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Abstract
A Novel simulation framework using self-governing
drones is used to locate and reduce unauthorized
drones in interior environments. The recommended
method uses Received Signal Strength Indicator
(RSSI) to identify an alien agent drone, which has
different signal characteristics than the approved
swarm of UAVs. Real-time threat detection is
possible with this technology. After detecting
the drone, the swarm organizes itself to encircle
and besiege it for 10 seconds, making it inert
before returning to their original positions. This
unique solution uses RSSI to quickly identify
and mitigate enclosed area concerns. It provides
a reliable and effective indoor drone security
solution. The simulation results show that the
approach works in delicate environments including
warehouses, laboratories, and other indoor facilities.
This study advances unmanned aerial system
(UAS) autonomous swarm intelligence and security
procedures.
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1 Introduction
In recent years, drone technology has grown globally.
Technological advances have expanded drone uses
to indoor and outdoor use. These applications
include security, entertainment, infrastructure
inspection, rescue, and leisure [1–3]. Most of these
applications require drones to operate autonomously
or substantially autonomously. Autonomous drone
flight requires continuous position tracking for safety
and efficiency. Ground control stations or supporting
equipment accurately locate the drone and send this
information to its internal navigation system [4].
A single drone can do small-scale tasks, but size,
sensor, and computational limits make handling
large-scale missions difficult. Using numerous drones
reduces mission failures, shortens operational times,
and allows for multitasking [5]. They improve
drone coordination, collective intelligence, and
adaptation to changing environments. The Swarm
design improves drone resilience and adaptability for
mission requirements. A swarm of drones denotes
a synchronised assembly of autonomous aerial
vehicles that work in unison, exchanging data and
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Figure 1. UAV Swarm Technology Types.

responsibilities to accomplish a shared goal. Swarm
operations are most effective when each drone can
autonomously take off, do its duty, and return to base
without human involvement [6].

In a swarm, drones make judgments based on
information from nearby neighbors. Figure 1
displays market-available UAV swarm technology.
In a centralized semi-autonomous swarm, drones
depend on a central controller for decision-making,
possessing restricted autonomy for local activities,
hence rendering it susceptible to controller
failure. A decentralized semi-autonomous swarm
allocates control among drones, facilitating local
decision-making and enhancing resilience, yet still
necessitates external input for overarching tasks.
A decentralized, completely autonomous swarm
functions without human oversight, with each
drone making independent, real-time decisions to
guarantee dynamic task distribution, self-sufficiency,
and adaptability during missions. A sophisticated
control system is needed to detect an alien drone
in an enclosed space. This system must be able to
give accurate instructions to one agent drone and
coordinate multiple agents in real time. This system
uses agent-specific controllers and a central server to
calculate moves and combine data [7, 8].

Outdoor, global position sensor (GPS) and
inertial measurement units (IMUs) are utilized
to track the drone’s whereabouts. This strategy
is impractical indoors and where GPS signals are
lacking. Vision-based drone localization in locations
without GPS signals, as shown in [9] , has significant
limitations. Drone flying vibrations may degrade
picture data and cause inaccurate position estimates.

Vision-based methods degrade in low light or when
the drone’s view is blocked, reducing location accuracy.
Since high-resolution cameras and real-time data
processing require expensive computers, vision- based
systems can be expensive to implement. Preventing
accidents, processing restrictions, and faulty GPS
signals make UAV movement in dynamic indoor
environments harder. A quadrotor UAV autonomous
control system is introduced in this work. The
system uses on-board sensors and Received Signal
Strength Indicator (RSSI)-based relative localization
for real-time navigation, collision avoidance, and
alien agent recognition without external localization
equipment. A control center processes information
for all drones in the swarm. This centralized control
makes drone management robust. This architecture
lets the system use data from all UAVs to make the
best decisions and function well. When the swarm
detects a hostile drone, they form a circle around it
to slow it down. The study aims to improve indoor
drone security through the creation of an innovative
simulation framework that uses autonomous drones
to identify and eliminate unauthorized or alien drone
agents in enclosed spaces. The issue pertains to
the escalating danger of alien drones penetrating
critical indoor environments, including warehouses,
laboratories, and guarded buildings. Conventional
security protocols find it challenging to address the
intricacies of real-time threat identification in these
environments, especially with the rising presence
of unmanned aerial systems (UAS). The suggested
approach utilizes Received Signal Strength Indicator
(RSSI) technology to identify unauthorized drones
based on their signal attributes, enabling a swarm of
authorized UAVs to automatically discover, encircle,
and neutralize the invader. This study offers a strong
security solution while enhancing swarm intelligence
and autonomous drone functionalities for essential
interior settings. The subsequent sections of this
document are organized in the following manner.
Section 2 provides an overview of the existing research
on the UAV swarm. Section 3 explores the technique
utilized in this investigation. Section 4 provides an
exposition of the findings and analysis of the study.
The paper is concluded in Section 5.

