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Abstract
Defocus blur detection is essential for
computational photography applications, but

existing methods struggle with accurate blur
localization and boundary preservation. We
propose SemanticBlur, a deep learning framework
which integrates semantic understanding with
attention mechanisms for robust defocus blur
detection. Our semantic-aware attention module
combines channel attention, spatial attention,
and semantic enhancement to leverage high-level
features for low-level feature refinement. The
architecture employs a modified ResNet-50
backbone with dilated convolutions that preserves
spatial resolution while expanding receptive
fields, coupled with a feature pyramid decoder
using learnable fusion weights for adaptive
multi-scale integration. A combined loss function
balancing binary cross-entropy and structural
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similarity achieves both pixel-wise accuracy and
structural coherence. Extensive experiments on four
benchmark datasets (CUHK, DUT, CTCUG, EBD)
demonstrate state-of-the-art (SOTA) performance,
with ablation studies confirming that semantic
enhancement provides the most significant
gains while maintaining computational efficiency.
SemanticBlur generates visually coherent detection
maps with sharp boundaries, validating its practical
applicability for real-world deployment.

Keywords: blur detection, semantic segmentation,
attention mechanisms, deep neural networks, image
analysis, multi-scale processing.

1 Introduction

Defocus blur detection (DBD) aims to identify objects
or regions with blurred pixels in videos or images.
It is often caused by limitations in the imaging
system when scene areas fall outside the camera’s
focal plane. It serves as a crucial preprocessing
step for numerous computer vision applications,
including image refocusing [1], blur reconstruction
[2], depth estimation [3], image deblurring [4, 5],
and object detection [6-8]. Traditional DBD methods
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relied heavily on hand-crafted image priors based
on empirical observations [9-11], utilizing manually
extracted low-level features such as gradients [24],
local binary patterns [27], and frequency domain
analysis [26]. However, these approaches face
significant limitations as they are challenging to
design, often lack generalizability, and can only
succeed in simple scenes. Most critically, they cannot
capture high-level semantic information necessary
to distinguish foreground objects from complex
backgrounds and to accurately detect boundary details,
especially in gradient regions.

To address these limitations, current state-of-the-art
methods [12-15] utilize deep learning networks to
implicitly learn more general priors by extracting
defocused blur image semantics and texture
information from large-scale datasets. The enhanced
efficacy of Convolutional Neural Networks (CNNs)
in DBD primarily hinges upon the complexity of
their model architecture. Various network modules
have been devised for DBD, including residual
learning [19, 20], generative adversarial learning [18],
attentional mechanisms [21], dense connections [22],
and depth distillation [14]. In semantic segmentation
tasks [16, 17], deep learning approaches consistently
leverage semantic information of target objects to
achieve distinctive feature segmentation in prominent
regions. Similarly, in DBD, these methods effectively
mitigate detection challenges in simple homogeneous
regions. Jonna et al. [18] further address limitations
by employing adversarial mechanisms to exploit
weak correlations in semantic content of defocused
blurry regions, thereby realizing a self-supervised
DBD methodology. Some methods [22, 32] employ
integrated learning approaches that combine results
from multiple network branches to improve feature
diversity, while others [19, 23] utilize different
layers of information to complement each other and
enhance feature representation. However, due to the
susceptibility of low-level information to background
noise interference, especially in transition edge regions
where similarity discrimination ability is weak, it
becomes essential to utilize high-level semantic
information to guide refinement of low-level features.

Our work makes the following main contributions:

e We propose SemanticBlur, a novel semantic-aware
attention module integrating channel attention,
spatial attention, and semantic enhancement to
effectively leverage high-level semantic features
for guiding low-level feature refinement in
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defocus blur detection.

e We introduce a hierarchical feature extraction and
fusion architecture consisting of: (i) a modified
ResNet-50 backbone with strategically placed
dilated convolutions (rates: 2, 4, 8) in the
final stages to preserve spatial resolution while
capturing multi-scale contextual information,
and (ii) a novel feature pyramid decoder
with learnable fusion weights (31, 52,03, 84)
that adaptively combines features across scales,
enabling effective capture of both fine-grained
boundary details and global semantic context.

e We introduce a combined loss function balancing
binary cross-entropy and structural similarity loss
(A = 0.1) to achieve both pixel-wise accuracy and
structural preservation, with optimal weighting
validated through comprehensive ablation studies
across multiple benchmark datasets.

