
ICCK Transactions on Information Security and Cryptography
http://dx.doi.org/10.62762/TISC.2025.610386

RESEARCH ARTICLE

Secure Aware Outlier Detection in Underwater Wireless
Sensor Networks using Deep Learning

Sunbal Rani1,* and Saqib Shahid Rahim1

1Department of Computing, Abasyn University, Peshawar, Pakistan

Abstract
The emerging field of underwater sensor networks
(UWSN) has a vital potential shaping the modern
and future landscape that assists in measuring water
quality, pollution tracking, and identification of
underwater habitats. The challenging conditions
in the UWSN environments raise data and security
concerns in terms of outliers related to the
complicated communication system, poor visibility,
and limited resources. The data quality and network
efficiency may be affected due to these unwanted
conditions, giving rise to certain malicious activities
in the network. This study aims to enhance
the outlier identification process in terms of
security and quality perspectives using the Long
Short-Term Memory (LSTM) framework. The
focus is to identify the temporal patterns and
differentiate between various outliers in critical
UWSN conditions. Results reveal that the proposed
framework achieved high accuracy up to 95%
and surpassed the other traditional machine
learning models. It is worth mentioning that
underwater sensor data have a complicated pattern
that can be more appropriately handled using deep
learning models, including LSTM, in comparison to
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1 Introduction
Marine environments and disaster detection are
designed using underwater acoustic sensor networks.
Wireless Sensor Networks (WSNs) are also applied
in forestry to identify fires, track forest growth, and
evaluate ecological conditions. Wireless acoustic
pipeline systems that monitor air quality help
authorities detect significant changes in pollution,
further demonstrating the adaptability of Wireless
Sensor Networks (WSNs) [1, 2].

The transfer of information by wireless means over
the oceans is vital for systems that monitor oceanic
states and support sensor networks [3]. Underwater
Wireless Sensor Networks (UWSN) are employed
in collecting the information and transmitting it
underwater. Some of the tracking applications of
UWSNs are monitoring the oil industry, controlling
fish farms, pollution control, weather observing,
natural disasters prediction, search and rescue
missions, and impact study of marine life [4].

UWSNs are the state-of-the-art technology that is
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Figure 1. Underwater sensor network.

now changing the world of marine exploration and
environmental monitoring. Through the positioning
of nodes, both underwater and on the surface, these
networks have a secure infrastructure to help in the
precise monitoring of some areas of the ocean bed, as
shown in Figure 1 [5]. UWSNs facilitate the seamless
transfer of data among nodes and base stations,
continuously modifying communication channels to
guarantee optimal communication channels, given
the changing environmental conditions. Equipped
with smart sensors and autonomous vehicles, these
networks operate on wireless networks, coordinating
various activities to ensure continuous transfer of
information on scientific research and environmental
management without data loss. In a complicated
framework of UWSNs, the communication systems
are running on diverse carriers, such as acoustic,
electromagnetic, and optical waves [1]. Among
them, acoustic communication can be termed as
the best strategy of underwater communication.
Sound wave transmission through water enables
transferring information efficiently and, therefore,
real-time monitoring and responsive environment
changes. Based on the specifics of acoustic waves,
UWSNs have a high reach and reliability, which
stimulates a breakthrough in oceanic research and
resource management [6]. UWSNs can be used

beyond data transportation; they can also be essential
in the monitoring and analysis of the environment
and predictive tracking. Such networks are critical
for predicting weather patterns, predicting natural
disasters, as well as tracking vital environmental
conditions, such as pressure, temperature, and
pollution [7].

Acoustic underwater communication is a means
of communication that uses sound waves in the
transmission of information underwater, and is used in
tasks including navigation, sensing [8]. It works great
even on long ranges as well as through other strategic
obstacles, due to which it not only works well on clear
water but murky ones as well. The method is two-way
and provides flexibility in the application underwater.
However, it is limited in some way [9]. Background
noisemay restrict the clarity, and sound travels less as it
moves towards a long distance, thus slowing its impact.
Moreover, the sounds employed in communication
may be able to upset marine animals and therefore
change their way of operation, thereby affecting their
natural habits. Despite these challenges, underwater
acoustic communication can be a reliable technology in
a broad spectrum of underwater applications because
of its versatility and range [10–12].

UWSNs play an essential role in surveillance and the
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interrogation of different marine environment
properties. These networks adopt different
architectures to fulfill specific operational needs
and address unique challenges.