2 Related Research Work
With an emphasis on spotting possible dangers, this
section examines the pertinent studies on the use of
UAVs in swarm topologies for interior reconnaissance
missions. The conversation is structured based on the
subsequent research domains: The topics of interest
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Figure 2. Block Diagram of Proportional-integral-derivative (PID) Control System.

Figure 3. Block Diagram of Fractional order PID Control
System.

discussed within this section are: (a) coordination of
UAV swarms, (b) exploration in indoor environments,
(c) avoiding collisions, and (d) identifying threats.
UAV swarms are an innovative method of utilizing
drone technology, where numerous drones work
together and synchronize their operations to
accomplish shared objectives. The utilization of
this cooperative strategy provides notable benefits
compared to individual drones, resulting in the rapid
expansion of research in the field of UAV swarms.
Recent research [10] and [11] highlight swarm drones’
collaborative transportation, constructing, surveying,
and search and rescue operations. Recent research has
focused on velocity and location estimates for indoor
and GPS-denied localization [12–14]. Vision-based
algorithms and sensor fusion are prominent indoor
drone localization and velocity estimation methods.
Sensor fusion integrates drone sensors to make
accurate estimates. IMUs, LiDAR, ultrasonic, infrared,

and RSSI sensors are examples [15]. Youn et al.
provide a novel navigation method for autonomous
Micro Aerial Vehicles. This system uses 2D LiDAR
and an RGB-D camera to correctly locate MAVs and
detect obstructions. The article shows the usefulness
of affordable sensors, but the RGB-D camera may
struggle in low light and the LiDAR range may be
limited in larger interior settings. Alizera et al. [16]
use speaker-generated ultrasonic acoustic signals to
properly locate and move drones inside structures.
This method is cheaper than visual cue-based ones.
However, noise and interference can affect these
signals. Ali et al. [17] use ultra-wideband (UWB)
signals to estimate indoor UAV velocity. They solve
noise and interference issues. It requires a Vicon
mission capture system as ground-truth, which may
not be available. The proposed solution was tested
experimentally. Another study [18] offers using a
microphone array to assess location and velocity
using acoustic inertial measurement. This method
outperforms UWB-based systems. Effective collision
avoidance is essential for UAV swarm safety [19].
investigates decentralized control formation, where
UAVs decide autonomously [20]. Decentralized
swarm navigation is suggested for difficult outdoor
search and rescue missions by Horyna et al. Other
studies [21] use consensus-based virtual leader
tracking to steer swarms to goals while maintaining
formation. Centralized control forms promote
efficiency and coordination despite their complexity.
A few studies [21] mention a centralized strategy
where a leader UAV controls the swarm’s UAV
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Figure 4. Block Diagram of Proposed Approach.

placements relative to its location. This leader
alone regulates swarm behavior, formation, and
environmental interactions. Another study [20, 21]
adds tight distance and angle thresholds to the UAV
swarm leader-follower model. Machine learning
and computer vision enable autonomous UAV threat
detection, a well-studied topic. Based on [19], offer
a framework that coordinates a swarm of "loyal
wingman" drones to defend autonomously and
cooperatively utilizing finite state machines, behavior
trees, and control techniques. A self-organizing
defense system to intercept hostile UAVs is suggested
in [20]. UAV swarm coordination, indoor navigation,
collision avoidance, and threat detection have
improved, but combining them into an indoor swarm
drone system is tough.

