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Abstract
With the rapid development of multimodal large
language models (MLLMs), the demand for
structured event extraction (EE) in the field
of scientific and technological intelligence is
increasing. However, significant challenges remain
in zero-shot multimodal and cross-language
scenarios, including inconsistent cross-language
outputs and the high computational cost of
full-parameter fine-tuning. This study takes
VideoLLaMA2 (VL2) and its improved version
VL2.1 as the core models, and builds a multimodal
annotated dataset covering English, Chinese,
Spanish, and Russian (including 5,728 EE
samples). It systematically evaluates the
performance differences of zero-shot learning,
and parameter-efficient fine-tuning (QLoRA)
techniques. The experimental results show that
for EE, by using the VL2 model and the VL2.1 in
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combination with QLoRA fine-tuning to it, the
triggers accuracy rate can be increased to 65.48%,
the arguments accuracy rate to 60.54%. The study
confirms that fine-tuning significantly enhance
model robustness.

Keywords: event extraction, QLoRA, multimodal LLMs,
multilingual NLP.

1 Introduction
The vigorous development of Multimodal Large
Language Models (MLLMs) has brought profound
changes to the field of Natural Language Processing
(NLP), enabling qualitative breakthroughs in complex
tasks such as cross-lingual and cross-modal Event
Extraction (EE) [1]. However, current technologies
still have application limitations: in zero-shot
learning scenarios, their generalization ability for
multilingual data and cross-modal transfer effects
remain to be expanded, which has become an
important research direction for future technological
iteration. This paper focusses on VL2 (based on
Mistral-7B-Instruct-v0.2) [2] and VL2.1 (based on
Qwen2-7B-Instruct), assessing their capabilities in EE
across English (EN), Chinese (ZH), Spanish (ES),
and Russian (RU), under zero-shot and fine-tuned
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conditions [3].

Initial research work has sufficiently proven the
potential of MLLMs in extraction tasks. Lin
et al. [4] demonstrated that few-shot learning
with models like GPT-3 resulted in significant
performance in structured NLP tasks, though
multilingual performance varies. Conneau et al. [5]
highlighted challenges in zero-shot cross-lingual
transfer,indicating that models often struggle with
languages lacking extensive pre-training data. For
EE, Wadden et al. [6] proposed contextualized
span representations, achieving high accuracy in
English but less so in multilingual contexts. MLLMs,
as surveyed by Wu et al. [7], show promise in
integrating visual and textual cues, yet their zero-shot
multilingual performance is limited by alignment
issues. Based on this, our research evaluated VL2
and VL2.1, aiming to address the deficiencies in
multilingual and multimodal extraction and explore
the role of fine-tuning in improving performance.

2 Related Work
The primary objective of this research is to improve
the structured extraction of events from multimodal,
multilingual inputs using multimodal large language
models. In essence, we aim to develop and evaluate
techniques that enable an AI system to take in
information from text, images, and videos in multiple
languages (English, Chinese, Spanish, Russian) and
output a well-structured representation of any events
described expressed, all with high accuracy and
efficiency. To achieve this goal, this section introduces
the relevant working strategies.

2.1 Baseline Evaluation
Baseline evaluation of Multimodal Large Language
Models (MLLMs) in event extraction (EE) focuses
on assessing their inherent capabilities in zero-shot
scenarios, i.e., without task-specific fine-tuning [8].
This work builds on prior research highlighting
the potential of MLLMs in integrating cross-modal
and cross-lingual cues,while also addressing their
limitations in generalization across low-resource
languages and modalities. Our baseline evaluation
targets VL2 and VL2.1, two state-of-the-art MLLMs,to
quantify their zero-shot EE performance across
four languages (English, Chinese, Spanish,
Russian) and three modalities. This evaluation
establishes a benchmark for trigger and argument
identification accuracy,revealing gaps in cross-lingual
consistency (e.g.,language mixing in outputs) and

modality-specific weaknesses (e.g.,lower accuracy
for video inputs) that inform subsequent fine-tuning
strategies [9].

