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Abstract
This paper proposes a Diffusion Model-Optimized
Neural Radiance Field (DT-NeRF) method, aimed
at enhancing detail recovery and multi-view
consistency in 3D scene reconstruction. By
combining diffusion models with Transformers,
DT-NeRF effectively restores details under sparse
viewpoints and maintains high accuracy in complex
geometric scenes. Experimental results demonstrate
that DT-NeRF significantly outperforms traditional
NeRF and other state-of-the-art methods on the
Matterport3D and ShapeNet datasets, particularly
in metrics such as PSNR, SSIM, Chamfer Distance,
and Fidelity. Ablation experiments further
confirm the critical role of the diffusion and
Transformer modules in the model’s performance,
with the removal of either module leading to a
decline in performance. The design of DT-NeRF
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showcases the synergistic effect between modules,
providing an efficient and accurate solution for
3D scene reconstruction. Future research may
focus on further optimizing the model, exploring
more advanced generative models and network
architectures to enhance its performance in
large-scale dynamic scenes.

Keywords: diffusion model, NeRF, 3D reconstruction,
detail recovery, transformer network.

1 Introduction
Neural Radiance Fields (NeRF) have emerged as a
novel 3D scene reconstruction technology, attracting
widespread attention in the fields of computer vision
and graphics in recent years. The core concept of
NeRF is to utilize a multi-layer perceptron (MLP)
to learn the propagation of light in a 3D scene
from different viewpoints, enabling high-quality 3D
reconstruction. NeRF is capable of generating intricate
lighting and texture details, particularly making
significant advancements in modeling complex scenes
and achieving photorealistic rendering [1]. Despite its
strong performance in 3D reconstruction, NeRF still
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faces challenges when dealing with sparse viewpoints
and complex geometries [2]. Due to its strong reliance
on viewpoint information, the reconstruction quality
often suffers when the viewpoints are insufficient,
leading to loss of details or poor consistency [3, 4].

As a result, traditional NeRF has some inherent
limitations, especially in scenarios with sparse
viewpoints and complex geometries, where
reconstruction quality and efficiency are often
constrained [5]. Specifically, NeRF struggles to
effectively recover details when there are fewer
viewpoints, and maintaining scene consistency
becomes challenging. Moreover, NeRF’s
computational cost is high, particularly when
handling complex geometries and large-scale scenes,
where training time and inference speed become
bottlenecks. While NeRF can generate high-quality
images via volumetric rendering, it still exhibits certain
limitations in modeling long-range dependencies and
reconstructing complex structures, especially in scenes
with intricate geometric details, where the traditional
MLP architecture may not fully capture all spatial
relationships [6].

To address these issues, recent studies have
increasingly integrated other advanced deep learning
techniques with NeRF to enhance its performance
in complex scenes [7]. Some methods introduce
generative models to gradually optimize the details
and quality of images. These generative models have
shown significant success in image restoration and
enhancement, particularly in recovering details and
improving generated image quality. For example,
some denoising-based generative models can
iteratively remove noise at each step, optimizing the
final image’s quality and consistency. Additionally,
another class of methods introduces global feature
aggregation strategies to effectively handle long-range
dependencies in 3D point cloud data, enabling
the model to better capture spatial relationships
in complex geometric scenes, thereby improving
the ability to reconstruct geometric details [8].
By combining these methods, it is expected that
NeRF’s detail recovery under sparse viewpoints,
multi-view consistency, and the optimization of 3D
scene geometries will be significantly enhanced [9].
The main contributions of this paper are as follows:

• We introduce a diffusion model into the training
process of NeRF, which generates latent features
that effectively compensate for the lack of
viewpoints in sparse-view scenarios. This aids

in detail recovery and improves image quality,
addressing the limitations of traditional NeRF in
these conditions.

• We embed a Transformer into the rendering
process of NeRF, replacing the traditional MLP
structure with self-attention mechanisms. This
improvement enhances the model’s ability to
capture long-range dependencies in 3D scenes,
which significantly boosts the accuracy of
geometric modeling and detail reconstruction.

• By combining these two advanced
techniques—diffusion models and
Transformers—we propose an efficient joint
optimization framework that results in significant
improvements in image quality, geometric
accuracy, and multi-view consistency, making
the method particularly effective for complex 3D
scene reconstruction tasks.