This study presents a Fractional Order PID (FOPID)
autonomous control system to fill this gap. According
to MATLAB and Simulink software simulations,
the suggested system uses on-board sensors and
RSSI-based localization to travel indoors effectively
and detect hazards with appropriate algorithms,
enabling completely autonomous UAV swarm
operations for indoor threat assessment. Before one
may jump to methodology section, please understand
the concept of RSSI first. RSSI quantifies the power

level received by a wireless device from a transmitting
source, commonly employed in radio communications
to denote signal strength. It assesses the strength of
the signal between two devices, such as drones or
wireless transmitters. RSSI values can be utilized
to identify an alien drone by assessing the signal
intensity from unfamiliar or unauthorized sources. As
the drone approaches or retreats from the detection
system, the RSSI value varies, enabling the system
to approximate its distance. Utilizing a network
of several detectors, triangulation methods can
be applied with differing RSSI measurements to
accurately determine the position of the alien drone
and monitor its trajectory. This approach effectively
identifies unauthorized drones or those not affiliated
with a recognized network.

3 Methodology
This paper proposes an automated swarm control
system that can detect and contain extraterrestrial
drones based on signal strength. Proportional-Integral
Derivative (PID) and Fractional Order PID (FOPID)
controllers activated by RSSI values control a fewUAVs
in an indoor setting. Alien drones are contained using
RSSI data. The suggested method uses a swarm of
RSSI-equipped UAVs to measure signal strength. Each
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Figure 5. PID Control Effort and Stability before Alien Drone Detection.

Figure 6. FOPID Control Effort and Stability before Alien Drone Detection.

UAV may operate alone and communicate with others.
The control system has two phases. The RSSI-based
first stage is meant to detect alien drones. Second,
implement a containment strategy using PID and
FOPID controllers.

3.1 Detection Mechanism
The RSSI measurements are constantly examined to
identify any deviation from the anticipated range.
An alien drone is detected when the received signal
strength indicator (RSSI) value of any unmanned
aerial vehicle (UAV) deviates significantly from the
rest of the group. Let RSSIi be the RSSI value of the

i− thUAV. Thus, the detection criterion can be defined
as:

|RSSIi −RSSImean| > ∆RSSI (1)

Whereas RSSImean is the average RSSI value of all
UAV s in the swarm and ∆RSSI is a predefined
threshold.

3.2 Control Design
Upon detection of an alien drone, the swarm control
system is activated to contain the detected drone using
PID and FOPID controllers.

The Proportional Integral Derivative (PID) controller
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Figure 7. PID-based UAV Swarm and RSSI Values before Alien Drone Detection.

Figure 8. PID-based UAV Swarm and RSSI after Alien Drone Detection.

for each UAV is defined in equation (2) and the block
diagram is shown in Figure 2.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
(2)

Whereas fractional order PID (FOPID) controller
extends the PID by incorporating fractional calculus,
defined as:

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t) (3)

Whereas D−λ and Dµ are the fractional integral
and derivative operators and moreover µ and λ are
known as the order of differentiator and integrator
respectively. The block diagram has been shown in
Figure 3.

3.3 Containment Strategy
Upon detection of an extraterrestrial drone, the
implementation of the containment plan is initiated.
The unmanned aerial vehicles (UAVs) adopt a circular
configuration around the identified drone to constrain
its mobility. The PID or FOPID controller is utilized to
regulate the position of each UAVwithin the formation.
The control input for each UAV will either be based
on PID or FOPID to minimize ej(t) and maintain the
circular formation. This entire methodology is shown
in Figure 4.

Moreover, the desired positions for UAV in a circular
formation can be computed as xj = x0 +R cos

(
2πj
n

)
and yj = y0 +R sin

(
2πj
n

)
whereas (x0, y0) will be the

position for the alien drone, the term ’R’ is the radius
of the containment circle and j is known as the index
of the UAV available in the circular formation. In this
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Figure 9. FoPID-based UAV Swarm and RSSI before Alien Drone Detection.