The remainder of this paper is organized as follows:
Section 2 reviews related work in defocus blur
detection, covering hand-crafted feature-based
methods, deep learning approaches, and attention

mechanisms.  Section 3 presents our proposed
methodology, detailing the backbone feature
extraction, semantic-aware attention module,

and decoder architecture.  Section 4 describes
our experimental setup, including datasets,
implementation details, evaluation metrics, and
presents comprehensive results including ablation
studies and comparative analysis with SOTA methods.
Section 5 concludes the paper with a summary of
contributions and discussion of future research
directions.

2 Related Work

Defocus blur is a common phenomenon in natural
images, mainly caused by the limited depth of field
of cameras or by unfavorable imaging conditions.
Research on defocus blur detection (DBD) can
be broadly categorized into two major directions:
approaches relying on hand-crafted features and those
leveraging deep learning.

2.1 Hand-crafted Feature-based Methods

Early studies predominantly relied on low-level image
cues to distinguish blurred from sharp regions.
A common observation was that defocus blur
weakens object boundaries, leading to smoother edge
transitions. To exploit this, Shi et al. [24] integrated
multiple blur indicators such as gradients, frequency
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information, and local filters into a multi-scale
framework. Su et al. [25] instead analyzed the singular
value decomposition (SVD) of images and introduced
an a-channel constraint to discriminate between
defocus and motion blur. Tang et al. [26] proposed
a blur metric derived from logarithmically averaged
spectral residuals and refined the resulting blur map
by exploiting correlations among neighboring regions.
Yi and Eramian [27] presented a sharpness measure
based on localized binary patterns (LBP), which
enabled separation of in-focus and blurred regions.
More recently, Golestaneh et al. [9] developed HiFST,
a method that combines high-frequency multi-scale
fusion with gradient-based transforms for spatially
adaptive blur detection. Although these approaches
demonstrated effectiveness in relatively simple cases,
their reliance on local cues limited their generalization
to complex natural scenes where semantic context is
crucial.

2.2 Deep Learning Based Methods

In recent years, deep learning based methods
have achieved superior performance in the field of
DBD due to the powerful learning capability of
CNN. Studies, such as STNet [28], demonstrate
that combining transformer-based multi-scale feature
extraction with effective attention mechanisms can
achieve high performance while maintaining a
lightweight architecture. Park et al. [29] pioneered a
unified framework where deep CNN features were
fused with conventional descriptors and processed
through an FCN for blur segmentation. Zhao etal. [30]
introduced an end-to-end CNN that integrates both
semantic features and low-level details, progressively
refining blur maps in a scale-sensitive manner. Zeng et
al. [31] further combined CNN-extracted features with
principal component analysis on image superpixels,
followed by iterative refinement to improve spatial
consistency.

To address the limited diversity of CNN feature
representations, Zhao et al. [22] introduced a
cross-ensemble strategy with a cross negative
correlation loss to train multiple detectors jointly,
promoting diversity in feature representations.
Building on this, an encoder-feature integration
network was later introduced [32], generating
multiple sets of convolutional features from a single
encoder to enhance representation richness. Beyond
CNNs, recent studies highlight the benefits of
transformer architectures and attention mechanisms.
Similarly, approaches such as GPRNet [33] integrate

multi-level attention, edge-awareness, and uncertainty
modeling to better capture fine boundaries and handle
challenging homogeneous regions.

