaging, gut microbiome profiles, and serum
inflammatory markers to predict Crohn’s disease
risk. These innovations underscore the transformative
potential of ML and bioinformatics in bridging clinical
gaps across pelvic disorders.
Diagnostic Accuracy =— BN+ML
—o— XGBoost

4— Random Forest
Mul t imo System

Data Requirements / 3 Interpretability

Clinical Integration Potential Scalability

Computational Efficiency

Figure 5. Comparison of some machine learning based
approach methods mentioned in Section 4.2.

Figure 5 presents a comparative analysis of
representative ML methodologies, including BN+ML,
XGBoost algorithm, random forest model and
multi-model method. Among the compared models,
the multimodal ML system demonstrated the highest
diagnostic accuracy, achieving an AUC of 0.85 and
sensitivity of 86.2% by integrating random forest
algorithms with non-invasive biomarkers such as
CA125 and NLR for endometriosis prediction [35].
XGBoost also displayed excellent performance in
predicting the risk of PID progression, with multiple
models achieving AUCs exceeding 0.90 [31]. Similarly,
the random forest model used in myofascial pelvic
pain syndrome detection yielded an outstanding
AUC of 0.942 [32]. As for the BN+ML system, while
robust, exhibited slightly lower accuracy in certain
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STI conditions, such as cervicitis, with AUCs ranging
between 0.75 and 0.95 across diseases in the iSpySTI
platform [2].

Interpretability remains a critical factor for clinical
adoption. The BN+ML framework offers a distinct
advantage in this dimension, as its Bayesian

component provides transparent probabilistic
reasoning between symptoms and outcomes,
supporting clinical trust and validation [2].

The random forest model maintains relatively
high interpretability through accessible feature
importance measures, enabling clinicians to assess
key predictors [32]. In contrast, XGBoost, though
powerful, suffers from the opacity typical of gradient
boosting models, requiring advanced tools such as
SHAP values for explanation, which may not be
practical in everyday clinical environments [31]. The
multimodal approach integrating multiple serological
indicators, while clinically useful, also results in
a more complex decision structure, making it less
intuitive for medical practitioners [35].

The XGBoost model demonstrated superior scalability
due to its capacity to handle high-dimensional
data and maintain performance across large patient
cohorts [31]. The multimodal system, which relies
on standardized clinical laboratory data, also shows
promise in this regard, especially given the ubiquity
of CA125 and inflammatory markers in gynecologic
diagnostics [35]. Random forest models, while
generally scalable, may require more tuning when
applied to larger, noisier datasets, although they
perform reliably in medium-sized clinical samples [32].
BN+ML systems are somewhat limited in this domain
due to the inherent complexity of Bayesian Network
structure learning, which does not scale efficiently
when the number of input variables increases
significantly [2].

In terms of computational efficiency, the random
forest algorithm consistently delivered high-speed
performance with minimal parameter tuning, making
it well-suited for integration into clinical decision
support systems [32]. XGBoost, although powerful,
requires intensive training and parameter optimization
phases, which increase computational demands [31].
The BN+ML model, while clinically valuable, involves
both probabilistic inference and ML components,
which can be more resource-intensive than purely
tree-based models [2]. The multimodal system,
integrating serologic data with ML, exhibits moderate
efficiency; while its individual components are

computationally light, the combined modeling of
multiple biomarkers requires careful feature selection
and validation [35].

BN+ML models exhibit the highest clinical integration
potential, as evidenced by the iSpySTI platform’s
deployment in real-world settings, offering patients
and medical staff diagnostic support with real-time
feedback [2]. Multimodal systems, relying on
routine and minimally invasive tests like CA125 and
NLR, are highly adaptable to existing diagnostic
protocols in gynecology, further reinforcing their
clinical usability [35]. Random forest models are
suitable for integration into electronic medical records
or diagnostic interfaces, though they require additional
validation for varied PID subtypes [32]. XGBoost
models, despite their high accuracy, remain less
represented in live clinical tools due to their complexity
and lower explainability [31].

In terms of data dependence, the multimodal system
ranks favorably, utilizing standard clinical markers that
are routinely collected, allowing broad accessibility in
healthcare settings [35]. The random forest model
also performs well with moderately sized structured
datasets, enabling deployment in medium-resource
environments [32]. XGBoost and BN+ML systems,
however, require large, well-labeled datasets to realize
their full potential. The BN+ML method is particularly
sensitive to diverse input features and comprehensive
training data across disease categories [2], while
XGBoost’s performance may degrade when applied
to smaller or noisier datasets without rigorous
preprocessing [31].