Figure 10. FoPID based UAV Swarm and RSSI Values After Alien Drone Detection & Circular Formation (Click here to see
video).

way the error signal for each UAV can be calculated as:

ej(t) =
√

(xj(t)− xj)2 + (yj(t)− y)2 (4)

4 Software Simulations
This section showcases the simulation outcomes of
the autonomous swarm control system, which utilizes
a PID and Fractional Order PID (FOPID) approach,
to detect and confine foreign drones by analyzing
RSSI values. The simulations are performed within
a MATLAB environment. This study simulates a
scenario in which a swarm of number of unmanned
aerial vehicles (UAVs) operates within a controlled
indoor environment. The UAVs are outfitted with
RSSI sensors to ascertain the signal intensity emitted
by other drones. The PID and FOPID controllers
are activated by RSSI values to identify and confine
any foreign drone within a circular arrangement.
The performance of both controllers is assessed
using various measures, including Detection Time,
Containment Time, Formation Stability, and Control
Effort. To optimize performance, PID and FOPID
controller parameters are modified. The table below

Table 1. Optimized Parameters for PID and FOPID Control.

Parameter Value (PID) Value (FOPID)

Kp 1.2 1.5
Ki 0.01 0.05
Kd 0.5 0.7
λ – 0.9
µ – 0.8

provides a concise summary of the parameters utilized
in the simulations.

Prior to the detection of the extraterrestrial drone,
Figures 5 and 6 illustrate the control effort and
formation stability of the UAV swarm for PID and
FOPID respectively. The control effort, quantified
as the cumulative value of the absolute control
signals, demonstrates how the PID or FOPID controller
modifies the UAV positions to sustain the formation.
The initial positions of the 10 UAVs in the PID based
swarm and their corresponding RSSI values over the
first 10 timesteps are visualized in Figure 6 on next
page. At first, the UAVs are placed in a 10 × 10 area
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Table 2. Optimized Parameters for PID and FOPID Control.

Control
Strategy

Performance Metrics
(in the presence of Alien Drone)

Ts Td Tc RSSImax Stmeasure Ceffort

PID

1 - - 61.23 0.56 12.3

2 - - 62.11 0.54 13.2

3 - - 60.75 0.57 12.8

– – – – – –

10 10 20 200 0.63 45.6

11 10 20 198.5 0.60 40.7

– – – – – –

30 10 20 195.2 0.55 35.2

FOPID

1 - - 61.23 0.60 12.6

2 - - 62.11 0.64 13.2

3 - - 60.75 0.67 12.6

– – – – – –

10 10 20 200 0.73 40.6

11 10 20 198.5 0.82 45.7

– – – – – –

30 10 20 195.2 0.87 45.9

Table 3. Symbols and Description.

Symbols Description

Ts Timestep in seconds
Td Detection time in seconds
Tc Containment time in seconds

RSSImax Maximum Value for RSSI
Stmeasure Stability measure
Ceffort Control Effort Measure

in a random manner, and their RSSI values experience
minor fluctuations caused by random noise. Each
drone’s control algorithm uses the average RSSI.

The formation stability is quantified by calculating
the standard deviation of the UAV placements, which
provides a measure of how consistently the swarm
maintains its formation. Figure 7 displays the locations
of the PID based UAV swarm at timestep 10, following
the detection of the alien drone. Additionally, it
presents the RSSI values of the swarm during the
whole simulation. When the alien drone is detected
(identified by a notably higher RSSI value), the swarm
surrounds the alien drone in a circle formation to
contain it. The RSSI values depict the instance of

detection and the subsequent stabilization when the
UAVs adapt their positions. The simulation results for
the UAV swarm control system using Fractional Order
PID (FOPID) are depicted in Figures 8 and 9. Figure 8
displays the initial locations of the 10UnmannedAerial
Vehicles (UAVs) inside a 10 × 10 region and their
matching Received Signal Strength Indicator (RSSI)
values during the first 10-time intervals.

