
ICCK Transactions on Intelligent Systematics
http://dx.doi.org/10.62762/TIS.2024.137321

RESEARCH ARTICLE

YOLOv7-Bw: A Dense Small Object Efficient Detector
Based on Remote Sensing Image

Xuebo Jin 1, Anshuo Tong1, Xudong Ge1, Huijun Ma 2,*, Jiaxi Li2, Heran Fu2 and Longfei Gao2

1 School of Computer Science and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
2National Engineering Laboratory for Agri-product Quality Traceability, BTBU, Beijing, China

Abstract
In recent years, deep learning techniques have
been increasingly applied to the detection of
remote sensing images. However, the substantial
size variation and dense distribution of objects
in these images present significant challenges
to detection algorithms. Current methods often
suffer from low efficiency, missed detections,
and inaccurate bounding boxes. To address
these issues, this paper presents an improved
YOLO algorithm, YOLOv7-bw, designed for
efficient remote sensing image detection, thereby
advancing object detection applications in the
remote sensing industry. YOLOv7-bw enhances
the original SPPCSPC pooling pyramid network
by incorporating a Bi-level Routing Attention
module, which focuses on densely populated target
areas to improve the network’s feature extraction
capabilities. Additionally, it introduces a dynamic
non-monotonic WIoUv3 loss function to replace
the original CIoU loss function. This substitution
ensures that the loss function’s gradient allocation
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strategy aligns more effectively with the current
detection scenario, enhancing the network’s focus
on the detection object. Through comparative
experiments on the DIOR remote sensing image
dataset, we found that YOLOv7-bw achieved a high
mAP@0.5 of 85.63% and a high mAP@0.5:0.95 of
65.93%, surpassing the previous results of 83.7%
and 63.9% by approximately 1.93% and 2.03%,
respectively. Moreover, compared with commonly
used algorithms, YOLOv7-bw demonstrated
superior performance, thereby validating the
feasibility and enhanced applicability of our
proposed algorithm for remote sensing image
detection.

Keywords: remote sensing image, YOLO, object detection,
mAP.

1 Introduction
Optical remote sensing images [1] are top-down
perspective images captured by aerial vehicles or
satellites. This unique imaging method results in
significant differences compared to conventional daily
images. With the continuous advancement of remote
sensing technology, the quality of these images has
markedly improved, thereby placing higher demands
on remote sensing image processing technologies.
Remote sensing images have numerous applications
and hold significant value in both military and civilian
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domains. In the military field, remote sensing image
data are crucial for processing and analyzing collected
intelligence and reconnaissance information. The
insights gained can inform various scenarios, such
as operational planning and military deployments.
In civilian applications, remote sensing images yield
valuable results in areas such as land use [2], urban
planning, traffic monitoring [3], disaster prevention
[4], and ecological protection [5].

Remote sensing images possess characteristics such
as large coverage areas, diverse object types, dense
objects, and high background complexity, which
present significant challenges for detection tasks.
Traditional remote sensing image detection methods
can be roughly categorized into four types: template
matching-based methods [2], shape texture-based
methods [3], image segmentation-based methods [4],
and visual saliency-based methods [5]. From these
methods, it is evident that traditional approaches
generally first construct a universal target template and
then perform global image matching. Alternatively,
potential object areas can be segmented first, followed
by using simple feature rules for discrimination. This
type ofmethod is prone to a large number of erroneous
instances in the detection results, leading to low
accuracy and limited applicability. Consequently,
these methods can only be effectively used for
detecting objects in simple and uniform backgrounds.

Due to the massive growth of data and the
improvement of hardware computing power, the
theory and technology of deep learning have also
developed rapidly, and more and more deep learning
methods are being applied in the field of remote
sensing image object detection. Deep learning-based
object detection algorithms can be divided into region
suggestion-based methods (two-stage methods) and
regression-based methods (single-stage methods)
based on whether region suggestions are generated
or not. Two-stage object detectors, such as Faster
R-CNN [6], Libra R-CNN [7], and Mask R-CNN
[8], first extract regions of interest and then perform
further detection and recognition for each region.
Although the overall detection accuracy is relatively
high, the need to first extract regions of interest
and separately classify and regress each region adds
additional computational complexity and reduces
speed, making it difficult to apply in systems with
high real-time requirements. On the other hand, a
single-stage object detector does not need to generate
individual candidate regions and treats the entire
detection process as a whole. It directly regresses