Sensor nodes in one-dimensional UWSNs are
defined in a line, either in a row or at particular
depths. The nodes act individually and translate
into a small network by themselves to gather data
within the immediate environment. During the
exploration, the nodes will be fixed to make sure
that the received information is accurate [13]. Upon
collecting the data, nodes emerge to relay the
information to distant stations. The acoustic signals
convey communication among the nodes during the
submersion, thus successfully allowing the nodes to
coordinate and exchange data effectively. This system
favors surveillance in a fixed direction and relaying
information acquired to the surface to be analyzed
further [14]. In a two-dimensional underwater
wireless sensor network (UWSN), sensor nodes are
grouped and deployed underwater, with each cluster
headed by a leader node, commonly known as an
anchor node. These nodes do not move; they are
attached to the surface of the ocean. All the sensor
nodes in a cluster gather the data and send it to the
anchor node in the cluster [15]. The linked nodes
would then collect data from all the connected nodes
and feed it into surface buoy hubs. In this architecture,
communication between the two dimensions is
possible. Additionally, horizontal communication
between sensor nodes and their anchor nodes, as well
as vertical communication between anchor nodes and
surface buoy hubs, can be facilitated. Communications
between the anchor nodes and the surface buoy hubs
are also carried out through acoustic communication
determination because the distance between them is
usually significant.

The use of an underwater wireless sensor network can
be made three-dimensional, where the sensor nodes
are set at various depth levels to sense some event in
the water. One of the common ways of interfacing
the underwater sensor nodes and the surface buoys
is by connecting using adjustable cables [15]. Each
sensor is secured to the seabed and connected to a
floating buoy that can be inflated through a pump to
regulate its position as needed. These sensors should
be placed below the surface of water and will require
a reputable connection method to make them work
reliably. It is possible to collect data from sensors
through two primary methods. The former approach
involves connecting all underwater sensors to the

floating buoy via variable wires, allowing for adaptive
depth changes [12]. The architecture of UWSN is
four-dimensional in 3D UWSN architecture with the
combination of mobile underwater sensor networks
[14]. The mobile UWSNs exhibit remotely operated
vehicles that gather information from the anchor nodes.
This is made available in far stations where it is
analyzed. Depending on the proximity of the node to
ROVs, information is transferred to the ROVs through
each sensor node that can transfer information directly
to ROVs. Depending on the nature of the data to be
transmitted between the underwater sensor nodes and
the ROV and the distance of the nodes to the ROV, the
communication is affected [16].

In short, the study helps in building an LSTM-based
model for anomaly detection to enhance data
accuracy and reliability in UWSNs. It addresses
the overall issues of noise, signal disturbance, and
environmental variance to improve the detection of
outliers. The study covers data preprocessing, model
optimization, and performance assessment, ensuring
the proposed method is practical and scalable for
real-time underwater use.

The structure of the research paper is as follows:
Section 2 gives a literature review. Section 3 contains
the proposed methodology. Section 4 will discuss
the experiment and analysis of the findings. Future
directions end the study in section 5.

2 Related Work
WSNs have attracted much attention in recent years for
solving various problems, including energy efficiency,
resource and power management, and traffic control
[2, 17, 18]. A newfield in research has been introduced,
the prediction of behavior of underwater sensor nodes
using DL, hence giving great understanding into the
underwater environment [3]. Several methods have
been suggested over the years to apply to UWSNs
in the direction of identifying suspicious happenings
on the bottom of the ocean using diverse algorithms.
The literature review provides an overview of various
approaches that incorporate varied methods and
techniques in the context of UWSNs.

AD in UWSNs adopts identifying sensor anomalies
in the water environment. With the help of modern
technologies such as machine learning and deep
learning, it will be possible to identify problems
generated by environmental changes or sensor errors,
and provide proper monitoring and valid results. In
[16], the authors presented an approach in which
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an unsupervised AD system on an LSTM model
was considered to interpret the interplay of nodes to
identify anomaly detection. The study highlights the
challenges related to anomaly detection algorithms in
terrestrial sensor networks, as opposed to underwater
networks, where anomalous behaviors differ. The
suggested model has both a prediction stage and a
detection stage, which are based on an LSTM network
to detect anomalies. Results show an accuracy of
80% and 84% in the first and second experiments,
respectively. This method will have good levels of
accuracy as well as minimize the false alarms in
UWSNs with minimum computational complexity.

In [19], the authors have developed a new outline
to identify anomalies in the underwater acoustic
network. In this research, the authors implement
a self-regressing prediction-based system in which
each sensor node finds anomalous data by itself. The
fuzzy inference system is then used in detecting the
sensor that is malfunctioning. The approach achieved
90% accuracy in the real underwater acoustic setting
and minimal false alarms in the underwater acoustics
environment. Results show that the technique is
efficient in identifying problems and does not bring
numerous false alarms. The method is very efficient
in identifying anomalies without delivering countless
false positives.

In [20], the authors developed an algorithm for
anomaly detection in water supply systems using
sensors and machine learning algorithms. This
technique employs KNN and NB models to analyze
data collected by the sensors. The method proved
effective, with a precision rate in anomaly detection
ranging from 83% to 87%.