Furthermore,the effectiveness of task-specific model
adaptation has been demonstrated in other domains
involving complex system dynamics.For instance,
Hong et al. [12] proposed a resilience recovery
method for traffic networks using LSTM-based
trend forecasting,highlighting the importance of
tailored architecture and fine-tuning for robust
performance.This aligns with our objective of
employing QLoRA to adapt MLLMs for cross-lingual
event extraction.

2.2 QLoRA Fine-Tuning
Parameter-efficient fine-tuning (PEFT) techniques,
such as QLoRA, address the high computational
costs of full-parameter fine-tuning while enhancing
model adaptation to specific tasks like cross-lingual
multimodal EE. QLoRA extends LoRA (Low-Rank
Adaptation) by combining low-rank matrix updates
with 4-bit quantization, drastically reducing memory
usage and enabling training on limited hardware [10].
In the context of EE, QLoRA fine-tuning is tailored
to structured outputs(triggers and arguments) by
adjusting low-rank matrix rank (r=128) and scaling
factors (α=256) to balance adaptation strength and
stability [11]. By applying QLoRA to VL2 and VL2.1,
this study aims to enhance cross-lingual consistency
and EE accuracy while maintaining computational
feasibility, addressing key limitations identified in
baseline evaluations.

3 Methodology
This section outlines themethodology used to evaluate
and optimize the VL2 and VL2.1 models for EE
(end-to-end), covering language dimensions such
as English, Chinese, Spanish, and Russian. The
methodology aims to enhance the models’ multimodal
interaction capabilities and cross-lingual processing
performance.

3.1 Dataset Construction
The development of a novel multimodal and
multilingual dataset for EE addresses a significant gap
in resources tailored for STI.Existing datasets often
lack comprehensive coverage of text, image, and video
modalities across multiple languages, particularly for
specialized intelligence tasks. This dataset fills this
void by integrating diverse data types including text,
images, videos,and audio with a focus on four primary
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languages (i.e.,English, Chinese, Spanish, Russian)
due to their geopolitical relevance and data availability.
The dataset is designed to support robust EE tasks,
ensuring relevance and reproducibility through
a structured eight-step process: (1) Data Source
Picking, (2) Data Collection, (3) Data Extraction, (4)
Data Cleaning, (5) Data Deduplication, (6) Data
Annotation, (7) Creation of a Multilingual and
Multimodal Dataset, and (8) Conversion to VL2
Format. See Figure 1 for the Construction process of
the dataset.

Figure 1. Construction process Of the dataset.

3.1.1 Data Source Picking
The dataset was curated from open-source science
and technology information websites worldwide,
selected for data quality, legal compliance, and
alignment with intelligence objectives. Sources
encompass news articles, industry research reports,
and enterprise dynamics,covering topics such as
artificial intelligence, integrated circuits, and emerging
technologies. Including eeworld.com.cn (Chinese,
electronic technology developments), stdaily.com
(Chinese, science and technology news), rand.org
(English, research reports), cadence.com (English,
system design solutions), new-science.ru (Russian,
high-tech news), genbeta.com (Spanish, software
applications), and hipertextual.com (Spanish, digital
technology and science). These platforms ensure a
rich, diverse corpus spanning text, images, videos.
The dataset forms a parallel corpus with primary
focus on English, Chinese, Spanish, and Russian for
broader coverage. Sources were filtered to guarantee
multimodal alignment and relevance to science and
technology intelligence [12].

3.1.2 Data Collection
Data collection leveraged the 360 Data Collection
Platform, an integrated system with modules for
seed management, annotation, and structured data
extraction. The Spider crawler tool systematically
gathered raw web page data from selected sources,
channeling it into a Kafka pipeline for scalable and
reliable processing. This pipeline ensured efficient
handling of multimodal data including text articles,

images (e.g., diagrams, product photos), videos
(e.g.,news clips, technology demos), and audio while
maintaining traceability and integrity. The platform’s
modular design facilitated iterative refinement of
collection parameters, optimizing coverage across
languages and modalities. See Figure 2 for Data
collection platform architecture.

