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Abstract
This paper presents the Singularity Cipher, a
novel cryptographic-steganographic framework
that integrates topological transformations and
visual paradoxes to achieve multidimensional
security. Inspired by the non-orientable properties
of the Klein bottle—constructed from two
Möbius strips—the cipher applies symbolic
twist functions to simulate topological traversal,
producing high confusion and diffusion in the
ciphertext. The resulting binary data is then
encoded using perceptual illusions, such as the
missing square paradox, to visually obscure
the presence of encrypted content. Unlike
conventional ciphers that rely solely on algebraic
complexity, the Singularity Cipher introduces
a dual-layer approach: symbolic encryption
rooted in topology and visual steganography
designed for human cognitive ambiguity. This
combination enhances both cryptographic strength
and detection resistance, making it well-suited
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for secure communication, watermarking, and
plausible deniability in adversarial environments.
The paper formalizes the architecture, provides
encryption and decryption algorithms, evaluates
security properties, and compares the method
against classical, post-quantum, and steganographic
approaches. Potential applications and future
research directions are also discussed.
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steganography, klein bottle cipher, post-quantum
security, cognitive encryption.

1 Introduction
In the modern digital landscape, cryptographic
systems must balance not only mathematical
strength but also resistance to increasingly subtle
forms of analysis, such as pattern recognition,
statistical inference, and even human visual
inspection [1]. Traditional cryptosystems,
such as Advanced Encryption Standard (AES)
[2], Rivest–Shamir–Adleman (RSA) [3], and
post-quantum candidates like Kyber [4], focus
predominantly on algebraic hardness assumptions.
However, they often lack perceptual or structural
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obfuscation mechanisms that would prevent a
message from being detected in the first place [5].
Recent efforts to expand the cryptographic design
space have included the integration of chaotic
dynamics and data motion [6]. One notable example
is the Database in motion Chaos Encryption (DaChE)
Algorithm[7], which applies chaos theory to Not
only SQL (NoSQL) 1 database systems to introduce
dynamic data transformation and enhance security
through unpredictable structural evolution. This
highlights a broader shift toward multidimensional
and structural cryptographic models [8].
This paper introduces the Singularity Cipher, a novel
hybrid cryptographic-steganographic approach that
combines two rarely integrated domains: topological
transformation and visual paradox encoding. Inspired
by the geometric structure of the Klein bottle—a
non-orientable surface 2 formed by gluing together
two Möbius strips [9]—the cipher employs symbolic
twist functions to simulate traversal over such a surface,
thereby achieving nonlinear confusion and diffusion
of plaintext characters.
Following this symbolic encryption, the resulting
ciphertext is mapped into a binary form and visually
encoded using geometrically paradoxical figures such
as the “missing square illusion” 3 [10]. These illusions
not only obscure the presence of data but also exploit
cognitive biases in human perception [11], introducing
a layer of plausible deniability and visual complexity
that traditional steganography methods often lack
[12].
By combining the mathematical richness of
non-orientable topological spaces [13] with
the deceptive power of visual illusions [14], the
Singularity Cipher aims to extend the cryptographic
landscape into new multidimensional territory. While
the scheme is not a replacement for established
post-quantum cryptography [15], it offers a unique
augmentation: an encryption paradigm where visual
structure, spatial logic, and topological transformation
serve as active components in data protection and

1NoSQL refers to a database design approach that stores and
retrieves data using models other than the traditional table-based
structure found in relational databases.

2On non-orientable surfaces like the Möbius strip, the lack of a
well-defined ’inside’ and ’outside’ makes it impossible to assign a
consistent directional orientation to the boundary.

3The missing square puzzle is an optical illusion that exploits
the unreliability of visual perception in geometric analysis, making
it an ideal candidate for encoding information that appears visually
consistent but contains hidden contradictions.

concealment. This aligns with emerging frameworks
like QUASAR[16], which advocate for adaptable,
forward-looking architectures to manage quantum-era
risks, emphasizing the need for diversified strategies
beyond algebraic hardness.
This paper formalizes the construction of the
Singularity Cipher, presents a detailed algorithm,
discusses its potential integration with post-quantum
cryptographic primitives, and compares it to existing
cryptographic and steganographic techniques in terms
of functionality, obscurity, and resistance to visual and
analytical attacks [17].

