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Abstract

To address the challenge of traditional models
in simultaneously capturing local fluctuations
and global trends for air pollutant concentration
prediction, this paper proposes a multimodal deep
learning model named MLP-BiLSTM- MHAT. The
model integrates static features via MLP, extracts
temporal dependencies through bidirectional
LSTM (BiLSTM), and employs a Multi-head
Attention mechanism (MHAT) to fuse local and

global features while enhancing interactions
between static and temporal characteristics.
An improved Adam algorithm dynamically

optimizes learning rates to balance the influence of
heterogenous features. Validated on multi-site
air quality data from Beijing, experimental
results demonstrate that MLP-BiLSTM-MHAT
outperforms baseline models with an average
reduction of 1.9% in RMSE, 4.2% in MAE, and
a 1.8% improvement in R? showcasing superior
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accuracy and robustness across diverse pollutants
and scenarios.

Keywords: multimodal, deep learning network, improved
Adam algorithm, air pollutant concentration prediction.

1 Introduction

Air pollution is an important public health issue
worldwide [1], and air pollutants have a significant
impact on human health, especially the respiratory
system [2, 3]. This makes high-precision air
quality prediction an urgent need for public health
protection and environmental management decisions.
Currently, there are three main methods for predicting
the concentration of air pollutants: numerical
forecasting [4], statistical methods, and machine
learning [5]. Numerical forecasting uses observed
data to establish atmospheric chemical and physical
models, simulating the transmission, diffusion,
reflection, and deposition processes of pollutants
in the atmosphere [6]. This method is based on
atmospheric dynamics equations and pollutant
chemical reaction mechanisms [7], and can simulate
the three-dimensional spatiotemporal distribution
characteristics of pollutants at the regional scale.
Statistical methods are represented by autoregressive
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moving average models (ARIMA) [8] and generalized
additive models (GAM) [9]. Gourav et al. [10] treated
historical changes in air pollutant concentrations
as a time series, modeled them using ARIMA, and
predicted the air quality of New Delhi, India for future
months and quarters. Cortina—Januchs et al. [11] used
clustering algorithms to find the relationship between
PM10 and meteorological variables, and then used
multi-layer regression to predict the concentration
of PM10. They found that meteorological variables
are an important factor in air pollution prediction,
but ignored nonlinear relationships, resulting in low
accuracy of the model prediction.

Compared with numerical forecasting and statistical
methods, machine learning methods, especially deep
learning methods, are more efficient in the field
of pollutant prediction. They can generate more
complex models to support dynamic and unstable data,
achieving accurate multi-scale air quality prediction.
The Universal Approximation Theorem proposed by
Hornik et al. [12] provides a core theoretical basis
for the application of MLP in static feature extraction.
This theory ensures that MLP has strong nonlinear
mapping capabilities, sufficient to learn any complex
potential relationship between static features and
target pollutant concentrations. The bidirectional
long short-term memory network (BiLSTM) proposed
by Graves et al. [13] breaks through the inherent
limitations of traditional unidirectional recurrent
neural networks in processing temporal information
by introducing bidirectional recurrent neural networks.
Compared to unidirectional LSTM, this bidirectional
structure can more comprehensively capture the
dynamic evolution patterns of time-series data such
as air pollutant concentrations. Yang et al. [14]
used MLP for CO2 emission prediction, achieving
accurate prediction of road CO; emissions with high
spatiotemporal resolution. Aamir et al. [15] applied
BiLSTM to the field of carbon emission prediction,
predicting environmental changes in South Asian
carbon emission patterns and analyzing emission
trends and influencing factors in China and South
Asian countries. The Transformer model proposed
by Vaswani et al. [16] pioneered the use of self
attention mechanism in sequence modeling, and its
core multi head attention mechanism [17] can capture
diverse dependency relationships in parallel. Dai
et al. [18] introduced Transformer into the field of
air quality prediction and verified the advantages
of attention mechanism in long-range dependency
modeling. Yu et al. [19] proposed the Temporal
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Convolutional Network (TCN), which effectively
solves the dilemma of traditional sequence models
in long-range dependency modeling by integrating
causal convolution and dilated convolution, and
introducing residual connections. Li et al. [20]
proposed the TCN-BiLSTM-DMAttention model and
applied it to predict air pollutants, achieving 1-hour
prediction of future air pollutants.