and analyzes the bounding boxes and categories of
the object from multiple positions in the input image.
Typical representative algorithms include the YOLO
[9] series, SSD [10], and FCOS [11]. The single-stage
algorithm has a fast object detection speed and
basically meets the requirements of real-time systems,
but the detection accuracy is slightly lower than that
of the two-stage object detection method. Overall,
deep learning-basedmethods can automatically obtain
deep semantic features of images through training
and have stronger expressive power than manually
designed features. Additionally, these methods are
more sensitive to factors such as the spatial and
dense distribution of objects in the image, while
their sensitivity to the category of the object is low.
Therefore, deep learning-based methods usually do
not detect a single type of object but can detect
multiple types of objects, which is more in line with
the practical application of remote sensing images and
has become the mainstream development direction of
remote sensing image object detection [15, 16].

In recent years, with the advancement of remote
sensing image detection technology, its application
scope has gradually expanded, and various improved
algorithms have emerged, resulting in significant
improvements in detection accuracy and efficiency.
Among them, Li et al. [17] proposed a dual-channel
feature fusion network that can learn local and
contextual attribute features along two independent
paths, forming a powerful joint representation
to achieve effective detection of remote sensing
image objects. Yang et al. [18] proposed an
end-to-end rotation detection box object detection
algorithm, which improved the detection accuracy
of ships. Zhang et al. [19] designed a multi-scale
detection network structure based on the YOLOv5s
model, which enhanced the detection performance
of objects in monitoring scenarios. Jiang et al. [20]
combined bijective neural networks and displacement
localization strategies to address the problem of
narrow bounding boxes for small remote sensing
objects. Wang et al. [21] established dense connections
between shallow and deep feature maps, solving the
problem of significant changes in ship scale. Yang et
al. [22] combined multi-layer features with effective
anchor sampling to improve sensitivity to small objects.
Yao et al. [23] generated high-quality semantic
features by introducing an expanded bottleneck
structure into the feature pyramid network. Yan
et al. [24] improved the performance of small
object detection by fusing features across hierarchical
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channels to retain accurate position information
of weak objects. Zhang et al. [25] obtained
multiple receptive field features by fusing features
from different levels and constructed a new cascaded
attention mechanism to enhance the ability to capture
features of small remote sensing objects.

This article adopts YOLOv7 as the basic algorithm and
proposes YOLOv7-bw. To achieve better performance
in precision and dense object prediction tasks, YOLOv7
uses "scaling" and "scaling," addressing the problem
of dynamic label allocation and the replacement
of reparameterization modules, thereby making the
object detector faster and more effective.Secondly, due
to the common issues of long shooting distances
and blurry imaging in remote sensing images, the
WIoUv3 [12] loss function is adopted in the boundary
box regression part of the loss function. This
approach helps to better focus on and locate the
objects to be detected, thereby improving detection
accuracy.Finally, for remote sensing images with small
objects, clustering of objects can occur easily. To
address this, a Bi-level Routing Attention (BRA)
module is introduced to better focus on dense object
areas and solve the problem of the algorithm’s inability
to recognize small objects in densely populated areas.

2 Related Work
2.1 Attention mechanism
The attention mechanism in image processing has
become one of the popular and important technologies
in the field of deep learning [26, 27]. Due to its
excellent plug-and-play convenience, it is widely used
in variousmachine learningmodels [28]. The attention
mechanism enhances the model’s focus on the most
critical regions byweighting the input features, thereby
improving the accuracy and performance of image
processing tasks. In the early years, the basic idea of
the attention mechanism was to first input Query, Key,
and Value.