The authors proposed a novel approach for detecting
anomalies in UWSNs based on temporal and spatial
correlation [21]. Their algorithm uses GRU to
comprehend the time series feature. It examines the
distribution of variances between the observed and
actual values using a sliding window. Thus, the
abnormal data may be identified at an early stage
by the use of probability density. Moreover, the
algorithm handles the spatial correlation through
data features incorporation and the use of Euclidean
distance to make further evaluation of abnormal data.
The performance of thismethod in detecting anomalies
in data from underwater sensors is explained by
experimental results.

In [22], the authors proposed a new method
considering the outliers and optimum positioning

of the anchor nodes to bring about a better path
optimization in an underwater sensor network. The
drawback in this research paper is the implementation
of sensors across the dimensions. The intelligibility
approach gives significance to the location of anchor
nodes in ensuring that accurate localization is realized.
It demonstrates that outlier data can be addressed and
that the shortest path can be efficiently placed using
half-quadratic minimization. The experiments show
that optimizing the positioning of the anchors based
on the Fisher Information Matrices, but respecting
D-optimality requirements. Quantitative evidence
shows that the method has major strengths compared
to the current literature, especially when it comes
to processing outliers. Given the study’s focus
on 3D localization to optimize partially connected
underwater optical wireless sensor networks and its
resistance to outliers, it holds high prospects for
enhancing the accuracy of UWSN.

3 Methodology
This methodology section provides a detailed and
systematic methodology for detecting outliers in
UWSNs using an LSTM deep learning model, with
the aid of comparisons with traditional machine
learning methods. The methodology starts with the
thorough analysis of anomalies and outliers, which
will be characterized, and the significance of their
role in the study of sensor data will be explained.
The proposed methodology aims to enhance better
prediction and trustworthy outlier detection ability in
complex environments under water.

With a thorough and dynamic environment of UWSNs,
precise anomaly detection plays a fundamental role in
the successful gathering of consistent information as
well as its transmission. This methodology includes
several succeeding phases, such as the selection of the
relevant data in the dataset, preprocessing, and feature
extraction, as a vital process in achieving the optimal
performance of the model. It will be followed by the
method of model selection and training, during which
a variety of configurations and hyperparameters will
be tested to determine the most effective model. Lastly,
it has thorough assessment and testing processes to
guarantee the reliability and robustness of the outlier
detection system. In this systematic process, this study
will contribute significantly to the research of UWSN
by improving the accuracy and reliability of the outlier
detection (OD) mechanism. Figure 2 shows a detailed
structure of the LSTM model.
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3.1 Selection of Anomaly-Based Dataset
The dataset covers a broad scope of sensor
measurements vital in identifying outliers in
UWSNs. The data include variables like water
temperature, depth, pressure, salinity, pH, dissolved
oxygen, turbidity, signal strength, timestamp, and
disturbance level, among others, the variety and
dynamism of variables that underwater sensors are
very likely to encounter. This dataset has been selected
because it represents the complete set of variables and
conditions typically observed in UWSNs. As such, it
is a unique resource to develop and test strong models
of anomaly detection.

3.2 Pre Processing
Preprocessing data is the initial phase to analyze
the data. In this phase, the data must be clean,
reliable, and consistent. The following are some of
the critical stages in this phase: First, there is the
data cleaning, where entries that are incomplete or do
not match are removed to ensure the integrity of the
dataset. Afterwards, normalization scales with digits
to a fixed scale usually between 0 and 1, so that the
training of models becomes more efficient and robust.
Organization of temporal sequences is undertaken
through formatting the data based on the feature of
timestamp, which facilitates harvesting and making
use of the temporal dependencies that are essential in
the dataset. Lastly, the process of outlier labeling is
performed, in which the data points are classified as
usual or outliers and are predetermined either based
on domain knowledge or using any criterion. This
will make the models learn to identify the pertinent
instances of anomalies. All these preprocessing
processes increase the quality and relevancy of this
dataset, which paves the way for more accurate and
reliable outlier identification.

3.3 Features Extraction
Outlier analysis is a significant process in feature
extraction in the UWSN environment. This comes
in the form of choosing and extracting features of
the data to complement the process of detecting
anomalies. The most important features that can
be adequately extracted are temporal features, they
include the timing of patterns and trends, which are
used to determine likely time dependence of the LSTM
model, statistical features, which include the mean
and standard deviation which can be used to provide
a sense of distribution and variability in the data,
and domain-specific features, which are based on
expert knowledge use [23]. The dataset incorporates

vital parameters like temperature in water, depth,
pressure, salinity, pH, dissolved oxygen, turbidity,
signal strength, time, and level of disturbance, all
of which will help in the comprehensive outlook of
the UWSN environment and, above all, help in the
recognition of outliers effectively and adequately.