4.3 Artificial Neural Network Approach

In 2023, Vibha Verma and Yadvendra Singh [41]
underscored the profound burden of inflammatory
diseases on women’s health, with a specialized
focus on genitourinary tract infections—a framework
directly applicable to advancing the diagnosis and
management of PID. Their proposed Artificial
Intelligence-Based Approach (AIBA) exemplifies a
paradigm shift in addressing the multifactorial nature
of such conditions through the strategic convergence
of ML methodologies. By employing supervised
learning algorithms trained on clinical and multimodal
datasets, AIBA establishes predictive models capable
of distinguishing PID from clinically similar conditions
such as endometriosis or urinary tract infections. The
framework further incorporates MTL architectures to
optimize both diagnostic accuracy and personalized
treatment recommendations, utilizing hierarchical
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neural networks to process microbiological data,
inflammatory markers, and imaging features, thereby
capturing interactions between etiological agents and
host responses.

This study introduces AIBA to enhance diagnostic
precision and therapeutic management of female
genitourinary inflammatory pathologies, with a focus
on recurrent urinary tract infections (UTIs) and
chronic pelvic inflammatory disorders. The research
addresses limitations in conventional diagnostic
approaches, which often rely on subjective symptom
assessment and delayed microbial culture results,
contributing to antibiotic misuse and recurrent
infections. Leveraging deep learning architectures,
the proposed model integrates clinical metadata,
biochemical markers, and histopathological imaging
data to establish multi-parametric diagnostic
criteria [41].

The methodological framework, as shown in Figure 6,
employs convolutional neural networks (CNN)
for feature extraction from cellular morphology
patterns in urine sediment analysis, coupled with
regression-based optimization of therapeutic response
predictions. Experimental validation compared AIBA
against traditional clinical decision protocols (MUTI)
and pregnancy-specific diagnostic guidelines (UTIA),
demonstrating significant improvements in accuracy,
precision, and computational efficiency [41].

When evaluated in the context of chronic PID
management, BN, ML, and ANNs (e.g., AIBA)
demonstrate distinct strengths and limitations,
which are presented in Figure 7. From a clinical
application perspective, BN excels in interpretability
and explainability, enabling clinicians to visualize
probabilistic relationships between symptoms and
diagnoses—a feature that significantly enhances
decision-making transparency. BN modeling
effectively distinguishes symptom patterns in
endometriosis, albeit with moderate diagnostic
accuracy and limited scalability due to structural
rigidity. In contrast, ML models such as XGBoost and
Random Forest demonstrated superior diagnostic
accuracy and scalability, as shown in studies on PID
progression and MPPS detection, with AUC values
often exceeding 0.90 [31, 32]. These models, though
less interpretable, have shown strong integration into
patient-centered tools like the iSpySTI platform [2].

On the other hand, ANN-based models such
as AIBA excel in computational efficiency and
real-time adaptability due to their deep learning

182

architecture [41]. However, they present the greatest
challenge in explainability and clinical transparency:.
Despite achieving high classification accuracy across
inflammatory disease types, the AIBA model lacks
clear interpretive outputs, which may limit trust
and adoption in clinical practice.  Technically,
ANNSs represent a significant advancement in pattern
recognition and automation, yet their "black-box"
nature hinders clinical utility without supplementary
explainability frameworks.

Looking forward, the most promising direction lies in
hybrid frameworks that combine the clinical clarity of
BNs, the scalability and robustness of traditional ML
models, and the adaptability of ANN architectures.
By integrating interpretability with computational
power, such multi-paradigm systems could offer both
precision and transparency in future Al-enhanced PID
management tools.

5 Currently Available Technologies

5.1 Cross-Domain Relevance of MFRNet in PID
Management

PID presents a range of diagnostic and therapeutic
challenges—unclear  lesion  boundaries in
ultrasound or CT images, lesions that span from
micro-inflammation to full abscess, and confounding
anatomical structures such as bowel loops—that
closely mirror the problems addressed by the MFRNet
framework [42]. In particular, the Spatial-Optimized
Feature Attention (SOFA) module sharpens object
boundaries, while the Context-Aware Channel
Refinement (CACR) module effectively suppresses
irrelevant anatomical noise. Moreover, MFRNet’s
use of brightness and contrast augmentation during
training enhances its robustness in low-quality
imaging environments, a feature directly translatable
to real-time PID monitoring scenarios.