The Unmanned Aerial Vehicles (UAVs) are initially
distributed in a random manner, and their Received
Signal Strength Indicator (RSSI) values experience
modest fluctuations because of noise. Figure 10
illustrates the positions of the UAVs and the RSSI
values during the whole simulation, with a specific
focus on the detection of the alien drone at timestep
10. The alien drone, which has a notably elevated RSSI
value, prompts the swarm to assemble in a circular
formation to enclose it. The RSSI values indicate the
occurrence of this detection event and the following
stabilization when the UAVs modify their positions.

The formation stability, as indicated by the standard
deviation of UAV placements, first declines because
of the rapid maneuver. However, it subsequently
stabilizes once the containment is achieved, so
showcasing the efficacy of the FOPID control system
in both preserving the formation and adjusting to new
demands. Whereas the control effort, quantified as
the cumulative value of the absolute control signals,
demonstrates how the FOPID controller modifies the
UAV positions in order to sustain the formation in
figure 10. Whereas the comparative analysis in terms of
time step, detection time, containment time, maximum
RSSI values, stability measure and control effort has
been summarized in Table 2.

5 Conclusion
The comparative analysis of PID and FOPID
control algorithms for UAV swarm management
reveals FOPID’s distinct superiority in stability and
confinement precision. Both systems successfully
identify and contain the alien drone; however, FOPID
demonstrates markedly superior stability metrics,
achieving a score of 0.87 by timestep 30, in contrast to
PID’s 0.55. Although it necessitates increased control
effort, reaching a maximum of 45.9, FOPID guarantees
enhanced precision and stability in swarm control,
rendering it the superior option for applications
that require high reliability and robust performance
in dynamic settings. Its improved stability and
precision establish FOPID as the optimal approach
for preserving swarm integrity and addressing
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anomalies, providing a significant advantage over PID
in advanced UAV swarm operations.

Conflicts of Interest
The authors declare that they have no conflicts of
interest.

Funding
The authors express gratitude for the assistance
rendered by the Interdisciplinary Research Centre
(IRC) for Aviation and Space Exploration at King Fahd
University of Petroleum and Minerals (KFUPM) in
advancing this research. The project is financed by
IRC for Aviation and Space Exploration as part of an
internally sponsored initiative under the cost centre
INAE2408.

References
[1] Obaid, M., Johal, W., & Mubin, O. (2020, November).

Domestic drones: Context of use in research literature.
In Proceedings of the 8th International Conference on
Human-Agent Interaction (pp. 196-203). [CrossRef]

[2] Hsieh, H. C., Jan, G. E., & Luo, H. L. (2023, November).
The Applications and Presentations of Drones in
Staged Performances and Contemporary Art. In 2023
IEEE International Conference on e-Business Engineering
(ICEBE) (pp. 281-286). IEEE. [CrossRef]

[3] Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker,
M., Mair, E., ... & Burschka, D. (2012). Toward a
fully autonomous UAV: Research platform for indoor
and outdoor urban search and rescue. IEEE robotics &
automation magazine, 19(3), 46-56. [CrossRef]

[4] Famili, A., Stavrou, A., Wang, H., & Park, J. M.
(2022). Pilot: High-precision indoor localization for
autonomous drones. IEEE Transactions on Vehicular
Technology, 72(5), 6445-6459. [CrossRef]

[5] Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou,
Z., Almaita, E., Khalil, I., ... & Guizani, M. (2019).
Unmanned aerial vehicles (UAVs): A survey on civil
applications and key research challenges. IEEE Access,
7, 48572-48634. [CrossRef]

[6] Qu, C., Boubin, J., Gafurov, D., Zhou, J., Aloysius,
N., Nguyen, H., & Calyam, P. (2022, October).
Uav swarms in smart agriculture: Experiences
and opportunities. In 2022 IEEE 18th International
Conference on e-Science (e-Science) (pp. 148-158). IEEE.
[CrossRef]

[7] Ming, R., Jiang, R., Luo, H., Lai, T., Guo, E., &
Zhou, Z. (2023). Comparative analysis of different
uav swarm control methods on unmanned farms.
Agronomy, 13(10), 2499. [CrossRef]