2.3 Attention Mechanisms in DBD

Attention mechanisms have become a cornerstone in
computer vision by focusing on critical information
while suppressing redundant data. The prevalent
attention modules propagate channel dimensions
[34], spatial dimensions, or the coexistence of both
[35]. These mechanisms, including Convolutional
Block Attention Module (CBAM), effectively combine
channel and spatial attention to enhance feature
representation, as demonstrated in various domains
such as deepfake detection [36]. For DBD, most
existing approaches only consider the attention
mechanism as a module for auxiliary performance
enhancement [37]. Similarly, attention-driven
strategies have shown remarkable success in SOD
by refining spatial and contextual details through
multi-stage processing and progressive feature fusion
[38]. Both Zhao et al. [39] and Chai et al. [40]
integrated transformers into backbone networks
for DBD. However, the weak correlation between
DBE and the semantic information of images [41]
makes it challenging to achieve satisfactory results
when dealing with challenging images using purely
attention-based approaches.

3 Proposed Methodology

In this section, we present the main components of
our architecture ref: a backbone feature extraction
phase for learning hierarchical representations, an
attention module for emphasizing semantically
relevant features, and a final decoder for generating
precise blur maps. The overall architecture is designed
to effectively capture both low-level textural details
and high-level semantic information essential for
accurate defocus blur detection.

3.1 Backbone Feature Extraction

The backbone network serves as the foundation of
our approach, responsible for extracting multi-level
feature representations from input images. We adopt
a ResNet-50 architecture as our feature extractor due
to its proven effectiveness in capturing hierarchical
features while maintaining computational efficiency:.
The input image I € R7*W >3 js processed through a
series of convolutional blocks to generate feature maps
at different scales:

Fy=B;i(Fi_1), i=1,234 (1)
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Figure 1. Overview of the proposed SemanticBlur architecture. A modified ResNet-50 backbone extracts multi-scale
features (F1—F4) using dilated convolutions. The Semantic-Aware Attention Module refines these features through channel
attention (A°), spatial attention (A®), and semantic enhancement (Ssem), which fuses high-level features F; and F,. The
Feature Pyramid Decoder progressively upsamples and merges the attended features with learnable fusion weights (/3;) to

produce the final blur map at the original resolution.

where B; represents the i-th residual block, and
Fy = 1 is the input image. The extracted
features {Fy, Fy, F3, F4} have spatial resolutions
of {# 4 L I} respectively, with corresponding
channel dimensions of {256,512,1024,2048}. To
enhance the representational power of the backbone
features, we incorporate dilated convolutions in the
final stages to maintain spatial resolution while
expanding the receptive field:

Fdilated — DilatedConv(F}, d;) (2)

where d; represents the dilation rate for the i-th
feature level. This design enables the network to
capture both fine-grained local patterns indicative of
blur boundaries and broader contextual information
necessary for semantic understanding. Furthermore,
we apply feature normalization and activation

functions to stabilize training and improve
convergence:
Fy = ReLU(BatchNorm (Fdiated)) (3)

The normalized features {Fl, Py, Fs, F4} are then
passed to the attention module for further refinement.

3.2 Semantic-Aware Attention Module

This module is designed to selectively emphasize
features that are most relevant for defocus blur
detection while suppressing noise and irrelevant
information. Our approach incorporates both channel
attention and spatial attention mechanisms to capture

complementary aspects of the feature representations.
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3.2.1 Channel Attention Mechanism

The channel attention mechanism learns to weight
different feature channels based on their importance
for blur detection. Given a feature map F; ¢
RHXWixCi e first apply global average pooling and
global max pooling to capture channel-wise statistics:

H;, W,
. 1 i Wi
! b h=1w=1

(5)

The channel attention weights are computed through
a shared multi-layer perceptron (MLP) followed by
element-wise addition and sigmoid activation:

A, = o(MLP(f,0,) + MLP(£02))

fras = GMP(E) = I%aXF%(h,’w, )

,w

(6)

where A. € RC represents the channel attention
weights.