Figure 2. Data collection platform architecture.

3.1.3 Data Extraction
Structured extraction of multimodal content was
achieved using XPath-based templates generated by
the annotation platform. These templates target
specific elements (i.e., text content, image URLs,
video URLs, and audio URLs), within raw web
pages, enabling precise isolation of relevant data.
For example, text was extracted from article bodies,
while video URLs were retrieved from embedded
media players. Extracted data was stored in the
Kafka pipeline and made accessible via a data request
interface, streamlining downstream processing. This
structured approach ensured consistency across
modalities and minimized data loss during extraction.

3.1.4 Data Cleaning
To enhance data quality, a rigorous cleaning process
was applied. Text data underwent removal of
HTML tags, stop words, and special characters
to improve clarity and uniformity. Outliers, such
as missing or incomplete values, were handled
through interpolation (for minor gaps) or deletion
(for irreparable entries), preserving dataset integrity.
Cleaning ensured that subsequent annotation and
modeling tasks operated on high-quality inputs,
minimizing errors due to formatting inconsistencies
or irrelevant content [13].
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3.1.5 Data Deduplication
Deduplication was performed to ensure uniqueness
and prevent bias in downstream tasks. Whole-row
deduplication eliminated identical entries, while
text similarity filtering, using cosine similarity,
removed near-duplicate content across languages and
modalities. This step was critical for maintaining
dataset diversity, particularly given the overlap often
found in news and report summaries across sources.
Deduplication enhanced the representativeness of the
dataset, ensuring that models trained on it would
generalize effectively.

3.1.6 Data Annotation
Annotation was conducted using Label Studio, an
open-source platform supporting text, image, video,
and audio labeling. Datasets were imported in JSON
format, annotated by trained experts, and exported
with entities, relationships, and attributes.

3.1.7 Creation of a Multilingual and Multimodal Dataset
The final dataset comprises 5,728 EE samples, covering
text, image, and video modalities across four primary
languages. The full dataset includes 3,449 texts, 1,971
image, and 308 video samples, with 1,197 English,
1,844 Chinese, 1,449 Russian, and 1,238 Spanish
samples, as shown in Table 1.

Table 1. Dataset statistics.

Event Count

Modality

Image 1971
Video 308
Text 3449
Total 5728

Language

English 1197
Chinese 1844
Russian 1449
Spanish 1238
Total 5728

3.1.8 Conversion to VL2 Format
To enable training with VL2 and VL2.1, the dataset
was converted into VL2 format, structuring data as

JSON objects with text tokens, CLIP-ViT or SigLIP
image embeddings, and video frame sequences.
Formats include text-only, text-image, text-video, and
text-audio configurations.

3.2 Base Model Selection
Based on the primary focus on multimodality
and multilinguality, we evaluated four MLLMs:
Video-LLaVA (7B), Video-LLaMA (7B),
VideoLLaMA2 (7B), and VideoLLaMA2.1 (7B).
The comparison criteria included multimodal support
(i.e., text, image, video), context length, multilingual
performance in target languages (i.e., English, Chinese,
Spanish, Russian), general performance on relevant
benchmarks, and computational feasibility for training
on available hardware (two A100-40GB GPUs).
VL2 and VL2.1 were selected as the base models.
VL2 (7B) employs a CLIP-ViT-Large-Patch14-336
encoder and a Mistral-7B-Instruct-v0.2 decoder,
supporting a 32k context length. VL2.1 (7B),
utilizes a SigLIP-So400mPatch14-384 encoder and a
Qwen2-7B-Instruct decoder, enabling a 131k context
length. These models were chosen over alternatives
like Video-LLaVA [14] and Video-LLaMA [15]
due to their superior context length capabilities
and advanced decoders, enhancing multilingual
and multimodal processing [16, 17]. Base Model
comparison is given in Table 2.