[8] Fang, Z., & Savkin, A. V. (2024). Strategies for
Optimized UAV Surveillance in Various Tasks and
Scenarios: A Review. Drones, 8(5), 193. [CrossRef]

[9] Aslan, M. F., Durdu, A., Yusefi, A., & Yilmaz, A.
(2022). HVIOnet: A deep learning based hybrid
visual–inertial odometry approach for unmanned
aerial system position estimation.Neural Networks, 155,
461-474. [CrossRef]

[10] Coppola, M., McGuire, K. N., De Wagter, C., & De
Croon, G. C. (2020). A survey on swarmingwithmicro
air vehicles: Fundamental challenges and constraints.
Frontiers in Robotics and AI, 7, 18. [CrossRef]

[11] Xiaoning, Z. (2020, November). Analysis of military
application of UAV swarm technology. In 2020 3rd
International Conference on Unmanned Systems (ICUS)
(pp. 1200-1204). IEEE. [CrossRef]

[12] Vanhie-Van Gerwen, J., Geebelen, K., Wan, J., Joseph,
W., Hoebeke, J., & De Poorter, E. (2021). Indoor drone
positioning: Accuracy and cost trade-off for sensor
fusion. IEEE Transactions on Vehicular Technology, 71(1),
961-974. [CrossRef]

[13] Pérez Rubio, M. D. C., Gualda Gómez, D., Vicente
Ranera, J. D., Villadangos Carrizo, J. M., & Ureña
Ureña, J. (2019). Review of UAV positioning in
indoor environments and new proposal based on US
measurements. [CrossRef]

[14] Harbaoui, N., Makkawi, K., Ait-Tmazirte, N., &
El Najjar, M. E. B. (2024). Context Adaptive Fault
Tolerant Multi-sensor fusion: Towards a Fail-Safe
Multi Operational Objective Vehicle Localization.
Journal of Intelligent & Robotic Systems, 110(1), 26.
[CrossRef]

[15] Youn, W., Ko, H., Choi, H., Choi, I., Baek, J. H.,
& Myung, H. (2021). Collision-free autonomous
navigation of a small UAV using low-cost sensors
in GPS-denied environments. International Journal
of Control, Automation and Systems, 19(2), 953-968.
[CrossRef]

[16] Famili, A., & Park, J. M. J. (2020, May). ROLATIN:
Robust localization and tracking for indoor navigation
of drones. In 2020 IEEE Wireless Communications
and Networking Conference (WCNC) (pp. 1-6). IEEE.
[CrossRef]

[17] Safaei, A., & Sharf, I. (2021, June). Velocity estimation
for UAVs using ultra wide-band system. In 2021
International Conference on Unmanned Aircraft Systems
(ICUAS) (pp. 202-209). IEEE. [CrossRef]

[18] Sun, Y., Wang, W., Mottola, L., Zhang, J., Wang,
R., & He, Y. (2023). Indoor drone localization and
tracking based on acoustic inertial measurement. IEEE
Transactions on Mobile Computing. [CrossRef]

[19] Ouyang, Q., Wu, Z., Cong, Y., & Wang, Z. (2023).
Formation control of unmanned aerial vehicle swarms:
A comprehensive review. Asian Journal of Control,
25(1), 570-593. [CrossRef]

[20] Horyna, J., Baca, T., Walter, V., Albani, D., Hert,
D., Ferrante, E., & Saska, M. (2023). Decentralized
swarms of unmanned aerial vehicles for search and
rescue operations without explicit communication.