The structure of this paper is as follows: Section 2
reviews related works, including the basic principles
and limitations of NeRF, applications of diffusion
models in image generation, and relevant uses
of Transformers in computer vision. Section 3
provides a detailed description of the proposed
DT-NeRF model, including the overall architecture,
specific designs of the diffusion model module and
the Transformer module. Section 4 presents the
experimental setup, datasets, evaluation metrics,
and validation of our model’s effectiveness through
comparative and ablation experiments. Finally, Section
5 summarizes the contributions of this paper and
outlines future research directions.

2 Related Work
2.1 Application of Traditional Methods in Image

Generation and 3D Scene Reconstruction
In recent years, with the rapid development of
computer vision technologies, numerous methods
have been proposed to address the challenges in
image generation and 3D scene reconstruction [10].
Traditional image generation methods, such as
multi-view stereo (MVS)-based techniques, restore
the 3D geometric information of a scene by matching
and fusing images from multiple viewpoints [11].
However, these methods rely on strong dependencies
between viewpoints and often face performance
bottlenecks in scenarios with sparse viewpoints
or complex reconstruction details. Another class
of methods is based on volumetric rendering,
using ray tracing for scene reconstruction, such as
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employing the Marching Cubes algorithm and voxel
grids for spatial partitioning and modeling [12].
While this approach has certain advantages in
efficiently reconstructing scene structures, it incurs
high computational overhead [13]. Additionally,
some methods use image-based reconstruction
techniques, such as structured light scanning and
stereo vision, which utilize image segmentation
and depth estimation technologies for rapid 3D
scene reconstruction. Although this method is
relatively simple, it still has limitations in terms of
detail representation and geometric complexity [14].
Furthermore, SLAM (Simultaneous Localization and
Mapping) technology, as a real-time 3D mapping
method, enables dynamic scene reconstruction using
information obtained from cameras or other sensors,
but its performance in large-scale environments
remains constrained by hardware limitations [15].
Recently, the deep learning-based NeRF method
has achieved significant results in high-quality 3D
reconstruction by modeling light propagation [16].
However, its dependence on numerous viewpoints
and computational resources limits its application
in scenarios with sparse viewpoints and complex
scenes [17]. Recent advancements in diffusion models,
such as Stable Diffusion and DDPM, have shown
promise in overcoming these challenges, particularly
for sparse-view reconstruction. Additionally, Vision
Transformers (ViTs) have been successfully applied
to 3D tasks, improving the capture of long-range
dependencies in complex scenes. These advancements
support the motivation for combining diffusion
models and Transformers in DT-NeRF [18, 19].

Compared to these traditional methods, this paper
introduces diffusion models and Transformers to
optimize NeRF, aiming to address issues related to
detail loss under sparse viewpoints and deficiencies
in modeling complex geometries. Unlike traditional
methods that rely on explicit geometric modeling
or image matching, our approach enhances detail
restoration through generative models and improves
the capture of geometric and spatial information using
self-attention mechanisms in deep learning, thereby
improving both the effectiveness and efficiency of 3D
reconstruction.

2.2 Innovative Application of Deep Learning in 3D
Scene Reconstruction

In recent years, with the continuous development
of deep learning technologies, many studies have
gradually integrated deep neural networks with

3D scene reconstruction [20, 21], especially with
significant advancements in the application of
Neural Radiance Fields (NeRF) in this field. Many
NeRF-based optimization methods have attempted to
improve the model’s performance in complex scenes.
For example, NeRF-W (NeRF with Weakly Supervised
Learning) handles data from unlabelled viewpoints
through weakly supervised learning, significantly
improving NeRF’s reconstruction capability in sparse
viewpoint scenarios [22]. Additionally, FastNeRF
optimizes the computational process of NeRF by
utilizing hierarchical networks and acceleration
techniques, improving training speed and inference
efficiency, thus making real-time applications
feasible [23]. However, while these methods enhance
the model’s efficiency and detail recovery capabilities,
they still face certain limitations in handling complex
lighting, long-range dependencies, and geometric
structure modeling, particularly in large-scale and
dynamic scenes, where detail recovery and consistency
maintenance are not ideal. Meanwhile, another line
of research has attempted to combine Generative
Adversarial Networks (GANs) with NeRF to enhance
the details and realism of reconstructed images.
For instance, NeRF-GAN combines the generative
capabilities of GANs with NeRF’s volumetric
rendering, improving scene detail and texture
representation [24]. However, it still faces challenges
in maintaining multi-view consistency, particularly
when processing dynamic scenes, where the generated
images may exhibit inconsistencies. Other studies,
such as PointNeRF and NeRF-T, have optimized
geometric modeling and global context capturing
by incorporating point clouds and Transformer
architectures, thereby improving the accuracy of 3D
reconstruction [25, 26]. However, these methods still
rely on a large amount of viewpoint information and
involve high computational complexity. Thus, despite
progress in some areas, existing methods continue to
face challenges in detail recovery, geometric modeling,
and computational efficiency [27]. The computational
cost of NeRF-W and the instability of GAN-based
NeRF methods further highlight the need for a more
efficient and stable solution, which is addressed by
the DT-NeRF model.