3.2.2 Spatial Attention Mechanism

The spatial attention mechanism identifies regions
that require more focus during the blur detection
process. We concatenate the channel-wise average
and maximum pooled features along the channel
dimension:

S = Concat[Angoolc(Fi), MaxPool.(E})] (7)

where AvgPool, and MaxPool. denote average and
max pooling operations along the channel dimension,
resulting in S € RH¥i*Wix2_ The spatial attention map
is generated through a convolutional layer followed by
sigmoid activation:

A, = o(Convrx7(S)) (8)
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where A € REXWix1 represents the spatial attention
weights.

3.2.3 Feature Refinement
The final attended features are obtained by applying
both channel and spatial attention weights:
FE=FE0A 0A, (9)
where © denotes element-wise multiplication
with appropriate broadcasting. Additionally, we
incorporate a semantic enhancement module that
leverages high-level semantic information to guide the
attention mechanism:

Ssem = Convy 1 (Concat[F3, Fy)) (10)

ﬁ;ﬁnal = E + - UpSample(Ssem) (11)

where « is a learnable parameter controlling the
contribution of semantic information.

3.3 Final Decoder

The decoder network is responsible for integrating
multi-level attended features and generating the final
defocus blur detection map. Our decoder employs
a feature pyramid network (FPN) structure with
lateral connections to effectively combine features from
different scales.

3.3.1 Feature Pyramid Construction
We construct the feature pyramid by progressively
upsampling higher-level features and combining them
with lower-level features through lateral connections:
P, = Conv . (F/™") (12)
P; = Conle1(Fifmal)+Upsample(Pi+1), i=3,2,1
(13)
where {P;, Py, P3, P4} represent the pyramid features
at different scales.

3.3.2 Multi-Scale Feature Fusion

To leverage information from all scales, we apply a
multi-scale fusion mechanism:

4
Pfused = Z’BZ . Resize(Pi, H x W)

=1

(14)

where f3; are learnable fusion weights and Resize
operation resizes all features to the original input
resolution.

3.3.3 Final Prediction

The final blur detection map is generated through a
series of convolutional layers with progressive channel
reduction:

My = Convszy3(Convzyz(Convyy g (Pfused))) (15)

where the final output My, € RT*WX!1 represents

the probability map of defocus blur regions.

3.3.4 Loss Function

We employ a combination of binary cross-entropy loss
and structural similarity loss to train the network:

Liotal = LBoE(Mbjur, G) + ALssiv (Mppur, G)  (16)

where G is the ground truth blur mask, Lpcg is
the binary cross-entropy loss, Lssras is the structural
similarity loss, and X is a balancing parameter.

4 Experiments

4.1 Experimental Setup

To comprehensively evaluate the performance of
our proposed SemanticBlur network, we conduct
extensive experiments on multiple benchmark datasets
following standard evaluation protocols [20, 42]. Our
experimental design employs a single dataset for
training and multiple datasets for testing to assess the
generalization capability of our method across diverse
scenarios.

Training Dataset: CUHK Dataset [24]: We utilize
the CUHK dataset for training our SemanticBlur
network. This dataset comprises 704 high-quality
images with pixel-wise defocus blur annotations.
Following standard practice, we employ 604 images for
training (CUHK-TR) and reserve the remaining 100
images for testing (CUHK-TE).

Testing Datasets: We evaluate our model on four
benchmark datasets to assess generalization and
robustness. CUHK-TE [24] provides 100 test images
while the DUT dataset [30] contains 500 images with
varied blur patterns and scene types. CTCUG [20],
contains 150 images, presenting particularly difficult
cases with complex blur transitions. EBD [42] is the
largest benchmark with 1,605 high-resolution images
covering diverse scenarios including macro shots,
portraits, indoor and outdoor scenes with pixel-level
annotations.

4.1.1 Implementation Details

All experiments are conducted using PyTorch
framework on NVIDIA RTX 3090 GPUs. The model
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Table 1. Ablation study comparing different backbone architectures for SemanticBlur. Best results are bolded. MAE|
indicates lower is better; F51 and IoU? indicate higher is better.