77

https://doi.org/10.1145/3406499.3415076
https://doi.org/10.1109/ICEBE59045.2023.00052
https://doi.org/10.1109/MRA.2012.2206473
https://doi.org/10.1109/TVT.2022.3229628
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1109/eScience55777.2022.00029
https://doi.org/10.3390/agronomy13102499
https://doi.org/10.3390/drones8050193
https://doi.org/10.1016/j.neunet.2022.09.001
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.1109/ICUS50048.2020.9274974
https://doi.org/10.1109/TVT.2021.3129917
http://hdl.handle.net/10017/41727
https://link.springer.com/article/10.1007/s10846-023-01906-2
https://link.springer.com/article/10.1007/s12555-019-0797-7
https://doi.org/10.1109/WCNC45663.2020.9120619
https://doi.org/10.1109/ICUAS51884.2021.9476831
https://doi.org/10.1109/TMC.2023.3335860
https://doi.org/10.1002/asjc.2806


ICCK Transactions on Intelligent Systematics

Autonomous Robots, 47(1), 77-93. [CrossRef]
[21] DURDU, A., & KAYABAŞI, A. (2024).

Consensus-based virtual leader tracking algorithm
for flight formation control of swarm UAVs. Turkish
Journal of Electrical Engineering and Computer Sciences,
32(2), 251-267. [CrossRef]

Ghulam E Mustafa Abro earned his B.S. in
Electronic Engineering with honors from
Hamdard University, Pakistan, in 2016,
followed by M.S. in Control and Automation
from Sir Syed University in 2019, and a Ph.D.
in Electrical and Electronic Engineering from
Universiti Teknologi PETRONAS, Malaysia,
in 2023. He is currently a Postdoctoral Fellow
at King Fahd University of Petroleum and
Minerals (KFUPM) in Saudi Arabia, working

in the Interdisciplinary Research Centre for Aviation and Space
Exploration. Dr. Abro has nearly a decade of involvement with
IEEE, serving in various roles, including conference chair and
reviewer for SCI indexed journals. His diverse research interests
span control of underactuated systems, autonomous navigation,
robotics, swarm technology, and multi-agent systems. Prior
to KFUPM, he held academic and research roles at Hamdard
University, Universiti Teknologi PETRONAS, and defense research
institutes in Malaysia. (Email: Mustafa.abro@ieee.org )

Zain Anwar Ali earned his B.S. in Electronic
Engineering from Sir Syed University of
Engineering and Technology (SSUET),
Karachi, in 2009, followed by an M.S. in
Industrial Control and Automation from
Hamdard University in 2012, and a Ph.D. in
Control Theory and Engineering from Nanjing
University of Aeronautics and Astronautics
(NUAA) in 2017. He has held academic
positions at SSUET and Hamdard University,

and conducted Ph.D. research with Nanjing Strong Flight
Electronics. Currently, he is an Assistant Professor at Department
of Electronic Engineering Department, Maynooth International
Engineering College (MIEC), Maynooth University, Maynooth,
Co. Kildare, Ireland. Dr. Ali has published over 73 research
articles and is a member of various international engineering
bodies. He was twice selected as a Highly Talented Foreign Expert
by the Chinese Ministry. He has served as Assistant Editor of
SSUET Research Journal and Director of the Continuing Education
Program at SSUET and participates in research collaborations
funded by Pakistan’s Higher Education Commission (HEC).
(Email: Zainanwar.ali@mu.ie)

Ayman M. Abdallah received the B.S. and
M.S. degrees in aerospace engineering from
the King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia, and
the Ph.D. degree in aerospace engineering
from Old Dominion University, Norfolk, VA,
USA, in 2015. He is currently an Assistant
Professor and the Chairperson of the
Aerospace Engineering Department, King
Fahd University of Petroleum and Minerals.

Apart from this, he is also leading the Interdisciplinary Research
Centre for Aviation and Space Exploration (IRCASE), King Fahd
University of Petroleum and Minerals. His research interests
include new concepts for aerodynamic attitude flight envelope,
aircraft nonlinearity assessment, and flight dynamics and
control.(Email: Aymanma@kfupm.edu.sa)

78

https://link.springer.com/article/10.1007/s10514-022-10066-5
https://journals.tubitak.gov.tr/elektrik/vol32/iss2/3/

	Introduction
	Related Research Work
	Methodology
	Detection Mechanism
	Control Design
	Containment Strategy 

	Software Simulations
	Conclusion
	Ghulam E Mustafa Abro
	Zain Anwar Ali
	Ayman M. Abdallah