VL2 is an advanced multimodal large language
model designed for enhanced video and audio
understanding, building upon the foundation
of its predecessor with significant architectural
improvements tailored for spatial-temporal modeling
and multimodal integration. The model comprises
a transformer-based language model paired with
specialized vision and audio processing components,
optimized for tasks such as video question answering,
captioning, and EE as outlined [2].

3.3 Base Model Performance Evaluation
We scrutinized the baseline performance of VL2 and
VL2.1 using zero-shot inference with temperature
set to 0.2 and top_p to 0.9. Temperature controls
output randomness, and top_p governs token selection

Table 2. Base model comparison.

Model Modalities Context Length Visual Encoder Language Decoder

Video-LLaVA Image, Video, Text 2K CLIP Vision Encoder Vicuna-7B
Video-LLaMA Image, Video, Text, Audio 4k ViT-G/14 + BLIP-2 Q-Former LLaMA2-7B
VideoLLaMA2 Image, Video, Text, Audio 32k CLIP-ViT-Large-Patch14-336 Mistral-7B-Instruct-v0.2
VideoLLaMA2.1 Image, Video, Text, Audio 131k SigLIP-So400m-Patch14-384 Qwen2-7B-Instruct
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diversity via nucleus sampling [10]. Low temperature
(0.2)ensures deterministic, focused outputs, while
high top_p(0.9) balances creativityand coherence,
optimizing for the structured nature of event and
opinion extraction [4].

3.4 Model Fine-Tuning
QLoRA extends LoRA, a technique that updates
model weights efficiently by introducing low-rank
matrices, with 4-bit quantization to further reduce
memory demands [11]. In LoRA, weight updates are
formulated as:

W = W0 + ∆W (1)

where ∆W = BA, with B ∈ Rd×r, A ∈ Rr×k,
and r � d, k. Only the low-rank matrices (B) and
(A) are trained, significantly reducing the number
of parameters updated compared to full fine-tuning,
which modifies all weights (O(dk)). QLoRA enhances
this by quantizing the base weights W0 to 4-bit
precision (W 4bit

0 ) and applying LoRA updates:

W = W 4bit
0 +BA (2)

Additionally, QLoRA incorporates double
quantization, quantizing the quantization constants
themselves to further optimize memory usage.
This approach reduces memory requirements from
approximately 100 GB for full fine-tuning of a 7B
model to 10 GB for QLoRA, enabling training on two
A100-40GB GPUs [18].

VL2 and VL2.1 were fine-tuned separately for EE using
the full dataset with 5,728 samples on two A100-40GB
GPUs. Separate models were trained to accommodate
EE’s structured JSON output, which includes triggers,
event types, and arguments. The following are the
parameters that have been used in the training.

Rank (r) = 128: This low-rank factorization of
the update matrix ∆W forms the basis of LoRA.
Here, A and B are the learned low-rank adaptation
matrices with rank r=128, allowing the model to
adapt efficiently to structured outputs like event
triggers and argumentswhile keeping parameter count
low. A lower rank was chosen for EE due to its
constrained, structured output format, which requires
less flexibility than generative tasks [19].

∆W = AB, where A ∈ Rd×r, B ∈ Rr×k,

and r � min(d, k)
(3)

Alpha= 256: The final adapted weights are computed
by scaling the LoRA updates ∆W by a factor α=256.
This controls the strength of adaptation relative to the
base model weights W , ensuring stable fine-tuning
suited for EE. A moderate value suits EE’s structured
nature [19].