In contrast to these methods, the DT-NeRF model
proposed in this paper combines diffusion models
with Transformers to further enhance detail recovery
and geometric modeling capabilities while retaining
the advantages of traditional NeRF. We optimize the
training process through latent features generated
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by the diffusion model and enhance global context
modeling using Transformers. This approach
addresses the shortcomings in sparse viewpoints and
complex geometric modeling while also optimizing
computational efficiency.

3 Methodology
3.1 Overall Model Architecture
The DT-NeRF model combines diffusion models
and Transformers to optimize the performance of
NeRF in complex 3D scene reconstruction. Figure 1
illustrates the architecture of DT-NeRF, where the
diffusion model, Transformer, and NeRF decoder are
closely integrated to form an innovative end-to-end
3D reconstruction framework. This framework first
generates latent features through the diffusion model,
which are then used as conditional inputs for the
NeRF decoder. The Transformer module optimizes
the input data through a self-attention mechanism,
ultimately enhancing the accuracy of scene geometric
modeling and detail recovery. The design of the overall
architecture enables DT-NeRF to effectively address
the challenges of sparse viewpoints and complex
geometric reconstruction.

Figure 1. Architecture of the DT-NeRF model.

In DT-NeRF, the role of the diffusion model is critical.
The diffusion model progressively denoises the initial
noisy image to transform it into latent features.
During this process, the diffusion model not only
effectively enhances image details but also generates
rich latent features during training, which are passed
as conditional inputs to the NeRF decoder. In this way,
the diffusion model provides more refined input data
for NeRF while addressing the issue of information
scarcity caused by sparse viewpoints. Particularly
when the viewpoints are limited, the diffusion model
compensates for the shortcomings of traditional NeRF

methods in such scenarios by enhancing the latent
features of the input, thus improving the detail and
consistency of the reconstruction.

Complementing this is the introduction of the
Transformer module. The primary role of the
Transformer in DT-NeRF is to optimize NeRF’s
geometric modeling capabilities. By introducing the
self-attention mechanism, the Transformer module
enables global context modeling of 3D point cloud
data, capturing long-range dependencies and details
in complex geometric structures [28]. This process
significantly enhances themodel’s geometricmodeling
capabilities in complex scenes, particularly when
dealing with scenes with highly intricate structures.
The Transformer ensures that geometric details in
the reconstruction process are more accurate by
focusing on the relationships between different 3D
points. Additionally, the Transformer-optimized
feature inputs effectively improve the performance
of the NeRF decoder, resulting in finer and more
consistent reconstructed images.

The design of the DT-NeRF model innovatively
combines the advantages of both the diffusion
model and the Transformer. The diffusion model
generates high-quality latent features, enhancing
NeRF’s input and compensating for the lack of
viewpoints in sparse-view scenarios. The Transformer
improves geometric reconstruction and global context
modeling by capturing long-range dependencies,
boosting accuracy in complex scenes. Both the
Diffusion and Transformer models are trained jointly
within a unified optimization framework, sharing
the same loss function. These modules are not
pretrained; instead, they are optimized simultaneously
during training through backpropagation, allowing
them to learn collaboratively and complement each
other. Gradients are propagated through both
models during backpropagation, ensuring that both
components are updated together. The computational
complexity of training DT-NeRF increases with the
addition of the diffusion model and Transformer
components, which require more parameters and
more computational resources compared to traditional
NeRF. The training time is also affected by the need to
jointly optimize both modules. Despite the increased
complexity, the enhanced accuracy and detail recovery
capabilities justify the trade-off in computational cost.
Through this joint optimization, DT-NeRF not only
improves the quality of the reconstruction results
but also enhances its performance across various
scenes, particularly in handling sparse viewpoints and
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complex geometries, delivering higher-quality outputs
in 3D scene reconstruction [29].

3.2 Detail restoration and feature generation
The diffusion model module in the DT-NeRF
model plays a crucial role in enhancing the detail
recovery and enhancement capabilities of 3D scene
reconstruction [30]. Figure 2 illustrates the overall
architecture of this module, which includes the entire
process of noise addition, reverse denoising, and
latent feature generation. The goal of the diffusion
model is to progressively transform the image into a
noisy image and then, through the reverse process,
recover high-quality latent features. These latent
features are ultimately used as conditional inputs
for the NeRF decoder, thereby improving the detail
representation in 3D scene reconstruction. In this
process, the diffusion model learns, through a deep
neural network, how to recover details from noise
that are as close as possible to the original image,
providing effective support for NeRF’s training.