It is worth noting that advanced architectures
represented by Transformer and TCN have made
breakthroughs in long-range dependency modeling
and computational efficiency, but their original design
intention is mostly to handle homogeneous temporal
data. In practical air quality prediction services, data is
essentially multimodal, containing both static features
and pollution time series features. Most existing
research adopts the method of feature flattening
concatenation, which forcibly concatenates different
features into the same vector space, but fails to achieve
deep level interaction between different features,
resulting in insufficient ability of the model to capture
the main factors when dealing with the sudden
increase of pollution caused by static factors and
the accumulation process of temporal factors. This
problem limits the further improvement of prediction
accuracy. To overcome the above problems, this
study innovatively proposes a multimodal deep
learning [21] model MLP-BiLSTM-MHAT, which
achieves deep level interaction and fusion of static
features and temporal features. By introducing storage
units to improve the Adam algorithm, the problem
of multimodal gradient conflicts has been effectively
alleviated. Through comparative experiments with
traditional recursive networks such as GRU and
LSTM, as well as advanced architectures such as TCN
and Transformer, the effectiveness of this model in
predicting various air pollutants has been verified.

2 Model Introduction

2.1 MLP

MLP (Multi-layer Perceptron), Multi-layer Perceptron
is a common supervised learning neural network
model. The following Figure 1 shows the network
structure of MLP. It can be seen from the figure that
MLP adopts a hierarchical structure of layered stacking,
including input layer, hidden layer, and output layer.
The data propagates layer by layer from the input layer
and eventually reaches the output layer.

In this study, MLP was used to capture the complex
interactions between pollutants and meteorological
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Figure 1. The network structure of MLP.
factors and extract static features. The output

calculation formula of the MLP layer is as follows:

R = (W (=) 4 p)) (1)
In the formula, (™ represents the output feature
vector of the n-th layer of MLP; wn) represents the
weight matrix of the n-th layer; b represents the
bias term of the n-th layer; f represents the activation
function.

After MLP layer processing, output static feature
vectors:

H static € Rdmlp (2>
In the formula, dpp represents the dimension of MLP
output features.

2.2 BiLSTM

BiLSTM (Bidirectional Long Short Term Memory) is
an improved structure based on traditional LSTM,
aimed at capturing the contextual dependencies of
sequence data more comprehensively. Its core idea is to
simultaneously utilize the past and future information
of the sequence. As shown in Figure 2, the bidirectional
long short-term memory network consists of two
independent LSTM layers: one forward LSTM layer
processes sequence data in chronological order, and
the other reverse LSTM layer processes it in reverse
chronological order. These two directions of LSTM
will output a hidden state at each time step, and finally
merge the forward hidden state and reverse hidden
state through concatenation, weighting, and other
methods as the final output of that time step.

BiLSTM simultaneously processes modeling forward
and backward temporal dependencies through dual

channels, with the specific expression being:
h? = LSTM. (x¢, hy” 1) (3)

hi™ = LSTM (¢, hf ™) (4)
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Figure 2. The network structure of BiLSTM.

In the equation, h;” represents the hidden state of the
forward LSTM unit at time step ¢; hj~ represents the
hidden state of the reverse LSTM unit at time step t.

By concatenating the forward and backward hidden
states, the feature vectors for each time step are
obtained:

he = [h?; hi7) € R (5)

The feature matrix of the final output time series is:

Hseq = [h’17 cee ,hT]T [ RTX2dlstm (6)

2.3 Multi-head Attention

Multi-head Attention is one of the core components of
Transformer models, which enhances the expressive
power of the model by capturing diverse dependencies
in the input sequence in parallel. As shown in
Figure 3, the typical Multi-Head Attention mechanism
structure mainly includes three parts: Query, Key,
and Value, represented as ), K, and V respectively.
In practical calculations, the model calculates the
similarity between query @ and key K (usually using
dot product or scaled dot product), obtains attention
weights, and then applies these weights to the value
V to generate a weighted sum as the final output.

In this study, the Multi-Head Attention mechanism
interacts and fuses static and temporal features. By
calculating the attention score through dot product
and normalizing it to its weight using Softmax
function, the features are finally aggregated based on
the weight matrix to achieve feature optimization and
enhancement. The specific expression is:

A = softmax (%) (7)
H = AV (8)
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Figure 3. The network structure of Multi-head Attention.

Among them, A represents the similarity between each
time step; () represents the query matrix; K represents
the key matrix; V' represents the value matrix; H' is a
weighted representation of each time step.