W ′ = W + α ·∆W = W + αAB (4)

Max Tokens = 9,300: The model accommodates the
complexity of event extraction (EE) inputs, which
often involve long contexts with multiple triggers
and arguments, by leveraging a large token limit
of 9,300 and a high embedding dimension. This
ensures sufficient capacity to process and encode
lengthy documents while maintaining full contextual
understanding. The size of each input sequence is
calculated as the maximum token length multiplied
by the model’s embedding dimension, enabling robust
handling of intricate, event-rich texts [19].

InputSize = MaxTokens× EmbeddingDim (5)

Epochs = 3: Given 3 epochs and a batch size of 2, the
model performs 8,592 update steps during training.
This ensures sufficient convergencewithout overfitting,
considering the dataset size [19].

TotalSteps = Epochs×
(

N

BatchSize

)
(6)

Batch Size= 2: This estimate outlines theGPUmemory
footprint of the training process. By setting a batch size
of 2 and quantizing weights to 4 bits, QLoRA enables
memory-efficient training for high-context EE samples
[19].

Memory ≈ BatchSize×MaxTokens×Precision(bits)
(7)

The lower rank (r=128) aligns with EE’s need for
precise encoding of structured outputs, as excessive
adaptation capacity could introduce noise in trigger
and argument identification [20]. A higher max token
count (with 9,300) accommodates complex inputs,
such as multilingual texts or multimodal data with
detailed event descriptions. Fewer epochs (with 3)
were chosen to balance convergence and overfitting
risks, given the dataset’s size and diversity across four
languages and modalities.

The following are the overall training arguments that
are used in the EE training.
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Optimizer: This is the AdamW optimization update
rule used in both EE. AdamW, the default for QLoRA,
was used with a learning rate of 1e-5 to ensure stable
convergence across tasks [11].

θt+1 = θt − η ·

(
mt(√
vt + ε

))+ λ · θt (8)

wheremt and vt represent the first and secondmoment
estimates, η = 1e− 5 is the learning rate, and λ is the
weight decay coefficient, ensuring convergence and
regularization.

Hardware: Two A100-40GB GPUs enabled parallel
training of EE models, leveraging QLoRA’s memory
efficiency

The EE focus on encoding allows for a more
constrained specification. Within the context of
maximum tokens, epoch size, and batch size, these
parameters create an appropriate balance between
memory efficiency and performance on smaller
datasets, as QLoRA is explicitly designed to do [11, 19].

3.5 Evaluation Criteria
We evaluated performance using accuracy.We
computed overall accuracy using a test set comprised
320 samples for EE, with 80 samples per language
(English, Chinese, Spanish, Russian). Also calculated
separate accuracies for trigger and event type
identification (Tr Accuracy) and argument and role
identification (Arg Accuracy), reflecting the task’s
dual components [6].

Event Extraction:Here calculated separate accuracies
for trigger and event type identification (Tr Accuracy)
and argument and role identification (Arg Accuracy).
Separating Tr and Arg Accuracy captures EE’s
dual components such as trigger identification and
argument role assignment, reflecting the task’s
complexity. Precision-focused metrics ensure accurate
event structuring, vital for intelligence analysis where
incorrect triggers or rolescould lead to significant
misinterpretations [12].

Metrics: Trigger Accuracy (Tr Accuracy):

Tr Accuracy =
Correct triggers and roles

Total triggers
(9)

A correct trigger matches the ground-truth trigger
word/phrase and its associated event type.

Argument Accuracy (Arg Accuracy):

Arg Accuracy =
Correct arguments and roles

Total arguments
(10)

A correct argument matches the ground-truth
argument and its role.

4 Experimental Result
This section systematically evaluates the performance
of VL2 and VL2.1 models in multilingual EE tasks,
covering English, Chinese, Spanish, and Russian with
text, image, and video as inputs. The assessment
includes zero-shot learning, QLoRA fine-tuning
performance. Accuracy metrics are summarized for
and EE (trigger, Tr; argument, Arg), focusing on key
evaluation dimensions for both tasks.