CUHK-TE DUT CTCUG
Backbone
MAE| Fgt IoUt MAE|l Fgt IoUt MAEl Fzgt IoU?
VGG-16 0.052 0921 0.891 0.089 0.903 0.862 0.098 0.841 0.823
ResNet-34 0.043 0957 0.932 0.078 0.925 0.884 0.087 0.863 0.851
ResNet-50 0.039 0.969 0.951 0.067 0942 0.909 0.086 0.887 0.894
EfficientNet-B4 0.041 0961 0.938 0.073 0.934 0.895 0.081 0.872 0.867

is trained for 100 epochs with a batch size of 6
images. We employ the Adam optimizer with an
initial learning rate of 1 x 10~*. The learning rate
is adjusted using polynomial decay strategy with a
decay factor v = 0.9. Gradient clipping is applied

with a maximum norm of 0.5 to ensure stable training.

For data augmentation and preprocessing, images are
resized to 320 x 320 pixels during training.

4.1.2 Evaluation Metrics

Following standard evaluation protocols in defocus
blur detection, we employ multiple metrics to
comprehensively assess model performance. We use
F-measure (F3) as the harmonic mean of precision and
recall with 32 = 0.3 to evaluate the overall detection
accuracy. Mean Absolute Error (MAE) measures
the average pixel-wise absolute difference between
prediction and ground truth, providing insight into
pixel-level accuracy. Intersection over Union (IoU)
quantifies the overlap between predicted and ground
truth blur regions, indicating how well the model
captures the spatial extent of defocused areas.

4.2 Ablation Studies

To validate the effectiveness of our proposed
SemanticBlur network and wunderstand the
contribution of each component, we conduct
comprehensive ablation studies analyzing backbone
architectures, progressive module integration, and
loss function combinations.

4.2.1 Backbone Architecture Analysis

We evaluate different backbone networks to determine
the optimal feature extraction architecture for defocus
blur detection. Table 1 presents the comparative
performance of four popular backbone architectures
across three benchmark datasets.  The results
demonstrate clear performance differences across
architectures. VGG-16, despite its simplicity, achieves
reasonable performance with MAE values of 0.052,
0.089, and 0.098 on CUHK-TE, DUT, and CTCUG
respectively. However, its lack of skip connections
and limited representational capacity becomes evident
when handling complex blur patterns. ResNet-34
shows substantial improvements over VGG-16, with
MAE reductions on CUHK-TE and DUT, highlighting
the importance of residual connections for gradient
flow and feature learning. ResNet-50 emerges as the
optimal backbone, achieving the best performance
across all datasets with MAE values of 0.039,
0.067, and 0.086 for CUHK-TE, DUT, and CTCUG
respectively. The deeper architecture with bottleneck
blocks provides superior feature representation while
maintaining computational efficiency. Interestingly,
EfficientNet-B4, despite its modern compound scaling
approach, performs slightly worse than ResNet-50
with MAE values of 0.041, 0.073, and 0.081. While
EfficientNet demonstrates competitive performance,
particularly on the challenging CTCUG dataset,
ResNet-50’s established architecture and proven
effectiveness in dense prediction tasks make it the
preferred choice for our semantic-aware attention

Table 2. Progressive ablation study of attention components in SemanticBlur. Components are added sequentially to
ResNet-50 baseline. Best results are bolded.

Configuration CUHK-TE DUT CTCUG Params (M)
MAE| Fgt IoUr MAE| Fgt IoUr MAE| Fgt IoU?

Baseline (ResNet-50 only) 0.058 0.891 0.863 0.095 0.876 0.834 0.124 0.798 0.756 235

+ Channel Attention 0.049 0924 0902 0.081 0912 0.871 0.103 0.837 0.802 242

+ Spatial Attention 0.043 0951 0928 0.074 0928 0.889 0.089 0.859 0.831 24.8

+ Semantic Enhancement  0.039 0.969 0.951 0.067 0.942 0.909 0.086 0.887 0.894 25.3

26



ICJK

ICCK Transactions on Intelligent Systematics

CUHK

DUT

EBD

Figure 2. Qualitative results of SemanticBlur on representative samples from the CUHK TE, DUT, and EBD datasets. For

each row, from left to right: input image, ground truth annotation, and the predicted defocus blur map. The proposed

method effectively localizes defocused regions while maintaining sharp boundary details across diverse photographic
scenarios.

framework.