1.1 Definition: Singularity Cipher
Singularity Cipher is a novel hybrid
cryptographic-steganographic scheme that encodes
and encrypts information through a dual-layer system
inspired by:
1. Topological transformations, particularly

Möbius strip twists and Klein bottle traversal
[18];

2. Geometric-paradox-based visual encoding, such
as the missing square illusion [19].

It combines a symbolic twist-based cipher with a
visual illusion-based bit encoding to obscure both the
presence and the semantic content of a message.

Structure
The cipher operates in two interconnected layers:
1. Topological Cipher Layer (Klein Bottle Simulation):

Each symbol c ∈ A from a finite alphabet is
processed through two Möbius-style modular
transformation functions Ti, where i = 1, 2, such
that:

E(c) = T2(T1(c)), D(c) = T−1
1 (T−1

2 (c))

This models traversal on a Klein bottle, where
orientation and position change non-trivially due
to non-orientability [9].

2. Paradox Encoding Layer (Visual Steganography):
Binary representations of encrypted data are
visually encoded using geometric illusions [19]:

• A 0-bit is represented by a standard
geometric arrangement (e.g., a valid
triangle).

• A 1-bit is represented by a paradoxical
arrangement (e.g., a missing square
illusion).
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Features
• Nonlinear, reversible symbol transformation

inspired by topological surfaces [20].
• Visual obfuscation of data via perceptual

paradoxes [21].
• Supports human-verifiable decryption or

puzzle-based interfaces [22].
• Can be layered with post-quantum cryptography

for added obfuscation [23].

Purpose
Singularity Cipher is designed to:
• Provide an alternative encryption model based on

topological and perceptual complexity [24].
• Serve as a covert communication method through

visual or physical media [25].
• Explore foundational ideas for future

post-quantum steganographic methods [26].

1.2 Uniqueness of This Work
The Singularity Cipher offers a distinctly novel
approach to data protection by fusing two rarely
connected paradigms: symbolic topological
transformations and visual cognitive illusions
[27]. Unlike conventional encryption algorithms that
operate purely on numeric or algebraic operations
[28], this cipher simulates traversal over a Klein
bottle—a non-orientable topological surface—using
key-based twist functions. Furthermore, it encodes
the resulting ciphertext into a visual domain through
geometric paradoxes that deceive the observer’s
perception [29].
This dual-layer mechanism offers not only encryption
strength but also stealth and ambiguity. While
post-quantum schemes resist decryption by quantum
computers [30], they remain visible as encrypted
content. In contrast, the Singularity Cipher hides in
plain sight, challenging both machines and humans
to detect that a message exists at all [31]. This
combination of symbolic complexity, visual disguise,
and cognitive misdirection defines a new dimension in
secure communication and sets this work apart from
prior cryptographic and steganographic efforts [32].
To formally capture this multidimensional
encryption framework, we coin the term Singularity
Cipher to describe the integration of topological
symbol manipulation with visual-paradox-based

steganography. A formal definition of the Singularity
Cipher is presented above.

Paper Organization
The remainder of this paper is organized as follows.
Section 2 provides an overview of related work
in cryptography, steganography, and topological
methods. Section 3 introduces the motivation and
theoretical justification for the proposed approach.
In Section 4, we describe the system architecture and
methodology of the Singularity Cipher. Section 5
details the encryption and decryption algorithms.
Section 6 analyzes the security properties of the
scheme, while Section 7 compares it with existing
cryptographic and steganographic approaches.
Section 8 outlines practical applications and use cases.
Finally, Section 9 concludes the paper and discusses
the directions for future work.

2 Background and Related Work
This section outlines prior work and theoretical
foundations related to the Singularity Cipher,
specifically in the domains of cryptography,
steganography, topological data transformation,
and visual paradoxes.

2.1 Cryptography and Nonlinear Transformations
Traditional symmetric-key ciphers such as AES rely
heavily on substitution-permutation networks
to achieve confusion and diffusion [33, 34].
Post-quantum algorithms, including lattice-based
cryptography (e.g., Kyber [4]), code-based schemes
[35], and multivariate polynomial systems [36], focus
on algebraic structures that are resistant to quantum
algorithms like Shor’s [37] or Grover’s [38].
While effective against brute-force and quantum
attacks, these systems do not typically address data
obfuscation at the structural or perceptual level [39].
Research into chaotic maps and non-linear geometries
for cryptographic use has been limited but growing
[6], with some work exploring toroidal and hyperbolic
data spaces [40].