4.1 Zero-Shot Base Model Performance
VL2 achieved an overall Tr Accuracy of 28.40% and
Arg Accuracy of 23.89%, while VL2.1 recorded 24.76%
Tr Accuracy and 20.88% Arg Accuracy, as shown in
Table 3 and Figure 3. These modest scores reflect
the complexity of identifying event triggers and their
associated arguments without task-specific training.
Language-specific performance varied significantly.
For VL2, English samples yielded 34.38% Tr Accuracy
and 28.13% Arg Accuracy, followed by Chinese
(31.77% Tr, 24.83% Arg), Spanish (29.13% Tr, 26.19%
Arg), and Russian (18.34% Tr,16.42% Arg). VL2.1
demonstrated a notable strength in Chinese, achieving
44.8% Tr Accuracy and 36.25% Arg Accuracy, but
struggled elsewhere, particularly in Russian (12.5%
Tr, 9.88% Arg), with English (20.63% Tr, 18.19%
Arg) and Spanish (21.14% Tr, 19.2% Arg) also
lagging.Comparing the models, VL2 outperformed
VL2.1 overall in Tr Accuracy by 3.64%, driven by better
consistency across languages, whereas VL2.1’s Chinese
performance surpassed VL2 by 13.03% in Tr Accuracy,
indicating a language-specific advantage possibly tied
to its Qwen2-7B-Instruct decoder.

Error analysis reveals critical challenges. Both
models exhibited language mismatches, such as VL2.1
producing Chinese triggers for Spanish inputs or
English triggers for Russian samples. VL2 occasionally
generated incorrect event types, mislabeling a "launch"
event as a "policy change," reflecting confusion in
semantic categorization. Incomplete outputs were
prevalent, with VL2.1 showing a higher incidence
of missing arguments, particularly in Russian,where
only partial roles were extracted. A stylistic difference
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Table 3. Zero-shot event extraction performance.

Model Language Tr Accuracy (%) Arg Accuracy (%)

VL2

English 34.38 28.13
Chinese 31.77 24.83
Spanish 29.13 26.19
Russian 18.34 16.42
Overall 28.40 23.89

VL2.1

English 20.63 18.19
Chinese 44.80 36.25
Spanish 21.14 19.20
Russian 12.50 9.88
Overall 24.76 20.88

Figure 3. Tr & Arg Accuracy of VL2 and VL2.1 in different
languages.

emerged: VL2 favored longer trigger phrases (e.g.,
"announced a new technology"), aligning with
verbose contextual cues, while VL2.1 preferred concise
keywords (e.g., "technology"), which sometimes
sacrificed specificity [21]. These trends suggest that
zero-shot event extraction struggles with multilingual
coherence and structural fidelity, necessitating targeted
improvements.

Overall, in zero-shot settings, both models
demonstrate moderate capabilities, with VL2.1
showing a slight edge in OE and VL2 performing
better in EE. However, language inconsistencies—such
as generating Chinese triggers for English inputs
or mixing languages in Spanish and Russian
outputs—reveal limitations in cross-lingual
generalization, consistent with prior work on
multilingual LLMs [17]. VL2.1’s stronger performance
in English and Chinese suggests a bias possibly
inherited from its Qwen2-7B- Instruct backbone,
which may have been pre-trained on larger corpora in
these languages [15]. Its weaker handling of Russian
inputs, points to difficulties with morphologically
complex languages, a recognized challenge in LLMs
[5].