2.4 Adam Algorithm

The Adam (Adaptive Moment Estimation) algorithm
[22] is a widely used optimization algorithm in deep
learning, which adjusts the learning rate of parameters
by calculating the first-order and second-order matrix
estimates of gradients. The core calculation steps of
the Adam algorithm are as follows:

Step 1: Calculate the gradient, for each parameter,
calculate its gradient g;.

Step 2: Update the momentum m; and second-order
matrix vy.

my = Bimy—1 + (1 — B1)g: 9)

v = Povi—1 + (1 — 52)9152 (10)

In the equation, i represents the decay rate that
controls momentum; 3 represents the decay rate that
controls the square gradient.

Step 3: Correct the deviation between the first-order
matrix and the second-order matrix using the
following formula:

my

)

Ut

T 1- 5

g (11)

Ut

(12)
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In the equation, 7, is the modified first-order matrix
estimate, and ¥, is the modified second-order matrix
estimate.

Step 4: Use the modified parameters to update the
gradient, with the specific formula being:

On

\/f)t—i-e

0, = 0,1 — (13)

In the formula, 0; represents the updated parameter
value, a represents the learning rate, and ¢ is a small
constant.

2.5 MLP-BiLSTM-MHAT architecture

The architecture of the MLP-BILSTM-MHAT model is
shown in Figure 4. The model’s input layer consists of
the air quality data selected for this study. The division
of the input data is detailed in Table 1. Initially, static
features are extracted through the MLP layer. These
features are then processed by the BILSTM layer, which
learns the temporal dependencies in both the forward
and backward directions. The multi-head attention
layer combines the static features, extracted by the
MLP, with the temporal features output by the BILSTM.
Finally, the fused and enhanced features are passed
through a fully connected network to calculate the
predicted values, which are then output to the output
layer.

Table 1. Input data division.

Processing Dimension

Data type  Input method layer
Time series 55 | hsor BILSTM  (32,24,256)
feature
Static feature 2D matrix MLP (32,256)

The pseudocode of the MLP-BiLSTM-MHAT model is
shown in Algorithm 1.

Algorithm 1: MLP-BiLSTM-MHAT
Input: X = {X1, Xo,..., X}
Output: Y = {V71,Ys,...,Y;}
Initialize static feature sequence S = [ |;
fora =1toado
L H; = MLP(Xi)}
Hgeq = BILSTM(X});
P = Multi-head Attention(H;, Hseq);
Y = DENSE(P);
return Y




ICJK

ICCK Transactions on Intelligent Systematics

feature
I I extraction

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .

. . . A

|

|

R ———————— I

| MultiHeadAttention

i Tlime
! BiLSTM BiLSTM series

Static
feature
extraction

Input layer

Figure 4. Overall framework of MLP-BiLSTM-MHAT
model.

3 Experiment and Result Analysis

3.1 Dataset Source and Preprocessing

This study selected air quality data from Beijing as
experimental samples. This dataset contains complete
meteorological data and air pollutant data, including
420768 meteorological data and air pollutant data from
March 1, 2013 to February 28, 2017, recorded hourly.
The data of each site includes meteorological data such
as temperature, air pressure, precipitation, and air
pollutant data such as PM2.5, PM10, SO3. The detailed
data types are shown in Table 2.

For missing values in the original dataset, mean
imputation method is used to handle continuous
missing values, backward imputation method is used
to handle discontinuous missing values, and quartile
range method is used to handle outliers in the original
dataset. Normalize the missing and outlier processed
datasets, and finally divide the dataset into training,
validation, and testing sets in a ratio of 7:2:1.

Table 2. Description of dataset types.

Data type Variable Name Unit
temperature °C
atmospheric pressure hPa
Meteorological dew point temperature °C
data precipitation mm
wind direction -
wind speed m/s
PM2.5 ng/ m3
PM10 pg/m3
Air pollutant SO, pg/m3
data NO; pg/m3
CcO mg/ m3
O3 pg/m?

3.2 Improving Adam algorithm to dynamically
optimize learning rate

In this study, the Adam algorithm was improved by
introducing memory units and used to dynamically
optimize the learning rate. Compared with the core
computational steps of the Adam algorithm in Section
2.4, the specific improvements are as follows:

Step 1: Calculate the gradient and introduce memory
units. For each parameter, calculate its gradient ¢;, and
each 0; has a corresponding memory unit M;.

Step 2: Use the forgetting factor and update factor to
update the memory unit, with the formula:

M = fiM; 1 + wgs (7)

fi = : (8)
1+ exp(—a(ge — p))

w ! (9)

T 1+ exp(—blge — 1)

where g; is the gradient of the current time step ¢; M;
is the memory state of the current time step; f; is the
forgetting factor; u; is the update factor; a and b are
hyperparameters; 1 is the reference value.