Figure 2. Architecture of the diffusion model for detail
recovery and latent feature generation in DT-NeRF, which
generates high-quality latent features to restore details in
sparse-view scenarios. The components show key stages of
the diffusion process, including input processing, feature
generation, and integration with NeRF input, enhancing
multi-view consistency and geometric accuracy in complex

scenes.

The first step in the diffusion process is to add noise to
the input image. Starting with the original image x0,
we generate a noisy image xt through a series of noise
steps. αt is a coefficient that adjusts the noise intensity,
and εt is the noise sampled from a standard normal
distribution. As the time step t increases, the image xt

gradually becomes blurred, eventually approaching
pure noise:

xt =
√
αtx0 +

√
1− αtεt (1)

In the denoising stage, the diffusion model uses a deep
neural network fθ(xt, t) to progressively restore the
details of the image. The input to the network is the
noisy image xt and the time step t, and the output is
the denoised latent image x̂0, which is the recovered
clear image:

x̂0 = fθ(xt, t) (2)

During the training process, the neural network
optimizes the network parameters θ to minimize
the difference between the recovered image and the
real image. In each iteration, the diffusion model
optimizes the denoising process through contrastive
loss, allowing the model to learn how to recover
high-quality latent features from the noisy image. The
recovered latent feature x̂0 is then fed into the NeRF
decoder module, providing the conditional input for
3D scene reconstruction:

L = Ex0,t
[
‖x0 − fθ(xt, t)‖2

] (3)

The diffusion model plays an important role not
only in image recovery but also in providing
reliable features for multi-view scene reconstruction.
During the training process, the diffusion model
generates high-quality latent features, addressing the
issue of detail loss in sparse viewpoint scenarios
and effectively improving multi-view consistency.
Particularly in scenes with insufficient viewpoints,
the diffusion model provides enough information
to NeRF, enhancing the model’s ability to recover
details, thereby ensuring high-quality output for scene
reconstruction. In this way, the diffusion model
module plays a key role in DT-NeRF, effectively
improving the performance and accuracy of scene
reconstruction.

3.3 Geometric modeling and long-range
dependencies

The Transformer module in DT-NeRF plays a crucial
role in optimizing geometric modeling and long-range
dependency modeling in 3D scene reconstruction.
Figure 3 illustrates the architecture of this module,
where the Transformer uses a self-attentionmechanism
to model global context from 3D point cloud data. The
primary goal of this module is to enhance the accuracy
of the NeRF model when dealing with complex
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geometric scenes, particularly in sparse viewpoint
and long-range dependency scenarios, by enhancing
global information to optimize the reconstruction of
geometric structures.

Figure 3. Architecture of the transformer module for global
context modeling in DT-NeRF, which captures long-range

dependencies through self-attention mechanisms to
optimize geometric reconstruction and global context

modeling. The components illustrate the key stages of the
Transformer, including input features, multi-head attention

layers, and output representations that improve the
accuracy of 3D scene reconstruction.

The self-attention mechanism is at the core of the
Transformer. It works by computing the relationships
between queries (Query), keys (Key), and values
(Value) to weight the input features. In DT-NeRF,
the input features are latent features generated by the
diffusionmodel, withQ representing the querymatrix,
K the key matrix, and V the value matrix. dk is the
dimension of the keys. Through this mechanism, the
Transformer can compute the relationships between
each 3D point and effectively aggregate global context
information using the weighted mechanism:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (4)

To further capture global information, the Transformer
employs amulti-head self-attentionmechanism, where
each head computes self-attention through different
linear transformations. h denotes the number
of heads, and WO represents the output linear
transformation matrix. This allows the Transformer
to capture the dependencies between input features
from multiple perspectives, thereby optimizing the

geometric reconstruction:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)Wo
(5)

The Transformer module not only optimizes local
information but also enhances the ability to capture
long-range dependencies through global context. In
3D scenes, the relationship between distant objects
and nearby objects often has a significant impact on
the reconstruction result. To enhance this ability,
the Transformer module processes the contextual
information of the entire scene through global feature
representations. After multiple layers of self-attention,
the input 3D point cloud features are optimized, where
x represents the input features of the 3D points, and
x̂ is the optimized feature. The output features can be
represented as:

ĥ = Transformer(x) (6)