In image-driven diagnostic frameworks, MFRNet’s
dual attention mechanism provides a powerful
template for detecting subtle pelvic lesions. The
SOFA module refines the borders of inflammatory
exudates—such as tubal wall thickening—while CACR
optimizes channel weights to suppress vascular clutter
and other confounders. Quantitatively, MFRNet
achieves a 12.7% reduction in mean absolute error
(MAE) on the ECSSD benchmark, underscoring its
potential to improve lesion delineation in complex
pelvic MRI or CT scans [42].

For adaptive therapeutic systems, MFRNet
demonstrates an architecture capable of real-time
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video analysis at 38.28 frames per second, making it
well-suited for dynamic endoscopic monitoring of
PID lesion progression [42]. Its brightness-contrast
augmentation strategy directly counteracts variability
in transvaginal ultrasound quality, ensuring consistent
performance across patient-specific factors such as
adiposity or mucosal secretions. These capabilities
are summarized in Table 2, which outlines how
specific MFRNet components address key PID clinical
needs, including boundary definition, noise reduction,
real-time monitoring, and data augmentation.

From a data-centric perspective, MFRNet’s multi-scale
feature fusion informs the design of PID datasets
by advocating hierarchical lesion annotation, from
pixel-level inflammation to macroscopic adhesions,
that mirrors its six-stage EfficientNet-B7 backbone
extraction [42]. This approach aligns with radiologists’

multi-level analysis of pelvic inflammation, promoting
richer training data and more nuanced diagnostic
models.

Despite these strengths, a domain shift between
natural imagery and medical imaging necessitates
fine-tuning of MFRNet on PID-specific datasets. In
particular, adjusting the dilation rates within the CACR
module may enhance sensitivity to micro-abscesses
commonly encountered in early-stage PID. Looking
ahead, extending MFRNet to integrate multi-modal
inputs—such as combining RGB imaging with thermal
pelvic thermography—could further bolster diagnostic
accuracy. Finally, clinical validation against expert
radiologist annotations using the boundary-aware
MAE metric will be critical to establish its real-world
efficacy in PID management.

5.2 Cross-Domain Relevance of YOLOvS

Framework in PID Management

PID also poses unique challenges for image-driven
diagnostics, where the ability to localize diffuse
inflammatory regions amid anatomical clutter is
critical. The Convolutional Block Attention Module
(CBAM) can be repurposed to highlight PID-specific
markers, such as subtle tubal wall thickening or fluid
accumulations by sequentially applying channel and
spatial attention [43]. In this adaptation, CBAM’s
channel attention would prioritize feature maps
containing inflammatory signals, while its spatial
attention would refine the localization of these signals
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Table 2. MFRNet technology modules which can be applied in PID management.

PID Clinical Need MFRNet Component Implementation Example
Boundary Definition = SOFA Module Delineating pyosalpinx margins
Noise Reduction CACR Channel Attention Suppressing bowel gas artifacts
Real-time Monitoring  EfficientNet-B7 Backbone Portable ultrasound deployment
Data Augmentation = Brightness Adjustment Standardizing obese patient scans

in ultrasound or CT slices. This dual-attention pipeline
offers a pathway to more precise delineation of lesion
boundaries that are otherwise obscured by bowel loops
or vascular noise [43].

Beyond static imaging, real-time therapeutic
monitoring of PID requires models that can process
video streams at high frame rates on edge devices.
The optimized YOLOvS8 framework achieves up to
126 FPS through a lightweight backbone and Focus
module enhancements [43]. This throughput enables
continuous analysis of endoscopic or ultrasound video
feeds, making it feasible to track lesion dynamics
and patient responses during treatment sessions.
For instance, integrating a fall-detection—inspired
pipeline, originally designed to flag abrupt posture
changes—into a PID telemedicine system could
allow simultaneous detection of pain-expression
cues or sudden anatomical shifts indicative of acute
exacerbations [43].