3.4 Model Selection and Architecture
The LSTMmodel is chosen due to its ability to process
sequential data, which is essential for identifying
outliers in the UWSN environment. Important
hyperparameters in selecting a model and forming the
architecture are setting up LSTM layers, i.e., trying
different settings of the number of hidden layers
(1, 2, 3), and units per layer (64, 128, 256). The
different activation functions (Sigmoid, ReLU, among
others) are tested to determine how they influence
the modeling of nonlinear relationships in the data.
Hyperparameter tuning is the process of optimizing
model performance by altering parameters, also
known as hyperparameters, e.g., learning rate, batch
size, and dropout rate, with the help of algorithms
such as grid search or random search. To determine
the relative performance of the model, it is compared
in its operational efficiency with some customary
machine learningmodels, such as RandomForest (RF),
Decision Tree (DT) and K-Nearest Neighbor (KNN),
Logistic Regression (LR), Support Vector Machine
(SVM), and Naive Bayes (NB). This is an overall
fine-tuning of the chosen LSTMmodel configuration
that is very suited and will be used to detect anomalies
in complex underwater environments correctly.

3.5 Model Training
To enhance outlier identification in UWSNs, the LSTM
model training steps are involved. First, the data is
split into 80/20 datasets to train and test, respectively,
covering a healthy check of the quality of the model
produced. The LSTM model is optimized during
training to reduce the loss function. This optimization
is based on the choice of web page parameters, e.g.,
the number of hidden layers, the number of units
per layer, the type of activation functions used, and
other training features, such as the number of epochs
and the validation split. The model performance
is monitored continuously on a validation set to
guard against overfitting. They can include early
stopping and regularization techniques to stop training
when the performance becomes flat, to allow the
model to learn to generalize to new and unseen data.
Such a systematic approach is very essential in the
development of a reliable LSTM model that could be
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Figure 2. LSTM structure.

used to forecast anomalies in complex underwater
environments.

3.6 Anomaly Detection
Reconstruction within an LSTM-based anomaly
detection model is a capability of the model to
reconstruct the input it received during its training
due to the temporal dependencies and patterns that
the model learnt. The LSTM layers process the input
sequence and encode the data into a latent value.
The encoded data is then decoded to get the original
sequence, giving an output close to the information
present. The error made in reconstructing the output
is defined as the difference between the input and the
reconstructed output and is usually measured using
such metrics as Mean Squared Error. Data that lies
on normal points and conforms to learned patterns
creates low reconstruction errors, and data that does
not deviate significantly creates high reconstruction
errors. These errors are compared to an established
threshold to mark data points as being normal or
anomalous. When trained, the LSTM model is used to
detect anomalies in the test dataset. The first step in
the process of mode selection involves determining the
reconstruction error at each data point, which serves
as a measure of how well the model can reproduce
the inputs. Having a high reconstruction error means
there is a high chance that the given data point is not
following what is expected and may be an aberration.
To discriminate between the normal data and outliers,
the threshold is established regarding the distribution
of reconstruction errors. Data points that have error
values that are more than this limit are considered
anomalies, and those points that have error values
less than this value are considered normal. Lastly,
several measures are used to assess the usefulness
of the anomaly detection process, such as accuracy,
precision, recall, and standard deviation.

3.7 Comparison with Traditional Models
The LSTMmodel performance is contrasted to some
other conventional machine learning models, such
as RF, DT, KNN, LR, SVM, and NB, based on a
similar set of evaluation measures. The difference
in this comparison is that the LSTM shows better
performance in terms of remembering the previous
data temporal dependencies, which is the key to
capturing the complex patterns and anomalies over
time. As compared to traditional models, which
might find it challenging to deal with the sequential
nature of time-series data, the architecture of the
LSTM is specifically formulated to work with the
temporal dependency properties of time-series data
and therefore performs better in the detection of
outliers.

3.8 Cross Validation
A 2-fold cross-validation is utilized to evaluate the
performance and the LSTM model’s generalizability.
In that method, the dataset is divided into two subsets:
one subset trains the model, whereas the other one
checks the validation. The experiment is then reset
with the roles of the two subsets being interchanged,
enabling the model to be tested against other data
sets. This provides valuable insights into how the
model handles unobserved data. Although 2-fold
cross-validation is a convenient and helpful way of
determining whether the model is reliable, it might
fail to absorb all the variability in performance that the
higher k-fold cross-validation would provide.

3.9 Proposed Solution
Outlier identification is essential in UWSNs. It is
based on an LSTM model because it is used to decide
sequential data and incorporates the temporal nature
of data, as shown in Figure 3. This is done by
selecting an appropriate dataset, proceeding through
data preprocessing, which involves removing outliers,
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Figure 3. Proposed solution.

normalization, and labeling. The input is then enriched
in terms of highlighting both temporal patterns and
domain-specific insights using feature extraction. In
the model selection process, several LSTM models
are tested and compared to classic machine learning
models. The data is split into an 80% training set
and a 20% testing set. The reconstruction errors are
used to detect anomalies, and the model performance
is ensured against 2-fold cross-validation. This is to
increase the level of accuracy of outlier detection and
reliability within the UWSNs.