4.2 Fine-Tuned Model Performance
QLoRA fine-tuning markedly improved EE
performance over zero-shot baselines (VL2: 28.40%
Tr Accuracy, 23.89% Arg Accuracy; VL2.1: 24.76% Tr,
20.88% Arg). As shown in Table 4 and Figure 4 below,
VL2 achieved 65.28% Tr Accuracy and 60.54% Arg
Accuracy, while VL2.1 recorded 65.48% Tr Accuracy
and 53.04% Arg Accuracy. Language-specific results
reveal nuanced strengths. For VL2, English samples
yielded 68.13% Tr and 63.96% Arg, Chinese 67.92%
Tr and 65.08% Arg, Spanish 60.52% Tr and 59.58%
Arg, and Russian 64.58% Tr and 53.54% Arg. VL2.1
excelled in Chinese with 78.54% Tr Accuracy and
56.77% Arg Accuracy,followed by English (64.38% Tr,
56.46% Arg), Spanish (61.5% Tr, 50.31% Arg), and
Russian (57.5% Tr, 48.65% Arg). Comparing models,
VL2 demonstrated balanced performance across
languages, with Arg Accuracy consistently above 53%,
whereas VL2.1’s Chinese Tr Accuracy surpassed VL2
by 10.62 percent, likely due to its Qwen2-7B-Instruct
decoder’s pre-training strengths. However, VL2.1’s
Arg Accuracy lagged, particularly in Russian, trailing
VL2 by 4.89 percent. See Table 4 and Figure 4 below,
for Fine-tuned EE performance.

The gains are striking: VL2’s Tr Accuracy surged
from 28.40% (zero-shot) to 65.28%, a 36.88-point
increase, and Arg Accuracy rose by 36.65 percent.
VL2.1’s Tr Accuracy improved by 40.72 points to
65.48%, and Arg Accuracy climbed from 20.88% to
53.04%, a 32.16-point gain. These improvements
stem from QLoRA’s ability to adapt model weights
to task-specific patterns, eliminating key zero-shot
errors [11]. Notably, fine-tuned models produced
no language mismatches—unlike zero-shot runs
where Chinese triggers appeared in Spanish samples.
Outputs were complete, with all arguments and roles
correctly identified, and JSON structures adhered to
the specified format, resolving issues like missing
event roles (e.g., "entity" in "innovation") seen
in zero-shot settings. The challenge of incorrect
event types (e.g., "launch" mislabeled as "policy
change") was also mitigated, reflecting better semantic
alignment. See Table 4 and Figure 4 below, for
Fine-tuned EE performance.

Despite these advances, challenges persist. Russian
Arg Accuracy remained lower,particularly for VL2.1
(with 48.65%), suggesting difficulties in capturing
complex argument roles in morphologically rich
languages. Training used two A100-40GB GPUs
with parameters set at LoRA rank (r) = 128,
LoRA alpha = 256, max tokens = 9,300, epochs
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Table 4. Fine-Tuned Model Performance.

Model Language Tr Accuracy (%) Arg Accuracy (%)

VL2

English 68.13 63.96
Chinese 67.92 65.08
Spanish 60.52 59.58
Russian 64.58 53.54
Overall 65.28 60.54

VL2.1

English 64.38 56.46
Chinese 78.54 56.77
Spanish 61.50 50.31
Russian 57.50 48.65
Overall 65.48 53.04

Figure 4. The Fine-tuned result of QLoRA.

= 3, and batch size = 2. VL2 required 182
minutes, while VL2.1 took 169.97 minutes, reflecting
slight efficiency differences possibly tied to VL2.1’s
decoder architecture. These configurations balanced
computational efficiency with performance, making
QLoRA viable for resource-constrained settings.

Overall, Fine-tuning produced the notable
improvements, eliminating language inconsistencies
and incomplete outputs, a finding supported by
studies on task-specific adaptation [4]. VL2’s balanced
EE performance suggests Mistral-7B’s suitability for
structured tasks. Training times,though feasible,
highlight event extraction’s computational complexity
due to trigger-argument dependencies [6]. These
findings suggest fine-tuned MLLMs could enhance
real-time STI monitoring across diverse media.

5 Future Direction
However, there are still some limitations. The
multimodal dataset–encompassing images, videos,
and text–tends to heighten challenges in zero-shot
scenarios. This is because cross-modal alignment
remains a formidable task without fine-tuning, as
noted in prior research [7]. Ongoing challenges
persist, including the difficulty of achieving effective

cross-modal alignment in zero-shot settings and
the complexity of processing morphologically rich
languages such as Russian. While the success
of fine-tuned models across various modalities
underscores the significance of adaptive tuning,
the dataset’s imbalanced language distribution–with,
for instance, a larger number of Chinese event
samples–might introduce potential biases.