2.2 Steganography and Visual Encoding
Steganography focuses on concealing the existence of
communication rather than encrypting the message
itself [41]. Techniques range from Least Significant
Bit (LSB) image embedding [42] to more advanced
transformations in the frequency or wavelet domains
[43, 44]. However, many of these methods can be
detected through statistical steganalysis [45, 46].
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The Singularity Cipher differs by using visual
paradoxes—specifically illusions involving area and
geometry—as a medium of binary encoding [14].
This form of visual encoding resists both automated
detection and human suspicion by presenting data as
part of a believable, familiar visual structure [63].

2.3 Topological Structures in Computation
Topological concepts have been used in quantum
computing (e.g., topological qubits) [47] and
in error-correcting codes [48, 49], but they are
underutilized in classical cryptography [50]. The
Möbius strip and Klein bottle are well-known
non-orientable surfaces that exhibit unique traversal
properties [51]. When mapped to symbolic data
transformations, they provide an opportunity to
design reversible but disorienting encryption functions
[52].
Some prior research has investigated the use of braid
groups and knot theory in cryptographic contexts [53,
54], leveraging their non-commutative properties for
key exchange [55]. However, these approaches differ
from the current work, which uses topology not for
algebraic hardness but for structural encryption and
symbol flow disruption [56].

2.4 Cognitive Illusions and Perceptual Security
Visual illusions, such as the “missing square” paradox
[10] or Penrose triangle [57], exploit the human visual
system’s assumptions about geometry, depth, and
area [58]. While these illusions have been studied
extensively in psychology [59, 60], their application
in security is rare [61]. A few steganographic systems
have used optical illusions as distraction mechanisms
[14], but none have formally encoded binary data
within paradoxical constructs [62].
The Singularity Cipher bridges this gap by directly
encoding binary digits using illusions whose geometry
is locally plausible but globally inconsistent [64]. This
creates a system where information is protected not
only mathematically but cognitively [65].

3 Motivation
As digital communication becomes increasingly
ubiquitous, so does the means and sophistication of
adversarial analysis [66]. Traditional cryptographic
systems, while mathematically sound, are often
optimized solely for computational hardness and
do not address deeper structural or perceptual
vulnerabilities [67]. Adversaries may not always aim

to break a cipher directly; instead, they may seek
to detect the presence of encrypted communication,
classify it, or infer its metadata through statistical,
visual, or behavioral cues [68].
In parallel, the development of quantum computing
presents a growing threat to widely deployed
cryptographic primitives [69]. While post-quantum
cryptography offers strong alternatives grounded
in lattice problems, error-correcting codes, or
multivariate polynomials [70], it still generally
conforms to classical notions ofmessage representation
and transmission. There is an emerging need for
encryption methods that go beyond mathematical
complexity alone—methods that incorporate cognitive
misdirection, geometric transformation, and visual
ambiguity to protect not just the contents but also the
existence of sensitive information [41].
The Singularity Cipher addresses this need through a
dual-layer design that draws from distinct disciplines.
The topological layer introduces algebraic complexity
using the properties of non-orientable surfaces such
as the Möbius strip and Klein bottle, known for their
non-trivial paths and symmetry-breaking properties
that provide cryptographic confusion and diffusion
[20]. The visual paradox layer exploits cognitive
and perceptual vulnerabilities by hiding binary
information inside geometric illusions, leveraging
limitations in both human and machine interpretation
[71, 72] to make ciphertext not only encrypted but also
visually obfuscated.
This multidimensional approach aims to redefine the
boundaries of encryption by integrating principles
from topology, cognitive science, and optical illusion
into cryptographic design [73]. By obscuring not
only what is encrypted, but whether anything is
encrypted at all, the Singularity Cipher serves as a
foundation for systems that are inherently stealthy,
obfuscated, and structurally unpredictable—qualities
that may prove critical in the post-quantum era and
in adversarial environments where data must survive
not just decryption attempts, but also detection [74].