4 Experiments
In this section, experiments are performed to detect
outliers in underwater sensor data. The dataset
is well-explained at the beginning, involving the
most critical environmental measurements, such as
water temperature, depth, salinity, and pressure,
and including an anomaly label for outliers. It
also highlights the key tools and libraries needed to
manipulate data and create models, such as Pandas,
NumPy, TensorFlow, and Keras.

4.1 Network Simulation Setup
The simulated network is in a 100 m cubic space,
and it comprises 250 nodes (sensors) and five nodes
(sinks) in a mesh topology. The simulation will take
30 minutes, and it will be conducted based on the
MATLAB R2015a system. The acoustic medium in
which one operates, i.e., the underwater environment,
presents specific considerations as acoustic waves
present a set of distinct behavioral attributes not
found in electromagnetic waves. Use the propagation
delay with the speed of sound (1500 m/s). The

energy consumption model introduced the loss of
the incorporated signal path. Expanded acoustic
range to represent normal ranges in an acoustic
medium. Illustrated outlier nodes and energy used
in an acoustic environment. To simulate, the data set
will consist of several sensor measurements (water
temperature, depth, pressure, salinity, pH, dissolved
oxygen, turbidity, signal strength, timestamp, and
level of disturbance). Anaconda is Python-based and
integrated with MATLAB to collect data, preprocess
data, and process the data further. The sensor
information is shared along the mesh network and
processed with the help of a model, which an LSTM
represents. Themain goal of this simulation is to detect
outliers and hence make the outlier detection system
of the sensor networks under the water much more
accurate. The simulation settings, such as node details,
acoustic medium, and dataset properties, have been
summarized in Table 1 and can be referred to as the
simulation setting descriptions.

Table 1. Parameters in simulation setup.

S.No Parameters Values

1. Area Size 100m
2. Number of Nodes 250
3. Topology Mesh
4. Duration 30 minute
5. Communication Medium Acoustic
6. Simulator MATLAB R2015a
7. Programming Language Python
8. Tool for Programming Anaconda
9. Frequency 25KHz
10. Energy 100 Joules
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4.2 Description of the Dataset
The data consists of environmental readings taken at
different moments, which allows for the identification
of anomalies. Essential properties are the time stamp
of the measured data (time of measurement), depth
in meters, temperature of the water in Celsius, salinity
in parts per thousand, pressure in atmospheres, and
strength of signal in dBs. There is also a battery
voltage measured in volts, pH that measures the
acidity or alkalinity of water, the concentration of
dissolved oxygen is measured in milligrams per
liter, and finally, water turbidity is measured in
Nephelometric Turbidity Units. It has other features
like: CHL-a concentration in micrograms/liters, NO3
concentration inmilligrams/liters, and current velocity
in meters/seconds. Any data entry is also marked
as having an anomaly, and the values of 1 and 0
are assignments to indicate anomaly or normal data,
respectively. The combination of these characteristics
provides a detailed picture of the environmental
situation in the water, enabling easy identification of
anomalies.

4.3 Description of Features
Its dataset comprises principal characteristics that
measure the most relevant environmental and sensor
performance parameters of UWSNs, which are very
insightful about different dimensions of the aquatic
environment, as can be seen in Table 2. Such
characteristics include the temperature of the water,
the depth, the pressure, the salinity, the pH, the
dissolved oxygen, the turbidity, and the strength of the
signal. Moreover, timestamps are also present so that
the time of data collection is accurate and the intensity
of disturbance is measured to evaluate the activity of
the environment. Every aspect also helps to reveal the
thermal conditions and chemical composition, as well
as the biological health of the underwater ecosystem.
The data can also help determine the quality of
data transmission and verify the data distributed by
the sensors, which altogether make up a complete
picture of the situation underwater, to monitor the
environment effectively.

4.4 Parameters for Model Implementation
The outlined table of parameters to follow. The
process of implementing the LSTM model to improve
outlier detection within UWSNs explains what has
to be used to develop and train the model. Such
parameters are the number of hidden layers and
the number of units on each layer that define the
depth and ability of the network to represent complex

Table 2. Description of features.

S.No Features Descriptions

1. Temperature Measures the water
temperature.

2. Time Stamp Records the time when sensor
data is collected

3. Depth Measures the depth or distance
from the water surface.

4. Pressure Measures water pressure at a
specific depth.

5. Salinity Measures the concentration of
salt in water.

6. Signal
Strength

Measures the strength of
underwater communication
signals.

7. Potential of
Hydrogen

It checks the acidity and
alkalinity of the water.

8. Dissolved
Oxygen

It measures the amount of
oxygen dissolved in the water.