Step 3: Update the momentum m; and second-order
moment v, add memory information, and the formula
is:

my = frmy—1 + (1 — B1)ge + My (17)

v = Bovi—1 + (1 — B2)g} (18)

where v is a hyperparameter.
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Step 4: Correct the deviation between the first-order
matrix and the second-order matrix using the
following formula:

1-75

1— 75

(19)

Ut

(20)

Step 5: Use the corrected parameters to update the
gradient, with the specific formula being:

om 0
=t e =l e ()
t t

This study compared the performance of the original
Adam and the improved Adam during the training
process of the MLP-BiLSTM-MHAT model to verify the
optimization effect of the improved Adam algorithm
on the model training process. As shown in Figures 5
and 6, it is evident from the validation loss curve
that the improved algorithm outperforms the original
Adam in terms of convergence speed and training
stability.

—— Training Loss

@.00%0

= Validation Loss

©.0085

©.0080

@.0075

MSE Loss

&.aova

&.0065

©.0060

a 20 40 a0 an
Epoch

Figure 5. Training loss and validation loss curves of the
model before improvement.

Table 3 compares the quantitative performance of
the MLP-BiLSTM-MHAT model before and after the
improvement of the Adam algorithm. Among them,
O-Adam stands for Original Adam; I-Adam stands
for Improved Adam; IA stands for Improvement
Amplitude; CIT stands for Convergence iteration times;
OVL stands for Optimal Verification Loss; SD stands
for Standard Deviation. The Standard Deviation is
calculated based on the last 25 training epochs.
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Figure 6. Training loss and validation loss curves of the
improved model.

Table 3. Comparison of quantitative performance before
and after adam algorithm improvement.

Indicator O-Adam I-Adam 1A
CIT 60epoch  50epoch 16.67%
OVL 0.0058 0.0056  3.45%
SD 0.00035  0.00025 28.57%

From the various indicator data in Table 3, it can
be seen that the improved Adam algorithm reduces
the number of iterations required for the model to
converge from about 60 in the original Adam to
50, thereby increasing the convergence efficiency of
the model by 16.67%; The final validation loss was
optimized from 0.0058 to 0.0056, reducing the error
by approximately 3.45%. In addition, the standard
deviation of the validation loss decreased from 0.00035
to 0.00025, and the fluctuation amplitude decreased
by about 28.57%, indicating that the improved Adam
significantly improved the stability of the model
during training. By combining the loss curves in
Figures 5 and 6 with the quantitative indicators in
Table 3, it can be seen that the improved Adam
algorithm further reduces validation loss and training
fluctuations, significantly improving the convergence
efficiency and generalization ability of the model. In
the multi pollutant prediction task of this study, this
improvement effectively solves the gradient conflict
problem under multimodal feature input, providing
a more stable and efficient optimization path for the
model.

3.3 Evaluation Indicators

This study selected MAE and coefficient of
determination R? as evaluation metrics, and MSE as
the loss function. The specific formula for the loss
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function MSE is as follows:

c
1
L= — i — i) 22
L= G i) (22)
P
Loss = Zthp (23)
p=1

In the formula, L, represents the loss value of the p-th
task, P represents the number of tasks, C represents
the number of samples, y; represents the true value,
y; represents the predicted value, Loss represents the
total loss value, and w; represents the weight of the
task.

3.4 Comparative Experiment

To comprehensively evaluate the performance of
the MLP-BiLSTM-MHAT model, this study selected
four representative models in time series regression
prediction for comparative experiments. Specifically,
it includes:

e 1) GRU and LSTM: as classic benchmarks for
recurrent neural networks, used to evaluate
the model’s basic ability to capture short-term
dependencies;

e 2) TCN: Known for its causal dilation convolution
structure, it can efficiently capture long-term
dependencies and aims to test the effectiveness
of the proposed model in capturing long-range

information;

e 3) Transformer: relies on self-attention
mechanism to globally model sequence
dependency relationships, used to verify

the performance of the proposed model in
complex dependency patterns and computational
efficiency.

By comparing with the above models, the aim is to
systematically verify the comprehensive advantages
of the MLP-BiLSTM-MHAT model from multiple
dimensions such as basic recursive ability, long-term
dependency modeling, and global dynamic capture.
The specific prediction results are detailed in Table 4.