4 Singularity Cipher Architecture
The Singularity Cipher is a hybrid
cryptographic-steganographic system that integrates
both topological and perceptual obfuscation
mechanisms across two sequential transformation
layers [75]. This section describes the end-to-end data
transformation process and outlines the mathematical
and visual logic underlying each stage.
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4.1 System Overview
Figure 1 illustrates the overall structure of the proposed
Singularity Cipher, which operates through two
distinct layers:
1. Topological Cipher Layer: This layer simulates a

Klein bottle traversal by passing each plaintext
symbol m through two Möbius-style modular
transformations, T1 and T2 [9, 76]. These
transformations are key-dependent cyclic
mappings over a symbol alphabet A that
introduce orientation confusion and nonlinear
diffusion [34]. The resulting ciphertext c is
structurally resistant to simple inversion without
knowledge of both twist parameters.

2. Paradox Encoding Layer: The encrypted message
c is converted to its binary representation and
mapped onto visual elements using perceptual
encoding [77]. Each binary digit is rendered as
a geometric object: a standard triangle for bit
‘0’, or a paradoxical triangle (e.g., the "missing
square" illusion) for bit ‘1’ [10, 59]. This enables
steganographic embedding in diagrams, puzzles,
or illustrations while leveraging human visual
perception ambiguity as concealment [78].

The final output is a composite visual image
that not only hides the original message but also
embeds structural ambiguity, making detection and
decoding by adversaries more complex [79]. The
dual-layer approach provides redundant security
mechanisms—even if the visual encoding is detected,
the underlying topological encryption maintains
message protection [80].

4.2 Topological Cipher Layer: Klein Bottle
Simulation

The first layer introduces algebraic and spatial
complexity through two Möbius-style permutation
functions, T1 and T2, defined over a finite alphabet
A [81, 82]:

E(c) = T2(T1(m)), D(c) = T−1
1 (T−1

2 (c)) (1)

Each twist function Ti represents a key-dependent
cyclic permutation that may include bitwise reversal,
modular shifting, and position-dependent character
scrambling [83, 84]. The non-orientable properties
of the Klein bottle are simulated by ensuring that
applying both T1 and T2 introduces irreversible
confusion without access to both inverse functions
[51]. The traversal mimics the Klein bottle’s global

self-intersection by causing symbol paths to cross or
invert depending on position and context [85].

4.3 Paradox Encoding Layer: Binary-to-Visual
Mapping

The ciphertext c is converted to its binary
representation b, and each bit is embedded in a
visual structure according to the following encoding
scheme [86]:
• A bit value of 0 is represented by a standard

geometric shape, such as a consistent right
triangle.

• A bit value of 1 is represented by a paradoxical
image, such as the "missing square" illusion,
where the area appears unchanged after
rearrangement, despite the presence of a hidden
void [87].

These representations are selected for their cognitive
plausibility; the visual patterns appear structurally
valid but contain implicit contradictions that conceal
the data while maintaining plausible deniability [88,
89].

4.4 Visual Assembly and Output Generation
Once the entire binary sequence has been transformed
into visual symbols, the output is assembled into a
single composite image or diagram [90]. The resulting
image can be embedded in physical print, digital
documents, or multimedia contexts, enabling both
transmission and passive concealment [91].
The system supports both automated and
human-decodable decryption, where an observer
with prior knowledge of the cipher rules can visually
interpret and reconstruct the original binary stream
from the image [92, 93]. The encoded message is thus
protected by both mathematical permutation and
perceptual masking, creating a cryptographic method
that operates simultaneously in computational and
perceptual domains [94].

5 Algorithm Description
This section formally defines the core procedures of
the Singularity Cipher: the encryption and decryption
algorithms. Each message is first passed through a
symbolic topological transformation layer and then
visually encoded using geometric paradoxes.
Let the plaintext be denoted as m ∈ A∗, where
A is a finite alphabet. Let K = (k1, k2) represent
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Topological Cipher Layer (Klein Bottle Simulation)

Paradox Encoding Layer (Visual Steganography)

Plaintext m Twist T1 Twist T2
Ciphertext

c

Binary

0 →
Triangle

1 →
Illusion

Encoded
Puzzle
Image

Figure 1. Structure of the Singularity Cipher: a two-layer hybrid encryption scheme combining topological Möbius
transformations and visual paradox encoding.

the encryption key, consisting of two permutation
parameters defining twist functions T1 and T2.