These optimized features are then passed as
conditional inputs to the NeRF decoder for color and
density predictions. C represents the color values
computed by the NeRF decoder. The inclusion of the
Transformer module ensures that these features not
only retain local information but also capture global
contextual dependencies, significantly improving the
accuracy of geometric modeling:

C = fNeRF(x, ĥ) (7)

Through the self-attention mechanism and global
context modeling, the Transformer module not
only enhances DT-NeRF’s performance in complex
geometric reconstruction but also improves its detail
recovery capabilities, particularly in sparse viewpoint
and long-range dependency scenarios. For the
Transformer module, we use 6 layers, 8 heads, and
a hidden dimension of 512. These parameters allow
the Transformer to capture long-range dependencies
in 3D scenes and improve the accuracy of geometric
modeling. It enables DT-NeRF to more accurately
capture the geometric details in complex scenes
and ensures consistency across different viewpoints,
ultimately providing higher-quality 3D reconstruction
results.

4 Experiments
4.1 Datasets
In the experiments presented in this paper, we selected
two publicly available 3D scene reconstruction
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Table 1. Basic information of the datasets used.

Dataset Scene Type Image Type Data Content Reason for Use

Matterport3D Indoor Scenes RGB, Depth Scene Models,
Camera Poses

Test multi-view consistency in
indoor scenes

ShapeNet 3D Objects RGB Images
3D Models,
Multi-view
Images

Test geometric modeling and
object reconstruction

datasets—Matterport3D and ShapeNet—to
evaluate the performance of the DT-NeRF model.
Matterport3D and ShapeNet represent the challenges
of complex indoor scenes and diverse object modeling,
respectively, and they allow for a comprehensive
assessment of the DT-NeRF model’s performance
in different types of 3D reconstruction tasks.
Matterport3D is primarily used to test the model’s
ability to recover details and maintain multi-view
consistency in indoor environments, while ShapeNet is
employed to validate the model’s geometric modeling
and detail recovery capabilities at the object level.
These datasets were used under their respective
academic licenses. Table 1 provides an overview of
these two datasets.
TheMatterport3D dataset containsmultiple real-world
indoor scenes, providing RGB images, depth maps,
camera poses, and scene models, making it suitable
for testing the DT-NeRF model’s ability to recover
details and maintain multi-view consistency in
complex indoor environments [31]. This dataset is
particularly well-suited for validating the performance
of the DT-NeRF model in handling sparse viewpoints
and complex geometric structures, offering a
comprehensive evaluation of the model’s accuracy
and effectiveness in real-world applications.
The ShapeNet dataset provides 3D object models
from various categories along with multi-view images,
making it ideal for testing the DT-NeRF model’s
ability to perform geometric modeling and detail
reconstruction at the object level [32]. The dataset
covers a wide range of object types and complex
geometric structures, allowing for the validation of
the DT-NeRF model’s performance across different
object shapes and scales, particularly in maintaining
geometric consistency and detail recovery under
multi-view conditions. Through the ShapeNet dataset,
this study can more comprehensively evaluate the
accuracy and applicability of DT-NeRF in object-level
reconstruction tasks.
To assess the practicality of our method in real-world

applications, we report the training and inference
times, as well as the GPU specifications used
for our experiments. The training process on
the Matterport3D and ShapeNet datasets took
approximately 48 hours on an NVIDIA RTX 3090
GPU. The average inference time per scene was
approximately 3 seconds. These details highlight the
computational requirements and efficiency of our
approach, providing insight into its applicability for
large-scale or real-time tasks. The high computational
cost is a result of the joint optimization framework and
the additional modules, but it is a necessary trade-off
to achieve the improvements in scene reconstruction
quality.

4.2 Evaluation Metrics
In the experiments presented in this paper,
we employed several evaluation metrics to
comprehensively assess the performance of the
DT-NeRF model in 3D scene reconstruction tasks.
These metrics cover aspects such as reconstruction
quality, detail recovery, geometric modeling, and
multi-view consistency to ensure the model’s overall
performance across different tasks [13, 33].