The correlation between Query and Key is calculated
to obtain attention scores. After scaling the attention
scores (divided by the square root of the dimension),
softmax is applied to normalize and obtain the weight
coefficients. Finally, the Value values are weighted
and summed based on the weight coefficients to
obtain the Attention Value, which focuses on the
key areas and ignores irrelevant regions. Over time,
Vaswani et al. [13] first applied the self-attention
mechanism in the field of NLP (Natural Language
Processing) and successfully introduced it into the

field of computer vision, demonstrating the enormous
potential of self-attention models. Unlike ordinary
attention mechanisms, self-attention mechanisms
reduce dependence on external information and are
better at capturing internal correlations of data or
features. The key point of the self-attentionmechanism
is that Q, K, and V are the same variable, or all three
originate from the same X, making them homologous.
By finding the key points within X, the model can pay
more attention to the essential information of X and
ignore the unimportant information. This mechanism
does not occur between input and output statements
but rather between internal elements of input or output
statements. However, self-attention in typical global
context modeling, such as vanilla attention, calculates
the affinity of paired features at all spatial positions,
resulting in a high computational burden and heavy
memory usage, especially for high-resolution inputs.
Therefore, in recent years, research on self-attention
modules has been devoted to alleviating this high
computational burden, and more work has begun to
introduce different manually crafted sparse patterns.

2.2 YOLO
The YOLO series is one of the best-performing
algorithms in the current field of object detection. It
has significant advantages in recognition accuracy
and speed, enabling real-time object detection.
Consequently, it is widely used in various industries.
Among them, YOLOv7 [14] achieves near-optimal
accuracy while maintaining its speed advantage. Its
structure is primarily divided into three modules: the
input end, the feature extraction backbone network
(Backbone), and the detection head output end
(Head).

YOLO’s real-time detector has been widely recognized
and applied in many scenarios by researchers since
its inception. It uses a loss function weighted by
Bounding Box Regression (BBR) loss, classification
loss, and object loss to construct the model. To
date, this structure remains the most effective loss
function paradigm in object detection tasks, where
BBR loss directly affects the localization performance
of the model. To further improve the positioning
performance of the model, it is essential to design an
effective BBR loss.

IoU (Intersection over Union) is used to measure the
degree of overlap between predicted and ground truth
boxes in object detection tasks. Its calculation is the
ratio of the intersection area of the predicted and
true boxes to their union area. However, IoU has a
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significant flaw as a loss function: the gradient of
backpropagation disappears when there is no overlap
between bounding boxes. This results in the inability to
update the overlapping area width between bounding
boxes during the training process. To address this
issue, existing research has consideredmany geometric
factors related to bounding boxes and constructed
penalty terms. Currently, bounding box loss is based
on additive loss, using CIoU (Complete IoU). This
loss function aligns with the mechanism of target box
regression by considering the distance, overlap, scale,
and aspect ratio between the target and prediction,
thereby making target box regression more stable and
avoiding problems such as divergence during training,
unlike IoU. However, one of the current drawbacks of
YOLOv7 is that CIoU still exhibits certain errors when
processing bounding boxes with large aspect ratios,
which may lead to poor accuracy of the bounding
boxes.

In summary, although YOLOv7 boasts significant
advantages in speed and accuracy as an object
detection algorithm, it still faces challenges,
particularly in handling bounding boxes with
large aspect ratios. Future research can focus
on refining the bounding box loss function and
developing methods to better manage aspect ratios,
thereby enhancing the performance of YOLOv7.

3 Methodology
3.1 WIoU
3.1.1 WIoUv1
The block diagram of BBR loss is shown in Figure 1.

Figure 1. Example of BBR loss.

The loss function used in YOLOv7 is CIoU, which adds
consideration for aspect ratio consistency based on
the normalized length of the center point connection.

Although it addresses the issue where the prediction
box cannot be optimized when the negative gradient
∂RDIoU
∂Wg

and ∂LIoU
∂Wg

cancel out, it inevitably generates
many low-quality anchor boxes during the prediction
process. Adding geometric metrics such as aspect
ratio or distance exacerbates the punishment of
these low-quality anchor boxes, thereby reducing
the model’s generalization ability. An effective loss
function should mitigate the penalty of geometric
metrics when the anchor box and target box align well,
without excessively interfering with training. Based
on these principles, distance attention was constructed
using distance measurement, breaking away from
the traditional additive anchor box loss. The two
were multiplied to obtain WIoUv1, incorporating a
two-layer attention mechanism:

LWIoUv1 = RWIoULIoU (1)

RWIoU = exp

(
(x− xgt)2 + (y − ygt)2

(W 2
g +H2

g )
∗

)
(2)

where RWIoU ∈ [1, e). This significantly amplifies
the LIoU of ordinary quality anchor boxes while
substantially reducing the RWIoU of high-quality
anchor boxes. To prevent RWIoU from generating
gradients that hinder convergence, Wg and Hg are
separated from the computational graph (indicated by
the superscript * to denote this operation).