5.1 Encryption Algorithm

Algorithm 1: Singularity Cipher Encryption
Input: Plaintext m, Key K = (k1, k2)
Output: Visual Cipher Image I
Apply Möbius-style transformation:
c1 ← T1(m, k1) // First twist (symbolic
reordering)
c2 ← T2(c1, k2) // Second twist (non-orientable
traversal)
Convert to binary:
b← toBinary(c2)
n← length(b)
foreach bit bi in b do

if bi = 0 then
vi ← RenderTriangle() // Normal
triangle

else
vi ← RenderParadoxIllusion()
// Geometric illusion (e.g., missing
area)

end
end
I ← AssembleImage(v1, v2, . . . , vn)
return I

5.2 Decryption Algorithm
The decryption process reverses the encryption
procedure by first analyzing the visual cipher
image to extract embedded binary information, and

Algorithm 2: Singularity Cipher Decryption
Input: Visual Cipher Image I, Key K = (k1, k2)
Output: Recovered Plaintextm
Extract binary string from visual symbols:
b← DecodeBinaryFromImage(I)
Convert binary to ciphertext symbols:
c2 ← fromBinary(b)
Apply inverse topological transformation:
c1 ← T−1

2 (c2, k2)

m← T−1
1 (c1, k1)

return m

then applying inverse topological transformations
to recover the original plaintext. The algorithm
begins by examining each visual element in the
cipher image to distinguish between normal geometric
shapes (representing binary 0s) and paradoxical
illusions (representing binary 1s). This binary string
is then converted back to symbolic form and subjected
to inverse Möbius-style transformations, applied in
reverse order to systematically undo the topological
scrambling performed during encryption.

6 Security Analysis
The security of the Singularity Cipher derives from
a combination of symbolic transformation using
topological permutation functions and perceptual
encoding via geometric paradoxes [95, 96]. This
section analyzes its resilience against classical and
perceptual attacks.
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6.1 Confusion and Diffusion
The topological cipher layer simulates traversal over
a non-orientable surface (the Klein bottle), using two
key-dependent twist functions T1 and T2 [13]. These
transformations ensure both confusion and diffusion
[34]:
• Confusion: Symbol relationships are obscured

due to position-dependent permutation and
inversion patterns [97]. The non-orientable nature
of the Klein bottle makes it difficult to trace the
original symbol flow [98].

• Diffusion: A single-bit change in the input
propagates through both twists, altering multiple
output bits due to the nonlinear nature of the
permutations [99, 100].

These properties mirror those sought in modern block
ciphers, such as avalanche effect and key sensitivity
[101, 102].

6.2 Key Space and Resistance to Brute Force
The cipher uses two keys (k1, k2), each defining a
permutation of the message space. For an alphabet
A of size n, the number of possible permutations is n!,
making the combined key space size (n!)2 [103].
Even for small alphabets (e.g., n = 256), the key
space becomes computationally infeasible to exhaust
via brute-force search, ensuring high entropy and key
unpredictability [104, 105].

6.3 Resistance to Known Plaintext and
Ciphertext-Only Attacks

In a ciphertext-only attack, the visual representation
of the ciphertext offers little statistical regularity due
to the paradox encoding [106, 107]. Known plaintext
attacks are also challenging because [108]:
• The symbolic transformation is nonlinear and

reversible only with both k1 and k2 [109].
• The binary encoding obfuscates character

boundaries [110].
• The visual paradoxes disguise data presence,

thwarting alignment-based inference [111].

6.4 Steganographic Robustness
Unlike LSB or frequency-domain steganography, the
paradox encoding layer does not embed data in
noise-prone image features [42, 44]. Instead, it hides
data in the semantics of the image itself, using illusions

that appear innocuous but carry structured meaning
to the receiver [14, 112].
This offers resistance to:
• Statistical steganalysis, which typically relies on

detecting minor image perturbations [46, 113].
• Visual inspection, where the illusion

camouflages the presence of any information at
all [46, 114].