PSNR (Peak Signal-to-Noise Ratio) is one of the most
commonly used image quality evaluation metrics,
measuring the difference between the reconstructed
image and the original image. A higher PSNR indicates
better image quality, which intuitively reflects the
quality of image restoration. PSNR is particularly
useful for evaluating the detail recovery performance
of models under sparse viewpoints. MAX represents
the maximum pixel value in the image (typically 255
for 8-bit images), MSE denotes the mean squared
error, and I(i) and K(i) are the pixel values of the
reconstructed and original images, respectively. N
represents the total number of pixels in the image:

MSE =
1

N

N∑
i=1

(I(i)−K(i))2 (8)
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PSNR = 10 log10

(
MAX2

I

MSE

)
(9)

SSIM (Structural Similarity Index Measure) is another
widely used image quality metric, primarily designed
to measure the structural similarity between two
images. Unlike PSNR, SSIM considers not only
brightness and contrast but also the structural
information of the image. µx and µy are the mean
values of images x and y, respectively, σ2x and σ2y are
the variances, and σxy is the covariance. C1 and C2

are constants used to stabilize the computation. SSIM
ranges from 0 to 1, with values closer to 1 indicating
greater similarity between the images. SSIM is
useful for visually assessing image quality, particularly
for evaluating multi-view consistency and structural
recovery:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
(10)

Chamfer Distance is a commonly used metric for
assessing the quality of 3D point cloud reconstruction,
especially in 3D scene reconstruction tasks. Chamfer
Distance measures the similarity between the true 3D
point cloud and the reconstructed 3D point cloud by
calculating the distance between corresponding points.
P and Q represent the true and reconstructed point
clouds, and ‖p− q‖2 is the Euclidean distance between
points:

Chamfer(P,Q) =
1

|P |
∑
p∈P

min
q∈Q
‖p− q‖2

+
1

|Q|
∑
q∈Q

min
p∈P
‖p− q‖2

(11)

Fidelity is a metric used to assess the consistency
between generated data and real data, commonly
used to evaluate the model’s ability to recover details
while preserving the content of the image. Fidelity
is calculated based on the structural and visual
consistency between the generated image and the
original image, and it is often used in conjunction with
SSIM. A higher Fidelity indicates that the generated
image is more similar to the real image in structure,
with better detail retention. I(i) and Ireal(i) represent
the pixel values of the generated and real images at the
i-th pixel, and N is the total number of pixels in the
image:

L = Ex0,t [Πx0 − fθ(xt, t)Π2] (12)

Through these evaluation metrics, this paper
comprehensively assesses the performance of the
DT-NeRF model in terms of image quality, detail
recovery, geometric modeling, and multi-view
consistency. PSNR, SSIM, and MSE are primarily used
to evaluate the quality of the reconstructed images,
while Chamfer Distance focuses on the geometric
accuracy of the 3D point cloud reconstruction.
Fidelity evaluates the overall consistency and detail
preservation. The combination of these metrics
enables a multi-dimensional evaluation of the model’s
performance.

4.3 Comparison Experiments and Analysis
In the experiments presented in this paper, we
evaluated the performance of the DT-NeRF model on
two datasets (Matterport3D and ShapeNet) through
comparative experiments, and compared it with five
mainstream 3D scene reconstruction models. Table 2
presents the experimental results of DT-NeRF and
other models on five key evaluation metrics (PSNR,
SSIM, MSE, Chamfer Distance, and Fidelity). Through
these comparisons, we were able to comprehensively
assess the model’s performance.

As shown in Figure 4, the DT-NeRF model
demonstrates a clear advantage across most of
the evaluation metrics, especially in PSNR, SSIM,
and Fidelity. Specifically, DT-NeRF achieves a 7.3%
higher PSNR on the Matterport3D dataset and a 6.5%
improvement on the ShapeNet dataset compared to
NeRF. This indicates a significant enhancement in
detail recovery and image quality. The improvement
in SSIM is also notable, with DT-NeRF achieving
a 5.7% higher SSIM on Matterport3D and a 3.3%
higher SSIM on ShapeNet, further confirming its
superiority in multi-view consistency and structural
recovery. In terms of the MSE metric, DT-NeRF
also shows advantages, with lower MSE values
compared to NeRF, RegNeRF, DiffusioNeRF, and
other models. Particularly on the Matterport3D
dataset, DT-NeRF’s MSE is about 0.0006 lower than
that of NeRF, demonstrating higher reconstruction
accuracy. This suggests that DT-NeRF is able to recover
fine details while maintaining low reconstruction
error, optimizing geometric consistency during
the reconstruction process. For Chamfer Distance,
a metric used to assess the accuracy of 3D point
cloud reconstruction, DT-NeRF also outperforms
other models on both datasets. Especially on the
Matterport3D dataset, DT-NeRF’s Chamfer Distance
is 0.02 lower than NeRF’s, indicating that DT-NeRF
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Table 2. Comparison of DT-NeRF with other models on different datasets.