9. Turbidity Measures the cloudiness or
haziness of water

10. Level of
Disturbance

Indicates the degree of
disturbance or activity in the
environment.

structures. Activation functions used by the hidden
layer and the output layer influence the learning of
nonlinear relationships and the estimation of precise
class probabilities by a model. Basic parameters like
optimizer, loss functions, and evaluation parameters
play a very crucial role in guiding the process of
training the model to achieve its best performance
and to test the accuracy, precision, and recall of the
model. Other parameters, such as the epoch number
and the split of the validation, accomplish practical
training and confident validation of the model that
can generalize to previously unseen data. The set of
extensive configurations of parameters is necessary
to build a substantial LSTM model aimed at finding
anomalies in a complex underwater environment.

4.5 Parameters of the Model with Values
The identified parameter list enables us to organize
the configuration in a simple list, displaying the
values used to compare the model performance of
various parameters in the ML models. The DL, LSTM
model hyperparameters include the number of hidden
network layers (1, 3 in the search space), units per
layer (64, 128, or 256), and the choice of either ReLU or
sigmoid activation functions, which provide flexibility
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in architecture design. The training parameters set
shall have 10 epochs and a 0.2 validation split, and this
practice would result in good training and evaluation.
The two folds are used to cross-verify numerous
machine learning classifiers, such as RF, DT, KNN,
LR, SVM, and NB. Such precise specification can help
effectively compare the performance of the model
and its ability to generalize, and with the help of
this comparison, define the best possible option for
detecting the outliers in UWSNs. As can be seen in
Table 3 below, the parameters and their corresponding
values are given in detail.

Table 3. Parameters of the model with values.

S.No Parameter Values

1.
Number of
Folds for
Cross-Validation

2

2.
LSTM
Architecture
Hyperparameters

Hidden Layers: [1, 2, 3]
Units per Layer: [64, 128,
256]
Activation Function:
[’ReLU’, ’sigmoid’]

3. Training
Parameters

Epochs: 10
Validation Split: 0.2

4.6 Evaluation Metrics
Performance of DL and LSTM models is measured
with several keymetrics, which give a complete picture
of their performance. Such metrics include accuracy,
which measures the general correctness of a model’s
predictions, precision, which measures the fraction of
correct positives among identified outliers, and recall,
whichmeasures themodel’s ability to capture all actual
outliers. Collectively, these metrics provide valuable
insights regarding the precision, dependability, and
efficiencywithwhich anomalous activities are detected
in the underwater environment under the complex
dynamics of the environment.

4.7 Standard Deviation
The standard deviation (σ) measures the variation or
spread of values formetrics such as accuracy, precision,
and recall. It is calculated by using the formula in
Equation 1:

σ =

√∑
(xi − µ)2

N
(1)

where xi represents each value of the metric, µ is the
mean value of the metric, and N is the total number

of observations, which is 9 in this observation. This
formula helps quantify how much the metric values
deviate from the mean, providing insight into the
consistency of the model’s performance across the
observations.

4.8 Model Architecture With Sigmoid
LSTM uses a sigmoid activation function, with one,
two, or three hidden layers, each containing one or
more units corresponding to 64, 128, or 256 units. The
performance measurement based on these variations
of architecture is explored, and how this affects
performance in terms of detecting outliers in UWSNs.
Importantly, the smoothness of the gradient is the
most characteristic feature of the sigmoid activation
function, and this attribute of the activation function
also makes it most applicable to binary classification
problems and solving non-linear data interconnections.
This study aims to achieve the balance between model
complexity and model performance by systematically
modifying the number of hidden layers and the units
in each hidden layer, in single-layer, two-layer, and
three-layer models. The research focuses on the
influences of architectural complexity on the model
resiliency and performance in distinguishing outliers
in complex underwater settings. Finally, it provides
some information about the impact of the depth of the
layers and unit structures on the generalization power
of a model and its successful functioning under the
conditions of the real world.

4.9 Evaluation Metrics for Sigmoid Activation
The overall assessment of the model settings shows
different performance indicators on the basic
parameters, i.e., accuracy, precision, and recall. The
1st and 2nd are well-balanced precision-recall ratios,
but their accuracy is a bit lower, implying that they
will be appropriate with simpler data structures. The
3rd and 4th setups demonstrate greater accuracy, with
the 4th model showing an increased accuracy but with
a slightly lower recall. The 5th setup is an appropriate
combination of precision and recall, which is why it is
a good choice in most cases when detecting outliers
is necessary. The 6th one attains the most fantastic
accuracy but experiences a slight decrease in the recall,
which can limit its application in situations where
strong anomaly detection is required. On the other
hand, the 7th configuration scores the worst in all the
metrics, and this implies that it is not well suited to
work with complex data. In the 8th configuration,
high recalls are observed in an expert at par with high
accuracy. Interestingly, the 9th configuration returns
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the best balance results overall, or simply said, it has a
combination of the highest accuracy, precision, and
recall. This qualifies it to be the perfect solution for the
thorough searching of outliers in underwater sensor
networks. The detailed summary of performance
metrics of different LSTM model configurations is
shown in Table 4.

Table 4. Performance metrics for sigmoid activation.