3.1.2 WIoUv3
Although WIoU v1 can be applied to most scenarios,
it still cannot adequately address the problem of small
objects in remote sensing images. To better focus on
small objects, we opted to use WIoUv3. This version
adds a focusing mechanism by constructing a gradient
gain (focusing coefficient) calculation method based
on v1, replacing the CIoU loss function in YOLOv7.
WIoUv3 introduces the concept of "outlier" to describe
the quality of anchor boxes, which is specifically
defined as:

β =
L ∗
IoU

LIoU
∈ [0,+∞) (3)

where LIoU represents the sliding average with
momentumm. A small outlier indicates a high-quality
anchor box, so a small gradient gain is allocated
to it. Simultaneously, smaller gradient gains are
also allocated to anchor boxes with higher outliers,
effectively preventing low-quality examples from
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generating larger harmful gradients. This ultimately
focuses the bounding box regression on anchor boxes
of ordinary quality. Utilizing β, a non-monotonic
focusing coefficient is constructed and applied toWIoU
v1:

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(4)

where r represents the gradient gain, and α and
δ are artificially set hyperparameters. Since LIoU
is dynamic, the quality division standard of the
anchor box is also dynamic. This enables WIoUv3 to
implement the most suitable gradient gain allocation
strategy for the current situation at every moment.

Figure 2. Shows hyperparameters α, δ Controlled β
Mapping with gradient gain γ.

After analyzing the influence of gradient gain r on
outliers β for several different sets of α and δ, as
shown in Figure 2, it can be seen that the blue
curve demonstrates better performance. It exhibits
smaller gradient gains at both low and high outliers,
making the loss function more focused on anchor
boxes of ordinary quality. Ultimately, we selected
the hyperparameters α = 1.9 and δ = 3 for the
final experiment (the experiment for determining
hyperparameters is provided in Part 3). Additionally,
to prevent low-quality anchor boxes from being left
behind during early training, we initialized LIoU so
that when LIoU = 1, it has the maximum gradient gain.

Remote sensing images inherently feature small
objects, which are often affected by weather conditions
and may also be obscured by shadows, greatly
increasing the difficulty of detection. Figure 3(a)
shows the detection result using the YOLOv7 source

code, which missed three small cars. After applying
WIoU v3 to YOLOv7, although one small car was still
missed, the unique dynamic non-monotonic focusing
mechanism resulted in improvements. As shown in
Figure 3(b), both the confidence in object detection
and the detection of blurry small objects in shadows
have been enhanced to a certain extent.

Figure 3. Impact of replacing WIoU on YOLO.

3.2 Bi-level Routing Attention(BRA)
BRA is a dynamic, query-aware sparse attention
mechanism designed to make each query focus on
a small subset of the most semantically relevant
key-value pairs. The core idea is to filter out the least
relevant key-value pairs at the coarse region level, thus
retaining only a small portion of the routing area. Then,
fine-grained labels are applied to the attention of the
labels in these routing areas. Because BRA involves
only dense matrix multiplication, it achieves good
performance while maintaining high computational
efficiency. The specific steps can be roughly divided
into the following three parts:

1) Regional division and input projection:

Input a two-dimensional feature map, X ∈ RH×W×C ,
and first divide it into S × S non-overlapping regions,
where each region contains HW

S2 feature vectors. This
transforms X into Xr ∈ RS

2×HW
S2 ×C . Then, derive the

linear projection of the query, key, and value as follows:

Q = XrW q,K = XrW k, V = XrW v (5)

whereW q,W k,W v ∈ RC×C are the projection weights
for the query, key, and value, respectively.