To address these limitations, future research can
pursue several directions, starting with model
development. Testing larger models, such as
VideoLLaMA2-72B or hybrid architectures with
specialized visual encoders for video processing,
could improve accuracy, particularly for video inputs,
which lagged in this study [2]. Integrating advanced
multimodal frameworks, like those combining
CLIP-style vision encoders with transformer-based
language decoders, may enhance cross-modal
reasoning, pushing EE accuracies beyond the current
65–74% range.

Dataset expansion is another critical avenue. Including
additional languages, such as Arabic or Hindi,
would broaden the system’s applicability to diverse
geopolitical contexts, addressing the intelligence
community’s need for global coverage [22]. Increasing
video samples and balancing language distributions
(e.g., equalizing Spanish and Chinese event samples)
would mitigate biases and improve fairness across
languages. Automated or semi-automated annotation
tools, validated by human experts, could scale the
dataset while maintaining quality, reducing reliance
on labor-intensive manual processes [23].

Methodologically, adaptive prompting strategies [24],
such as dynamic CoT that adjust reasoning steps
based on input complexity [25], could be explored
for fine-tuned models to recover the benefits seen
in zero-shot settings [26]. Ablation studies varying
QLoRA parameters (e.g.,LoRA rank, alpha, or
quantization bits) would optimize efficiency and
performance, addressing resource constraints.
Additionally, modality-specific evaluations separating
text, image, and video performance would clarify
where models excel or falter, guiding targeted
improvements.

Finally, applying these methods to other domains
holds significant potential. EE could enhance policy
analysis by tracking legislative changes or public
sentiments across multimodal sources or improve
social media monitoring by detecting emerging trends
in global discourse. Integrating human-in-the-loop
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validation, where analysts refine model outputs in
real-time, would tailor the system to intelligence
tasks, ensuring reliability in high-stakes contexts [27].
These extensions would amplify the research’s impact,
positioning it as a versatile framework for automated
intelligence processing across diverse applications.

6 Conclusion
This study systematically explores the potential
of multimodal large language models (MLLMs)
in cross-lingual and multimodal event extraction
(EE), with a focus on addressing key challenges
such as poor zero-shot generalization, inconsistent
cross-lingual outputs, and high computational
costs of full-parameter fine-tuning. By centering
on VideoLLaMA2 (VL2) and its improved version
VL2.1, and integrating parameter-efficient fine-tuning
(QLoRA), the research delivers comprehensive
insights into optimizing MLLMs for structured EE
tasks across diverse languages and modalities.

First, the study fills a critical gap in resource availability
by constructing a novel multimodal and multilingual
EE dataset. Comprising 5,728 samples spanning
English, Chinese, Spanish, and Russian, and covering
text, image, and video modalities, this dataset is
tailored to the needs of scientific and technological
intelligence (STI) analysis.

Second, the baseline evaluation of VL2 and VL2.1
in zero-shot scenarios reveals inherent limitations
of MLLMs in cross-lingual EE. Both models exhibit
modest performance, language-specific disparities are
evident. Common issues include cross-lingual output
mismatches (e.g., Chinese triggers for Spanish inputs)
and incomplete argument extraction, highlighting the
need for task-specific adaptation.

Third, the application of QLoRA fine-tuning yields
dramatic improvements, confirming its effectiveness
in enhancing model robustness and reducing
computational costs. Key advancements include
elimination of cross-lingual inconsistencies, complete
structured outputs, and better alignment of event
types with semantic contexts.

In conclusion, fine-tuned MLLMs provide an efficient
solution for real-time monitoring of cross-lingual
multimodal scientific and technological intelligence,
with significant practical value.
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