Building robust Al systems for PID also mandates
careful dataset design to prevent bias and ensure
generalization across patient subgroups. The
DiverseFALL10500 benchmark incorporates extensive
variability in lighting, subject demographics
(including BMI ranges), and camera angles [43].
Translating these principles, a PID dataset should
include transvaginal scans from diverse populations,
with variations in adiposity, mucosal secretions,
and probe orientations to train models that remain
reliable under real-world clinical conditions [43]. This
heterogeneity promotes resilience against domain
shifts and helps guard against performance drop-offs
when encountering underrepresented patient cohorts.

However, transferring techniques from general vision
to medical imaging is not without hurdles. Whereas
fall detection hinges on macroscopic posture cues,
PID diagnosis demands sensitivity to micro-scale
adhesions and early abscesses. The CBAM’s Focus
module, which reduces computational overhead in
natural images, must be reconfigured, potentially
through increased dilation rates or higher-resolution
inputs to capture microscopic pathologies without
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sacrificing inference speed. Such domain-specific
adjustments will be essential to fully leverage
attention-based models for the nuanced task of PID
management.

6 Current Shortcomings and Controversies

Despite significant advances, the interpretability of
Al models remains a critical concern. Most deep
learning systems operate as opaque "black boxes,"
with decision-making processes hidden even from
expert users [44, 45]. This opacity challenges clinician
trust and limits adoption: healthcare professionals
are less willing to rely on tools they cannot explain,
and patients may object to decisions they cannot
comprehend [46]. To mitigate this, the field is
actively exploring explainable-Al (XAI) methods such
as Grad-CAM, feature visualization, and structured
segmentation pipelines; however, a known trade-off
persists: the most transparent models often sacrifice
predictive performance [47].

A second major challenge is dataset bias and privacy.
Al models are only as effective as their training data,
and imbalanced datasets which lack demographic
diversity risk embedding systemic disparities [48].
Additionally, sensitive patient data invoke stringent
regulatory protections under frameworks like GDPR,
PIPL, and HIPAA [49]. Addressing these issues
requires more representative, multi-center data
collection and privacy-preserving training techniques
(e.g., federated learning, synthetic data), although
these introduce additional complexity and validation
hurdles.

Thirdly, regulatory and legal accountability pose
barriers to clinical deployment. Clinicians remain
ultimately responsible for patient outcomes, yet
opaque Al tools complicate attribution of errors
and due diligence [50]. While some argue that
Al-generated diagnoses can be accepted without
full transparency, this approach conflicts with
existing medical ethics and legal standards that
demand explainability for informed consent and error
accountability [50].



ICJK

ICCK Transactions on Intelligent Systematics

Table 3. YOLOv8 Framework Modules which can be Applied in PID Management.

PID Clinical Need YOLOvVS

Contribution

Framework Impact

Al-Driven Diagnostic Imaging
Real-Time Patient Monitoring

Medical Data Curation

CBAM for Lesion Emphasis
High-FPS Model Design

Diversity Strategies

Improves inflammation
localization

Enables low-latency symptom
detection

Mitigates dataset bias in PID

Finally, the generalizability of Al systems to diverse
real-world environments is not ensured. Many
models exhibit strong performance under controlled
conditions but fail when exposed to varied clinical
settings, equipment differences, or patient populations,
especially outside of high-resource regions [51].
Bridging this gap calls for comprehensive multi-site
trials, continuous post-deployment monitoring, and
alignment with real-world clinical workflows.

In summary, while Al offers tremendous promise
in PID management, deploying it responsibly
demands transparent, equitable, and context-aware
systems. Focusing on interpretability, representative
data practices, regulatory compliance, and clinical
validation will be essential to realize its full potential
as a trusted, real-world clinical assistant.

In addition to the shortcomings mentioned above
that need improvement, this technology also raises
many controversial issues. High-dimensional EHR
data frequently exhibit systematic biases: notably
selection bias, measurement bias, temporal bias, and
implicit bias, which can seriously impair the fairness
and generalizability of Al-based PID diagnostics. A
recent systematic review identified six major bias types
within EHR-AI models and found a concerning lack of
real-world deployment, despite widespread fairness
assessment using metrics like statistical parity and
equal opportunity [52, 53]. Furthermore, Al-Sahab
et al. [54] emphasize that selection and information
biases arise both at the data capture stage and during
research pipelines, warranting extreme caution in
inferring causality from secondary EHR data. To
mitigate these distortions, implementing strategies
such as re-sampling/re-weighting, data completeness
checks, harmonization protocols, and active bias
monitoring during model training is crucial. In the
context of chronic PID, these measures can reduce
demographic skew, such as underrepresentation of
rural or low-income women, and thereby support more
equitable diagnostic support tools.