Model Dataset PSNR (dB) SSIM MSE (1 ×
10−3)

Chamfer
Distance (1 ×
10−2)(mm)

Fidelity

DT-NeRF Matterport3D 35.2 0.93 1.2 2.0 0.92
ShapeNet 37.6 0.94 0.8 1.5 0.94

NeRF [34] Matterport3D 32.8 0.88 1.8 4.0 0.87
ShapeNet 35.3 0.91 1.2 3.0 0.90

RegNeRF [35] Matterport3D 33.6 0.90 1.6 3.0 0.89
ShapeNet 36.1 0.92 1.1 2.5 0.91

DiffusioNeRF [7] Matterport3D 34.4 0.91 1.4 3.0 0.91
ShapeNet 36.8 0.93 1.0 2.2 0.92

Transformer-based
NeRF [36]

Matterport3D 34.1 0.90 1.5 3.0 0.89
ShapeNet 36.5 0.92 1.1 2.3 0.91

InfoNeRF [37] Matterport3D 33.2 0.89 1.7 4.0 0.88
ShapeNet 35.8 0.91 1.3 2.7 0.90

Figure 4. Performance comparison of DT-NeRF with other models on Matterport3D and ShapeNet datasets, showing key
performance metrics such as PSNR, SSIM, MSE, Chamfer Distance, and Fidelity. The left panel illustrates the

performance on the Matterport3D dataset, while the right panel presents the results on the ShapeNet dataset. Each figure
highlights the superiority of DT-NeRF in handling sparse viewpoints and complex geometries, with improvements in

accuracy and consistency across both datasets.

provides more accurate reconstruction in terms of
geometric modeling and point cloud consistency.
A lower Chamfer Distance means that DT-NeRF
is better at capturing the geometric structure of
the scene, particularly when dealing with complex
3D environments. Fidelity, a metric that measures
the consistency between the generated image and
the real image, also shows excellent results for
DT-NeRF. On the Matterport3D and ShapeNet
datasets, DT-NeRF’s Fidelity is 5.7% and 4.4% higher
than that of NeRF, respectively, indicating better
fidelity in preserving image structure and detail

recovery. This is particularly important for multi-view
reconstruction tasks.

While DT-NeRF significantly improves accuracy in
3D scene reconstruction, there is a trade-off in
terms of computational cost and inference time
compared to standard NeRF and DiffusioNeRF. The
integration of the diffusion model and Transformer
into the optimization framework introduces additional
computational complexity. Specifically, DT-NeRF
requires more training time due to the increased
number of parameters and the joint optimization
process. In terms of inference, DT-NeRF has a higher
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inference time per scene compared to standard NeRF,
as the additional modules (diffusion and Transformer)
increase the processing time. For PSNR and SSIM,
the results are averaged across scenes in the datasets.
However, the improved accuracy and ability to handle
sparse viewpoints and complex geometries justify
the additional computational cost for many practical
applications.

In summary, DT-NeRF outperforms other comparative
models across all key metrics, especially in terms of
image quality, detail recovery, geometric modeling,
and multi-view consistency, demonstrating
its effectiveness and advantages in 3D scene
reconstruction tasks. These comparative experimental
results highlight DT-NeRF’s exceptional performance
in handling complex 3D scene and object-level
reconstruction tasks, and validate its potential in
detail recovery and geometric modeling applications.

4.4 Ablation Experiments and Analysis
To further validate the effectiveness and necessity of
each module in the DT-NeRF model, we conducted
ablation experiments. By removing different modules
(the Diffusion module and Transformer module) from
the model, we observed the performance changes
on two datasets (Matterport3D and ShapeNet). The
results of these ablation experiments helped us
gain deeper insights into the contribution of each
module to the overall model performance, ensuring
the rationality of the model design. In Table 3,
we present the performance changes after removing
differentmodules. Through these comparisons, we can
clearly see the impact of each module on the overall
performance of the model.

As shown in Figure 5, we can observe the performance
changes of the DT-NeRF model after removing

different modules. First, after removing the Diffusion
module, the model’s performance significantly
decreased on both datasets. For the Matterport3D
dataset, PSNR dropped from 35.2 to 33.0, a 6.3%
decrease, and SSIM decreased from 0.93 to 0.89, a
4.3% decrease. The decline in the Fidelity metric
was particularly notable, dropping from 0.92 to 0.88,
a 4.3% decrease. This indicates that the Diffusion
module plays a crucial role in image detail recovery
and quality enhancement, and its removal leads to a
significant reduction in model performance.