4.2.2 Progressive Module Integration

We systematically add attention components to
a baseline ResNet-50 to isolate each module’s
contribution. Table 2 shows results across three
datasets with parameter counts. The baseline (23.5M
parameters) achieves MAE values of 0.058, 0.095, and
0.124 on CUHK-TE, DUT, and CTCUG. Adding channel
attention cuts MAE by 15.5% and 14.7% on CUHK-TE
and DUT with just 0.7M additional parameters,
showing that global pooling operations effectively
weight channel importance. Spatial attention further
reduces MAE by 12.2% and 8.6% on these datasets
while adding 0.6M parameters, successfully localizing
blur boundaries and transition zones.

Semantic enhancement yields the largest gains,
reaching MAE of 0.039, 0.067, and 0.086 with
improvements of 16.3%, 9.5%, and 3.4% over spatial
attention alone. This module uses high-level features
F3 and F4 to refine lower layers, confirming that
multi-level interaction matters. Total parameters
reach 25.3M (7.7% over baseline), showing efficiency
alongside accuracy gains. Results hold across all
datasets, validating our design.

4.2.3 Loss Function Analysis

Table 3 examines how SSIM weight X\ affects
performance on DUT. BCE alone gives MAE 0.078, Fg
0.915, IoU 0.871 reasonable but prone to fragmented
outputs since it ignores spatial structure. Adding
SSIM at A = 0.05 improves to MAE 0.071 and Fg
0.928, showing that structural constraints help. Peak
performance occurs at A = 0.1 (MAE 0.067, F5 0.942,

IoU 0.909), balancing pixel accuracy with regional
coherence. Higher values (A = 0.2,0.3) degrade
results, MAE rises to 0.069 and 0.073 because excessive
smoothness blurs boundaries. The sweet spot at A\ =
0.1 preserves both sharp edges and consistent regions.

Table 3. Effect of SSIM loss weight A on SemanticBlur
performance (DUT dataset). Optimal value A = 0.1 is

bolded.
Loss Function MAE] Fgt IoU?
BCE only 0.078 0915 0.871
BCE + SSIM (A =0.05) 0.071 0.928 0.889
BCE + SSIM (A =0.1) 0.067 0.942 0.909
BCE + SSIM (A =0.2) 0.069 0.938 0.904
BCE + SSIM (A =0.3) 0.073 0.931 0.89

4.3 Comparative Analysis

In this section, we evaluate the performance of
our proposed network in comparison to several
methodologies, focusing on both quantitative metrics
and qualitative assessments.

4.3.1 Quantitative Analysis

Table 4 presents a comprehensive comparison of
our proposed SemanticBlur network with eleven
SOTA defocus blur detection methods.  These
results demonstrate the superior performance of our
approach across multiple evaluation metrics. On the
CUHK-TE dataset, SemanticBlur achieves competitive
performance with MAE of 0.039, matching DFFNet.
Our method significantly outperforms traditional
approaches, showing MAE improvement over DBDF
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Table 4. Quantitative comparison with state-of-the-art methods on benchmark datasets. MAE| indicates lower is better,
while Fg1 and IoU1 indicate higher is better.