Deploying Al-driven PID diagnostic tools in
low-resource or rural healthcare settings presents
unique challenges encompassing infrastructure,
human capacity, governance, and culture. A targeted
review of Al in LMICs outlined 40 challenges, ranging
from data quality, context awareness, regulatory
frameworks, training resistance, financial constraints,
to infrastructure and scalability [55]. Additionally,
large-scale implementation studies in general
healthcare identify structural barriers: poor internet
connectivity, limited computing infrastructure,
absence of robust data governance, and low clinician
trust due to lack of explainability [56]. Practical
strategies observed in telehealth and mHealth
deployments (e.g. smartphone-based ultrasound
or chatbots) include edge computing, offline-first
interfaces, multi-language support, and federated
learning constructs to overcome data privacy and
connectivity constraints. For chronic PID specifically,
pairing low-cost diagnostic hardware with Al models
trained on context-representative data, and deploying
them via cloud-sync echo systems, could create a
viable path for scalable adoption in under-served
clinics.

To ensure longevity and equity in PID-focused
Al systems, it is essential to combine rigorous
data quality management with resource-sensitive
deployment planning. Robust pipelines incorporating
bias auditing, EHR data quality assessment, and
fairness-aware model training can ensure internal
validity. Simultaneously, building sustainable
adoption models through co-design with front-line
providers, training frameworks, regulatory clarity,
and flexible technological architectures can enhance
external validity across diverse health systems.
Embedding these pillars, such as quality, explainability,
adaptability and inclusivity, is critical to realizing
Al’s promise in chronic PID management without
exacerbating health disparities.
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7 Conclusion and outlook

There are several avenues for future research that could
further enhance its effectiveness and applicability:

1. Integration of Diverse Al Techniques: Combining
Bayesian Networks, ML, and deep learning is a
optimal method to create more robust diagnostic
and predictive models. For instance, using
deep learning for image analysis and Bayesian
Networks for probabilistic reasoning could
provide a more comprehensive understanding of
PID progression. Also, the use of reinforcement
learning will develop adaptive treatment
strategies that adjust in real-time based on patient
responses and disease progression.

2. Big Data Handling and Scalability: Scalable
Algorithms used in developing AI models
can efficiently process and analyze large-scale
medical datasets, including electronic health
records, imaging data, and genomic information.
High-Dimensional Data Analysis can create
algorithms which can handle the complexity and
variability of high-dimensional data, providing
more accurate predictions and insights.

3. Real-Time Monitoring and Prediction: Leveraging
wearable devices and IoI' technologies to
continuously monitor patients and predict
potential flare-ups or complications in real-time
is crucial in Al-based PID management and
treatment technology. The creation of Al-driven
early warning systems that alert healthcare
providers to potential complications will also
enable timely interventions.

4. Ethical Considerations: Ethical challenges can
be addressed by developing frameworks that
ensure patient data privacy and security in
Al-driven healthcare systems, which can be
achieved through investigating and mitigating
biases in Al algorithms to ensure equitable
treatment recommendations and avoid disparities
in care.

In the evolving landscape of Al-based medical
diagnostics and treatment, the integration of Bayesian
Networks and ML algorithms emerges as a promising
trend, poised to revolutionize healthcare outcomes.
Bayesian Networks, with their probabilistic framework,
excel in capturing the uncertainty inherent in medical
diagnosis, particularly in the early stages of disease
when symptoms are often vague or overlapping.
Conversely, ML algorithms, such as decision trees,
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support vector machines, and neural networks, offer
robust pattern recognition capabilities, enabling
the detection of complex relationships within large
datasets. The synergy between these approaches can
enhance the accuracy and reliability of diagnostic tools,
as demonstrated in the study of symptom checking for
STIs.

This combined approach allows for a flexible
application of the most suitable algorithm depending
on the disease stage. In the initial phases, where
symptoms are subtle, Bayesian Networks can provide
probabilistic insights, suggesting potential diagnoses.
As the disease progresses and more data becomes
available, ML models can refine these predictions,
leveraging a broader range of features for enhanced
accuracy. Furthermore, in treatment phases, these
integrated models can predict the efficacy of different
treatment options based on patient characteristics and
disease progression, thereby optimizing treatment
plans.
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