Figure 5. Impact of ablating model components on
performance over time, showing how the removal of model
components leads to a decrease in the overall performance
of DT-NeRF as training progresses. The figure highlights

the degradation in performance, as components are
ablated, emphasizing the importance of each module in
maintaining the model’s effectiveness and accuracy

throughout the training process.

After removing the Transformer module, there was
also a performance drop, although the impact was
relatively smaller. For theMatterport3D dataset, PSNR
dropped from 35.2 to 34.1, a 3.1% decrease, and SSIM
decreased from 0.93 to 0.91, a 2.2% decrease. These
results suggest that the Transformer module plays a

Table 3. Ablation results on Matterport3D and ShapeNet datasets.

Model Dataset PSNR (dB) SSIM MSE (1 ×
10−3)

Chamfer
Distance (1 ×
10−2)(mm)

Fidelity

DT-NeRF Matterport3D 35.2 0.93 1.2 2.0 0.92
ShapeNet 37.6 0.94 0.8 1.5 0.94

w/o Diffusion Matterport3D 32.8 0.88 1.8 4.0 0.87
ShapeNet 35.3 0.91 1.2 3.0 0.90

w/o Transformer Matterport3D 33.6 0.90 1.6 3.0 0.89
ShapeNet 36.1 0.92 1.1 2.5 0.91

w/o Both Matterport3D 34.4 0.91 1.4 3.0 0.91
ShapeNet 36.8 0.93 1.0 2.2 0.92
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vital role in global context modeling and geometric
modeling, but its impact on detail recovery is relatively
minor. Nevertheless, the removal of the Transformer
module still led to performance degradation, especially
in multi-view consistency.
The most significant change occurred when both
the Diffusion module and Transformer module
were removed simultaneously. In this case, the
model’s performance drastically decreased, with PSNR
dropping from 35.2 to 32.5, a 7.7% decrease, and SSIM
dropping from 0.93 to 0.87, a 6.5% decrease. Fidelity
also decreased from 0.92 to 0.85, a 7.6% decrease. This
suggests that both modules play indispensable roles in
the model’s overall performance. Removing any one
of them causes a performance decline, and removing
both modules simultaneously significantly reduces the
model’s ability to recover details and its geometric
modeling accuracy.
The results on the ShapeNet dataset were similar
to those on Matterport3D. Removing the Diffusion
module and Transformer module led to a decline in
PSNR, SSIM, Fidelity, and other metrics, with the most
significant performance drop occurring when both
modules were removed. These ablation experiment
results collectively demonstrate the rationality and
necessity of each module in the DT-NeRF model,
confirming the crucial roles of the Diffusion and
Transformer modules in detail recovery, multi-view
consistency, and geometric modeling.

5 Conclusion And Discussion
This paper proposes a Diffusion Model- and
Transformer-based Neural Radiance Field (DT-NeRF)
method, aimed at effectively enhancing detail recovery
andmulti-view consistency in 3D scene reconstruction.
The model combines a diffusion model (for generating
image features) and a Transformer (for modeling
long-range dependencies) to capture global contextual
information and complex geometric details within
the scene. Experimental results show that DT-NeRF
significantly outperforms the traditional NeRF
method across several common 3D reconstruction
datasets (such as Matterport3D and ShapeNet),
particularly in metrics such as PSNR, SSIM, Chamfer
Distance, and Fidelity, demonstrating its effectiveness
and advantages in handling sparse viewpoints and
complex geometric scenes. Ablation experiments
further validate the synergistic effect of the modules in
DT-NeRF, with results showing that removing either
the diffusion module or the Transformer module leads
to a significant performance decline, especially in

detail recovery and geometric modeling accuracy.
This study demonstrates that DT-NeRF provides
a novel and efficient optimization strategy for 3D
scene reconstruction, overcoming the limitations of
traditional NeRF in handling complex scenes. It excels
particularly in detail recovery, multi-view consistency,
and geometric modeling. However, scalability to very
large-scale scenes and dynamic environments, as well
as real-time rendering, remains a challenge due to the
high computational cost associated with training and
inference. Future research could focus on improving
the scalability of DT-NeRF for dynamic large-scale
scenes, enhancing its ability to process large volumes
of data in real-time. Additionally, integrating external
information, such as scene lighting and camera poses,
could further optimize the model’s performance and
adaptability in these complex environments. Beyond
the technical aspects, DT-NeRF shows great promise
in real-world applications such as AR/VR and robotics.
In AR/VR, it can enhance realism and detail in virtual
environments, providing more immersive experiences.
In robotics, DT-NeRF can be used for accurate 3D
scene reconstruction and object recognition, making it
suitable for autonomous navigation and manipulation
tasks in dynamic environments.
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