2) Routing from region to regionwith a directed graph:

Building on the first step, we establish the participation
relationship by constructing a directed graph. First,
apply the average value of each region to Q and
K separately to obtain Qr,Kr ∈ RS2×C , and then
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calculate the adjacency matrix Ar representing the
inter-region correlation between Qr andKr:

Ar = Qr(Kr)T (6)

The adjacency matrix Ar ∈ RS2×S2 measures the
degree of semantic correlation between two regions.
Next, only the top k connections of each region are
retained to trim the correlation graph. Specifically,
using the routing index matrix Ir ∈ NS2×k and the
row-wise top-K operator, the indices of the top k
connections are saved row by row:

Ir = topkIndex(Ar) (7)

where i-th row of Ir contains the index of the first k
most relevant regions of the i-th region.

3) Token to token attention:

By utilizing the routing index matrix Ir from region to
region, we can apply fine-grained labeling attention.
For each query marker in region i, it will focus on all
key-value pairs located in the k routing regions and
concentrate them together. Specifically, first collect the
key and value tensors:

Kg = gather(K, Ir), V g = gather(V, Ir) (8)

where Kg and V g are tensors of the aggregated key
and value, and then attention operations are used on
the aggregated key-value pairs:

Attention(Q,K, V ) = softmax(
QKT

√
C

)V (9)

O = Attention(Q,Kg, V g) + LCE(V ) (10)

We introduce a context enhancement term LCE(V )
here, where the function LCE(.) is parameterized
using depthwise separable convolution. The
convolution kernel size is set to 5.

In general, BRA collects key-value pairs from the
top k relevant windows, utilizes sparsity to skip the
calculation of the least relevant regions, and only
involves GPU-friendly dense matrix multiplication, as
shown in Figure 4.

Specifically, BRA is integrated into the YOLOv7
network. It first performs region-to-region routing
on the previously extracted feature maps, and then
applies token-to-token attention to obtain new output

Figure 4. Schematic diagram of BRA principle.

feature maps. Given that BRA operates on feature
maps and the spatial pooling pyramid SPPCSPC aims
to avoid image distortion caused by image processing
operations and duplicate feature extraction, it was
decided to insert the BRA module after SPPCSPC,
specifically into the YOLOv7 network.

Inmany remote sensing images, dense small objects are
clustered in specific areas. BRA focuses on these areas
and applies fine-grained attention mechanisms, which
align well with the characteristics of remote sensing
images. The actual situation is illustrated in Figure 5.
The left Figure 5(a) shows the detection results using
the YOLOv7 source code, while the right Figure 5(b)
shows the detection results after adding a BRAmodule
on top of the source code. It can be seen that for densely
packed small cars, adding the BRA module increases
the number of detected cars and reduces the number
of falsely detected roofs, thereby improving overall
accuracy.

Figure 5. The impact of adding BRA on YOLO.

4 Experiments
4.1 WIoU Hyperparameter experiment
To evaluate the effectiveness of the model, we chose
Precision, Recall, and mAP as evaluation metrics.
Precision refers to the percentage of predicted true
positive samples relative to the total predicted positive
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Figure 6. YOLOv7 and YOLOv7-bw detection results.

samples, and is calculated as:

Precision =
TP

TP + FP
(11)

Recall is the percentage of predicted true positive
samples relative to the entire true positive sample, and
is calculated as:

Recall = TP

TP + FN
(12)

The P-R curve represents the relationship between
precision and recall. With Recall on the horizontal
axis and Precision on the vertical axis, a curve for a
particular category is drawn. The area enclosed under
this curve is the AP value for that category.

The mAP (mean Average Precision) is the overall
evaluation index of an object detection algorithm for
a given dataset, representing the average AP value
of all categories. It is currently the most important

indicator for evaluating the performance of a model,
and is expressed as:

mAP =
1

C

C∑
i=1

APi (13)

To determinewhich hyperparameters aremost suitable
for application to WIoUv3, we designed a set of
comparative experiments based on the PyTorch
framework. We selected 20 categories from the
MS-COCO dataset, with 28,474 images as training data
and 1,219 images as validation data. For the model,
we chose YOLOv7-w6 with a layer channel multiplier
of 0.75 for training. These models were trained for 120
epochs with batch sizes of 32 and different BBR losses.
The experimental results are shown in Table 1.