Method CUHK-TE DUT CTCUG EBD

MAE| Fgt IoUt MAEl Fgt IoUt MAEL Fgt IoUt MAEL Fgzt IoUt
DBDF [24] 0292 0.806 0549 0384 0754 0519 0360 0.668 0438 0389 0.603 0435
LBP [27] 0.154 0917 0755 0199 0873 0783 0291 0732 0638 0334 0705 0611
HiFST [9] 0223 0803 0743 0313 0839 0640 0274 0775 0618 0376 0.603 0.498
BTBNet [30] 0.110 0949 0914 0.196 0861 0803 0.177 0809 0762 - - -
BTBNet2 [21] 0.085 0935 0908 0.145 0873 0837 - - - - - -
CENet [22] 0.061 0945 0932 0141 0869 0833 0117 0845 0820 0072 0810 0.899
BR2Net [19] 0.059 0966 0927 0.083 0943 0893 0.140 0.834 0788 0087 0813 0.880
DD [14] 0.045 0966 0941 0074 0935 0903 0.155 0797 0775 0118 0812 0.842
DefuNet [20] - - ~ 0085 0952 0889 0132 0828 0798 - - -
IS2CNet [12] 0.049 0964 0937 0142 0868 0831 0112 0858 0.826 0070 0.809 0.901
DFFNet [42] 0.039 0971 0947 0072 0938 0903 0.082 0879 0868 0091 0823 0.872
SemanticBlur (Ours)  0.039 0969 0951 0.067 0942 0909 0.08 0887 0.894 0.084 0835 0.886

(0.292 - 0.039) and improvement over LBP (0.154 —
0.039). The DUT dataset reveals the most significant
performance gains for our method. SemanticBlur
achieves the best MAE of 0.067, representing 9.5%
improvement over the previous best result from DD
(0.074 — 0.067).

On the challenging CTCUG dataset, known for
complex blur patterns and subtle focus transitions,
SemanticBlur maintains robust performance with
MAE of 0.086, closely following DFFNet’s 0.082.
Despite the marginal difference in MAE, our method
achieves superior Fz of 0.887 compared to DFFNet’s
0.879, and significantly better IoU of 0.894 versus 0.868.
The EBD dataset results show SemanticBlur achieving
MAE of 0.084, outperforming most competing
methods while maintaining competitive F5 of 0.835.
Although IS2CNet achieves the highest IoU of 0.901
on this dataset, our method’s IoU of 0.886 represents
strong performance while maintaining superior MAE
accuracy. The balanced performance across precision
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Figure 3. Additional qualitative results on challenging examples from CTCUG dataset.

and recall metrics indicates robust generalization.

4.3.2 Qualitative Analysis

Visual comparisons in Figures 2 and 3 display
results from CUHK, DUT, EBD, and CTCUG datasets,
showing input images alongside ground truth
annotations and our model’s predictions. CUHK
examples illustrate the method’s precision, the dog
portrait achieves clear separation between in-focus
facial features and out-of-focus background regions
without introducing noise. DUT samples reveal
strong performance on varied scenes: the flower
image successfully distinguishes focused foreground
elements from defocused surroundings, and the hand
gesture example preserves boundary accuracy despite
varying blur intensities.

EBD samples cover multiple photographic contexts
including indoor selective focus shots, architectural
images, and outdoor scenes. Generated detection
maps represent blur patterns accurately, maintaining
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edge sharpness and regional consistency. Semantic
enhancement particularly benefits these cases,
applying contextual information to separate
deliberately blurred backgrounds from focused
subjects. CTCUG presents difficult scenarios with
gradual focus transitions and intricate blur variations,
yet our approach maintains consistency, generating
precise maps with limited erroneous detections.
Predictions match ground truth closely throughout
all test sets, demonstrating that attention mechanisms
guided by semantic information retain fine details
while correctly identifying defocused areas.

5 Conclusion

SemanticBlur presents a framework integrating
semantic information with attention mechanisms
operating across multiple scales for defocus blur
detection. The architecture employs three attention
types: channel, spatial, and semantic enhancement,
to progressively refine feature representations.
ResNet-50 modified with dilated convolutions retains
spatial detail while expanding receptive fields, paired
with a feature pyramid decoder using trainable
fusion weights to combine multi-scale information.
Loss function design weighs BCE against SSIM
(A = 0.1), optimizing for localization accuracy and
structural consistency. Evaluation across four datasets
(CUHK-TE, DUT, CTCUG, EBD) demonstrates strong
results, supported by ablation experiments validating
individual components. Potential extensions include
incorporating transformer mechanisms for modeling
longer-range relationships and examining training
approaches that improve performance across varied
image domains.
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