From Table 4, it can be seen that the MBM model
performs the best in all evaluation metrics. Its RMSE
value is 100.741, which is an average decrease of about
1.9% compared to other models, indicating that this
model has higher prediction accuracy; The MAE value
is 30.132, with an average decrease of 4.2%, indicating
that the MBM model has stronger robustness in dealing

Table 4. Comparison of prediction results of five models.

Model RMSE MAE R?
GRU 103.695 32.637 0.912
LSTM 102.365 31.175 0.924
TCN 101.824 30.827 0.930
Transformer 101.282 30.480 0.937
MBM 100.741 30.132 0.943

with extreme or outlier values; At the same time, its R2
value is 0.943, with an average improvement of about
1.8%, which can explain 94.3% of the data variation and
demonstrate significantly improved ability to capture
variation data.

In order to demonstrate the prediction performance
more intuitively, Figures 7 to 16 further compared
the prediction results and actual values of the
MLP-BiLSTM-MHAT model with other models,
visually verifying its advantages in fitting and stability.

PM2.5 (ug/m?) - Prediction vs True

0 25 50 75 100 125 150 175 200

S0z (ug/m?) - Prediction vs True

0 25 50 75 100 125 150 175 200
Time

Figure 7. Comparison chart of PM2.5, PM10, SO, between
MLP-BIiLSTM-MHAT model and actual values.

NO:z (ng/m?) - Prediction vs True

0 25 50 75 100 125 150 175 200
€O (mg/m?) - Prediction vs True

0 25 50 75 100 125 150 175 200
O3 (ug/m?) - Prediction vs True

0 25 50 75 100 125 150 175 200
Time

Figure 8. Comparison chart of NO;, CO, O3 between
MLP-BiLSTM-MHAT model and actual values.
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Figure 9. Comparison chart of PM2.5, PM10, SO, between
GRU model and actual values.
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Figure 10. Comparison chart of NO,, CO, O3 between GRU
model and actual values.
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0 25 50 75 100 125 150 175 200
Time

Figure 11. Comparison chart of PM2.5, PM10, SO between
LSTM model and actual values.

By comparing the predicted results of different
air pollutant concentrations, it can be seen
that in the prediction of PM2.5 and PM10, the

18
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Figure 12. Comparison chart of NO,, CO, O3 between
LSTM model and actual values.
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Figure 13. Comparison chart of PM2.5, PM10, SO, between
TCN model and actual values.
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Figure 14. Comparison chart of NO;, CO, O3 between TCN
model and actual values.

MLP-BiLSTM-MHAT model can accurately capture
the trends of peak and valley values, especially in
the mutation area, the fitting effect is significantly
better than other models; In the prediction of SO,
the curve of the MLP-BiLSTM-MHAT model almost
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Figure 15. Comparison chart of PM2.5, PM10, SO between
Transformer model and actual values.
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Figure 16. Comparison chart of NO,, CO, O3 between
Transformer model and actual values.

coincides with the actual value, demonstrating its
high-precision modeling ability for low concentration
gas fluctuations; In the prediction of NOy, all models
have some degree of noise, but MLP-BiLSTM-MHAT
is smoother and more accurate in fitting the trend
of continuous fluctuations. In the prediction of CO
and O3, MLP-BiLSTM-MHAT also demonstrated
good performance, not only effectively capturing
their periodic features, but also significantly better
fitting accuracy in the high concentration range than
the other four models. By comparing the prediction
results of different air pollutants, it can be seen that
this method has higher accuracy and robustness in
predicting air pollutant concentrations.

4 Conclusion

This article proposes a multimodal deep learning
model that integrates MLP, BILSTM, and multi-head
attention mechanism, and applies it to predict air
pollutant concentrations. By introducing memory

units to improve the Adam optimization algorithm, the
gradient conflict problem in the multimodal feature
fusion process has been effectively alleviated, thereby
enhancing the convergence efficiency of the model
in complex time dependent and static correlated
data. The experiment used RMSE, MAE and R2 as
evaluation metrics, and compared the performance
of the proposed model with multiple representative
benchmark models. The results showed that the model
exhibited higher accuracy and robustness in predicting
various air pollutant concentrations, with an average
RMSE decrease of 1.9%, an average MAE decrease of
4.2%, and an average R2 increase of 1.8%. The main
contribution of this study is to provide an effective
framework for collaborative prediction of multiple
pollutants, and its performance advantages reflect
that the model can capture the deep spatiotemporal
evolution laws shared by different pollutants, which
has good application value in the field of regional
environmental air quality warning.
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