From Table 1, we can see that WIoUv3 with dynamic
non-monotonic focusing performs better thanWIoUv1
with only a focusing mechanism. Meanwhile, when
α = 1.9 and δ = 3, WIoUv3 showed the
best performance across different IoU thresholds,
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Table 1. Comparison of different WIoU versions and
hyperparameters on MS-COCO (20 categories).

Method mAP@0.5 mAP@0.5:0.95 Recall
WIoU v1 (focusing only) 52.10 61.75 44.20
WIoU v3 (dynamic focusing) 53.80 63.50 45.10
WIoU v3 (α = 1.9, δ = 3) 54.50 64.20 45.68

with values of 54.50, 64.20, and 45.68, respectively.
Ultimately, we decided to use α = 1.9 and δ = 3 for
the final experiment after setting the hyperparameters.

4.2 Ablation experiment
To verify the effectiveness of eachmodule in the model,
we conducted a set of ablation experiments. The
dataset used is the DIOR remote sensing image dataset,
collected from Google Earth by experts in the field of
Earth observation interpretation. This dataset includes
23,463 remote sensing images and 190,288 object
instances. These object instances are manually marked
with axially aligned bounding boxes, covering 20
common object categories, namely airplanes, airports,
baseball fields, basketball courts, bridges, chimneys,
dams, highway service areas, highway toll stations,
ports, golf courses, ground track and field fields,
overpasses, ships, sports fields, storage tanks, tennis
courts, train stations, vehicles, and windmills.

We selected several images from the test dataset and
compared the actual effects of the YOLOv7 source
code and our improved YOLOv7-bw. The comparison
results are shown in Figure 6. The first image
demonstrates the effect of YOLOv7, and the second
image demonstrates the effect of YOLOv7-bw. From
Figure 6 (a), it can be seen that YOLOv7-bw has
fewer false detections of ships as vehicles compared
to YOLOv7. From Figure 6 (b), although there
are still many vehicles that have not been detected,
YOLOv7-bw detected 18 vehicles, which is higher than
the 15 vehicles detected by YOLOv7, indicating better
performance in vehicle positioning and focusing.

4.3 Comparison with other methods
To further verify the effectiveness of the improved
YOLOv7 presented in this article, we selected
commonly used algorithms in the field of object
detection for comparison, including classic algorithms
such as RCNN, SSD, RetinaNet, and CornerNet. The
DIOR remote sensing dataset was used for training
and testing under the same conditions. The results are
shown in Table 2.

From Table 2, it can be seen that our proposed
YOLOv7-bw algorithm achieves the best mAP@0.5

Table 2. Comparative experiments.

method Backbone mAP

R-CNN VGG-16 37.7
Faster R-CNN VGG-16 54.1

SSD VGG-16 58.6
RetinaNet ResNet-101 66.1
PANet ResNet-101 66.1

CornerNet Hourglass-104 64.9
YOLOv7 ELAN 83.7

YOLOv7-bw(ours) ELAN 85.6

at an IoU threshold of 0.5. This indicates that
the improved YOLOv7-bw algorithm optimizes the
detection performance of remote sensing images,
enhances overall detection performance, and makes
the models competitive. The optimization effect
is particularly evident for small and dense objects,
meeting the practical detection needs of remote sensing
images.

5 Conclusion
To address the problem of dense and blurred objects
in remote sensing images, this paper proposes the
YOLOv7-bw algorithm based on the YOLOv7 model,
introducing the BRA attention mechanism to focus
on densely populated object areas. Additionally, we
replaced the loss function with WIoUv3 to better focus
on and locate the objects to be detected. The algorithm
was tested on the DIOR remote sensing image dataset.
The experimental results showed that our YOLOv7-bw
achievedmAP@0.5 andmAP@0.5:0.95 values of 85.63%
and 65.93%, respectively, which were optimal results,
demonstrating the feasibility of our algorithm.

However, during the experiment, we also identified
shortcomings in the algorithm. Although the overall
number of detected vehicles is higher than with
YOLOv7, many small vehicles were still not detected
and can be optimized. In future research, we will focus
more on improving the model’s ability to recognize
small objects, aiming to achieve better performance in
the field of remote sensing images.
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