Model iteration Accuracy Precision Recall

1st 0.87 0.88 0.89
2nd 0.88 0.88 0.87
3rd 0.90 0.89 0.90
4th 0.91 0.89 0.88
5th 0.90 0.91 0.90
6th 0.92 0.90 0.89
7th 0.89 0.87 0.86
8th 0.92 0.89 0.90
9th 0.92 0.92 0.91

Figure 4. Performance comparison: sigmoid activation.

In testing different LSTMmodel design tasks, it can be
seen that when increasing the model complexity, i.e.,
introducing more hidden layers and a larger number
of units, the model performance in terms of accuracy,
precision, and recall tends to improve. Remarkably, the
9th configuration is seen to be the best-scoring model
since it has the best scores on all measures, as shown
in Figure 4. This setup is the best when it comes to
improving outlier detection in UWSNs. The choice of
the best model configuration can be made according to
the needs of the task, whether the task requires higher
accuracy, precision, recall, or a trade-off between them.

4.10 Model Performance Metrics
The elaborate summary of the architecture offers a
variety of LSTM model settings for outlier detection,
all of which use the ReLU activation function. 1st
architecture with a single hidden layer of 64 units is
best suited to simple tasks. One hundred twenty-eight
units further expand it in the 2nd architecture, which
enables the model to learn more complex patterns.

The 3rd architecture also offers improved capacity of
256 units, which is more suitable for the identification
of complex outliers. The 4th architecture adds
two hidden layers composed of 64 units and allows
hierarchical feature learning and improved ability to
work with complex temporal dynamics. The 6th and
5th architectures have greater depth and unit capacity,
and the 6th model works specifically well with a more
complex dataset because it has a greater layer size.
The 7th architecture grows to three hidden layers,
each with 64 units, and this enhances the ability of
the model to extract hierarchical patterns. In the 8th
architecture, the units per layer are expanded to 128,
and thus feature learning on more complex settings is
augmented. Lastly, the 9th architecture, consisting of
three nested hidden layers, with 256 units in each of
them, provides themost significant capacity and depth,
and is optimal to use when modeling the detailed
patterns and finding the subtle outliers.

Figure 5. Performance comparison: ReLU activation.

4.11 Evaluation Metrics with ReLU Activation
When comparing the model configurations in Figure 4
in detail, it is possible to observe that the performance
of different architectures varies. The 1st architecture
provides significant accuracy with somewhat less
recall and is usable in case of lighter datasets. The
2nd architecture will be more accurate and have
more recall, and still have more precision, which is
a good combination for moderate tasks. The 3rd
architecture can be said to perform well in terms
of high accuracy, precision, and recall, thus works
well with moderately complex data sets. The 4th
architecture is the most accurate architecture of the
initial models; however, the precision is insignificantly
less, yet it is highly effective. The 5th architecture has
an equal performance to the 3rd one but has a bit higher
precision. The 6th architecture is the most fantastic
with significant precision as well as recall, and it’s the
most appropriate architecture to use when handling
complex data. Although the 7th architecture displays
less precision and accuracy, it is better on recall, and
does not work well on precision-critical tasks. The
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8th architecture offers good accuracy and recall and
a reasonable precision, and is thus a reasonable and
acceptable multifaceted architecture in the case of
complex datasets. And at last, the 9th architecture
performs the best in this general task, as it has the
highest accuracy and precision; hence, it is the most
appropriate to perform a complete outlier detection.
Table 5 shows performance results of different LSTM
model settings.

Table 5. Performance metrics for ReLU activation.

Model Iteration Accuracy Precision Recall

1st 0.89 0.90 0.88
2nd 0.90 0.91 0.89
3rd 0.92 0.93 0.92
4th 0.93 0.92 0.91
5th 0.92 0.93 0.92
6th 0.94 0.93 0.92
7th 0.91 0.89 0.90
8th 0.94 0.92 0.93
9th 0.95 0.94 0.93

The comparison of various LSTM model settings
indicates that more complex models achieve better
performance. The 9th architecture stands out in terms
of accuracy and precision, and with its high recall,
it becomes the best model for detecting outliers in
UWSNs. In choosing the model, trade-offs should be
considered between accuracy and precision, as well as
recall, to optimize the model for the particular task of
outlier detection.

4.12 Mean Calculation
The mean (µ) for each metric is calculated as in
Equation 2:

µ =
∑ xi

N
(2)

For example, for sigmoid accuracy:

µaccuracy

=
0.87 + 0.88 + 0.90 + 0.91 + 0.90 + 0.92 + 0.89 + 0.92 + 0.92

9
= 0.9011

(3)

4.13 Standard Deviation Calculation
The standard deviation (σ) is calculated for each
metric. For Sigmoid Accuracy:

σ =

√∑
(xi − µ)2

N
= 0.0173 (4)

Similarly, calculations are performed for all metrics:

The calculated standard deviations for Sigmoid and
ReLU activation functions are summarized below in
Table 6.