6.5 Limitations and Assumptions
• The security of the cipher depends on the

secrecy of the transformation keys and the correct
rendering of paradox images [115, 116].

• Optical distortions, compression artifacts, or
automatic image filtering may degrade the ability
to decode symbols reliably [117–119].

• The visual encoding assumes that the receiver
can correctly interpret geometric illusions; for
machine interpretation, trained models may be
needed [120, 121].

7 Comparison with Existing Approaches
To contextualize the Singularity Cipher within
the broader landscape of cryptographic and
steganographic research, we compare its
characteristics against several representative systems,
including classical encryption schemes, post-quantum
algorithms, and visual steganography methods
[5, 122]. This analysis reveals the unique positioning
of our approach at the intersection of cryptographic
security and perceptual concealment.

7.1 Evaluation Framework
We evaluate cryptographic and steganographic
systems across five key dimensions that capture both
traditional security properties and novel perceptual
characteristics [123]:
• Security Basis: The underlying mathematical or

perceptual foundation providing cryptographic
strength [124].

• Quantum Resistance: Robustness against
quantum attacks, particularly Shor’s and Grover’s
algorithms [37, 38].

• Visual/Perceptual Layer: Integration of human
perception mechanisms for additional security
through cognitive concealment [125].
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• Steganographic Capability: Ability to hide the
existence of encrypted data within seemingly
innocent visual content [41].

• Confusion and Diffusion: Effectiveness in
obscuring input-output relationships through
algebraic or topological transformations [34].

7.2 Comparative Analysis
Table 1 presents a comprehensive comparison of
the Singularity Cipher against existing cryptographic
and steganographic approaches, highlighting the
distinctive features of each method.

7.3 Discussion and Implications
The comparative analysis reveals distinct advantages
and limitations across different approaches. Classical
encryption schemes like AES and RSA provide strong
algebraic security through substitution-permutation
networks and number-theoretic problems, respectively
[2, 3]. However, they lack visual concealment
capabilities and are vulnerable to quantum
cryptanalysis [126]. Their high confusion and
diffusion properties make them excellent for
traditional cryptographic applications but render
encrypted data easily identifiable [127].
Post-quantum cryptographic algorithms such as Kyber
and FrodoKEM address quantum vulnerabilities
through lattice-based constructions, offering proven
resistance against Shor’s algorithm [4, 128, 129].
Despite their quantum robustness, these methods
operate within conventional algebraic frameworks
and provide no mechanism for visual obfuscation or
perceptual concealment [130].
Steganographic approaches like LSB manipulation
excel at hiding data existence but offer minimal
cryptographic protection [42, 131]. Visual
cryptography provides both concealment and
some level of security through image-based secret
sharing, yet remains vulnerable to various image
processing attacks and statistical analysis [132, 133].
The Singularity Cipher occupies a unique position
by integrating topological transformations with
perceptual illusions, creating a dual-layer security
model [94]. This approach combines strong
symbolic transformation through Möbius and Klein
bottle mappings with cognitive concealment via
paradox-based steganography [134, 135]. While its
quantum resistance remains theoretically unproven,
the topological foundation suggests potential

robustness against both classical and quantum attacks
[136].

Furthermore, the Singularity Cipher’s design
philosophy enables hybrid deployment scenarios
where it can be combined with established
post-quantum algorithms [137, 138]. This layered
approach would inherit the computational robustness
of proven Post Quantum Cryptography (PQC)
schemes while adding structural and visual stealth
capabilities unique to our method [139].

The analysis demonstrates that while the Singularity
Cipher may not replace high-throughput traditional
encryption systems, it offers compelling advantages
for scenarios requiring covert, cognitively shielded
communication [25, 140]. Its integration of
cryptographic strength with perceptual invisibility
makes it particularly suitable for applications where
both security and concealment are paramount,
opening new avenues for secure communication in
adversarial environments [141, 142].

8 Applications and Use Cases
The Singularity Cipher offers a unique integration
of symbolic encryption and visual steganography,
making it particularly well-suited for environments
that require both security and covert communication
[25]. This section outlines key application domains
where the cipher provides distinctive advantages.

8.1 Covert Communication in High-Risk
Environments

In authoritarian regimes or conflict zones, the ability
to hide not just the content but the very presence of
encrypted communication is critical [143, 144]. The
Singularity Cipher allows messages to be embedded in
seemingly innocent diagrams or illustrations, evading
censorship anddetection [145]. Since the visual output
resembles mathematical puzzles or artwork, it offers
plausible deniability [89, 146].

8.2 Steganographic Watermarking for Intellectual
Property Protection

The visual paradox layer can be used to encode
ownership or licensingmetadata directly into scientific
illustrations, technical drawings, or architectural
blueprints [147, 148]. These hidden watermarks
are difficult to detect and remove without specific
knowledge of the encoding scheme, providing a novel
form of content authentication [149, 150].

45



ICCK Transactions on Information Security and Cryptography

Table 1. Comprehensive Comparison of Cryptographic and Steganographic Approaches
Approach Security Basis Quantum

Resistance
Visual/Perceptual
Layer

Steganographic
Use

Singularity
Cipher (ours)

Topological illusion,
Möbius/Klein
transformation

Unproven ✓ ✓

AES (Symmetric) Block cipher,
substitution-permutation

✗ ✗ ✗

RSA / ECC Integer
factorization,
elliptic curves

✗ ✗ ✗

Kyber (PQC) Lattice (MLWE) ✓ ✗ ✗

FrodoKEM
(PQC)

Standard lattice
(LWE)

✓ ✗ ✗

LSB
Steganography

Bit-plane
manipulation

✗ ✗ ✓

Visual
Cryptography

Image-based XOR
sharing

✗ ✓ ✓

Braid Group
Cryptography

Non-abelian
algebra / topology

Partial ✗ ✗

Chaos-based
Crypto

Dynamical systems
/ sensitivity

Partial ✗ ✗

Ambiguous
Illusion Encoding

Human perception
trick

✗ ✓ ✓

8.3 Secure Instruction Encoding in Printed or Visual
Media

In espionage or intelligence contexts, visual
steganography allows instructions or data to be
embedded in public media such as posters, packaging,
or digital art [151, 152]. The use of paradoxical
geometry makes the encoded data accessible only to
viewers with specific decoding instructions, adding
a layer of obfuscation that is resistant to machine
detection [153, 154].

8.4 Human-Perceptual Cryptography for Cognitive
Interfaces

The cipher could serve in secure human-machine
interfaces where visual illusions trigger specific
responses or actions [72, 155]. For example, in
Augmented Reality (AR) or heads-up displays,
paradoxical encodings may serve as secure tokens that
are recognized by trained human agents but remain
undecipherable to automated systems [156–158].

8.5 Augmenting Post-Quantum Encryption with
Structural Obfuscation

Though not a replacement for standard post-quantum
cryptographic algorithms, the Singularity Cipher
can augment them by encoding their outputs into

paradoxical visual structures [159, 160]. This
provides additional defense in depth that combines
computational intractability with perceptual stealth
[161, 162].

9 Conclusion
This paper introduced the Singularity Cipher, a
novel hybrid encryption and steganographic scheme
that integrates topological transformations inspired
by the Klein bottle with visual paradox-based data
encoding. By leveraging symbolic permutations across
non-orientable geometries and embedding binary data
in perceptually deceptive visual structures, the cipher
offers multidimensional security that goes beyond
traditional mathematical hardness assumptions.
We demonstrated that the cipher provides strong
confusion and diffusion, a large key space, and
enhanced stealth through cognitive and perceptual
obfuscation. In contrast to classical and post-quantum
cryptographic systems, which focus primarily on
algorithmic complexity, the Singularity Cipher also
addresses the growing need for concealment and
plausible deniability in adversarial environments.
The architecture supports applications in covert
communication, watermarking, and secure visual
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interfaces, particularly where data needs to remain
hidden in plain sight. Moreover, the cipher
can be combined with post-quantum primitives to
create a multi-layered defense strategy that is both
computationally secure and visually elusive.

Future work includes formalizing the cipher’s
resistance to machine learning-based steganalysis,
developing automated visual encoders and decoders,
and exploring other topological surfaces—such as
higher-genus manifolds—as symbolic spaces for
encryption. We also anticipate the potential for
adaptation in augmented reality and human-centric
cryptography, where visual cognition becomes part of
the secure communication channel.
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