Table 6. SD of performance metrics for sigmoid and ReLU
activation functions.

S.No Metric Sigmoid Std Dev ReLU Std Dev

1. Accuracy 0.0173 0.0187
2. Precision 0.0147 0.0152
3. Recall 0.0152 0.0166

Table 6 draws a comparison in terms of the standard
deviations of Accuracy, Precision, and Recall given the
Sigmoid and ReLU activation functions. In all these,
Sigmoid users exhibit lower standard deviation values
(0.0173, 0.0147, and 0.0152)more frequently thanReLU
users, who have higher measures (0.0187, 0.0152, and
0.0166), albeit somewhat more consistently.

4.14 Model Performance Comparison for Sigmoid
Activation

Comparison of different outlier detection models used
in detail shows their significant differences concerning
their performance. The non-trivial accuracy, precision,
and recall realized by the proposed LSTM model with
the sigmoid activation function instead of using other
activation functions present in the literature make this
themost effectivemodel inmanaging complex patterns
in underwater sensor data. Instead, ML models, such
as the RF model, although compelling enough, are
not as good as LSTM in describing complex outlier
patterns and, as such, demonstrate both lower accuracy
and precision. The overall performance of the DT
model is the lowest, as it has problems handling
complicated datasets. The KNN model is more
accurate thanDecision Trees andNaive Bayes. Still, it is
less efficient than LSTM, primarily due to its sensitivity
to distance metrics and high computational cost. Like
other simple models, Logistic Regression does not
predict well when it comes to dealing with complex
outliers. SVMs are pretty good, but still not able to
compete with LSTMs. Lastly, NB is the least efficient
because it assumes the independence of features
and therefore cannot work well whenever complex
outliers have to be detected. Table 7 below provides
a comparison of the different machine learning (ML)
models along with the best-performing LSTM model
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with sigmoid activation function concerning the three
performance indicators, namely Accuracy, Precision,
and Recall.

Table 7. Comparison of performance metrics for sigmoid
activation.

Models Accuracy Precision Recall

LSTM (Best, Sigmoid) 0.92 0.92 0.91
Random Forest 0.85 0.84 0.83
Decision Tree 0.80 0.79 0.78
K-Nearest Neighbors 0.82 0.81 0.80
Logistic Regression 0.81 0.80 0.79
Support Vector Machine 0.83 0.82 0.81
Naive Bayes 0.78 0.77 0.76

4.15 Model Performance Comparison for ReLU
Activation

Table 8. Comparison results of various models.

Model Accuracy Precision Recall

LSTM (ReLu) 0.95 0.94 0.93
Random Forest 0.85 0.84 0.83
Decision Tree 0.80 0.79 0.78
K-Nearest Neighbors 0.82 0.81 0.80
Logistic Regression 0.81 0.80 0.79
Support Vector Machine 0.83 0.82 0.81
Naive Bayes 0.78 0.77 0.76

The detailed analysis of models for Outlier detection
reveals that the proposed LSTM model with a ReLU
activation function outperforms all other models,
achieving the highest accuracy. A close examination
of the models presenting outlier detection indicates
that the suggested LSTM model with the ReLU
activation function demonstrates the most significant
accuracy, precision, and recall compared to all the
remaining models. This model excels in detecting
complex patterns and dependencies in underwater
sensor data, making it particularly effective for outlier
detection. Comparatively, the RF model compares
well and fails to live up to the effectiveness of the
LSTM model, especially in grasping complex outlier
patterns. The DT model performs worse in all the
measures and is unable to perform complex tasks
because of overfitting and a poor pattern-recognition
ability. KNN outperforms DT and NB, but remains
not as good as LSTM, as it encounters problems
associated with sensitivity to distance and heavy
computational workload. The LR is a simple method
applicable to simple sets of data, but it is not very
effective in complex outlier detection. SVM achieves
fair performance through careful parameter tuning,
but it falls short of LSTM. Last of all, NB, due to

its assumption of feature independence, does the
poorest, and hence is least helpful in cases dealingwith
complex outlier detection. Table 8 below illustrates the
comparison of different models with their efficient use
in identifying the outliers.

5 Conclusion
Underwater sensor networks (UWSN) play a crucial
role in surveillance and the examination of various
marine environment properties. The stimulating
environments in UWSN may generate unreliable
sensor data, specifically outliers that can significantly
impact the data quality. Anomaly detection has a
critical role in data privacy and quality in UWSNs.
This paper presents an LSTM-based outlier detection
model in critical UWSN environments. It captures
temporal patterns, making it very suitable, as far as the
complexity of the underwater data is concerned. The
model achieved a high accuracy of 95% in identifying
various outliers. These findings have a high potential
real-world implication and can be utilized in areas such
as marine monitoring, infrastructure inspection, and
hazard detection. In the future, real-time detection,
advanced architectures of deep learning, and transfer
learning will be used to provide better adaptability
and performance to different environments in the
underwater world.
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