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Abstract

The continuous threat of malware against digital
systems exists because its attack methods develop
rapidly, reducing the effectiveness of traditional
detection systems. Current static and dynamic
analysis methods for malware detection face
challenges with scalability and robustness when

handling large and complex malware samples.

Computer vision now shows that malware binaries
contain specific structural patterns when displayed
as grayscale images, which can be used for
classification. = This study investigates GCViT
for malware detection through its application to
the Malimg dataset, which contains 9,337 samples
from 25 malware families. The dataset underwent
preprocessing through a two-step process that
involved converting binary files into grayscale
images followed by applying viridis colormap
transformation and normalization for better visual
discrimination. The GCViT model trained using
ImageNet-pretrained weights while keeping its
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backbone fixed and modifying only the classifier
head for malware family classification. The model
reached 99.46% test accuracy and showed high
effectiveness across most malware families, with
only a few errors among structurally similar
variants. The results demonstrate that GCViT
achieves better performance by detecting both
local and global dependencies in images, leading
to improved malware image classification. The
research sets a new benchmark for the Malimg
dataset and highlights the potential of Vision
Transformers in cybersecurity.

Keywords: malware classification, global context vision
transformer, deep learning, information security, malimg
dataset.

1 Introduction

Malware continues to evolve in scale and
sophistication, creating significant challenges for
cybersecurity researchers seeking reliable detection
methods. Traditional approaches that rely on static
signatures or behavioural analysis increasingly fail to
identify new or obfuscated variants, motivating the
exploration of data-driven image-based techniques for
malware detection. Analysts struggle with the new
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variants of malware customarily slipping through
defenses rooted in signature-based systems, as they try
to circumvent the thousands of identified malicious
tools each year [6, 7]. In response to these issues,
machine learning (ML) and deep learning (DL) have
emerged as being able to go beyond hand-designed
signatures to provide automated detection of malware
variants [8]. Malware research is being approached
in new and creative ways. One such way is mining
malware code and translating it into visual art.
Translating the executable bytes into grayscale images,
malware of the same family unit tends to have the
same visual patterns [2]. This “pixel art”, alongside
ML and DL, allows researchers to effectively use
tools like Convolutional Neural Network (CNN),
VGG16, and ResNet for classification [3, 9, 10]. Due
to the success of CNNs, their bias towards local
spatial information allows them to resolve long-range
dependencies that are crucial for distinguishing
families that possess similar structural layouts yet
differ in texture.

Self-attention mechanisms have transformed image
classification through Vision Transformers (ViTs),
which model processed images as sequences of
patches [4]. ViTs process images more efficiently
than CNNs as they give better performance on
capturing global context. This capability makes
ViTs comprehensive and suitable for tasks where
global features and structure are as important as
local detail. However, standard ViTs are expensive to
compute and typically require large-scale training data,
which limits their use for specialized datasets such
as malware imagery. To rectify these challenges, this
study utilized the Global Context Vision Transformer
(GCVIT) [1], an architecture that combines global
context modules with hierarchical attention. As GCViT
maintains a balanced approach between global feature
modeling and efficiency, it is appropriate for malware
classification tasks. GCViT offers an expressive model
which is easier to compute local feature extraction with
cross-image contextual awareness.

Conventional malware detection frameworks depend
either on static signatures, which can be readily
obfuscated, or on dynamic analysis, which is
resource-intensive and frequently impractical at scale
[6, 11]. The CNN-based malware image classification
enhanced detection accuracy, although it exhibits
insufficient sensitivity to global interdependence. This
necessitates the development of models adept at
learning both intricate local features and extensive
structural information. Although CNNs and ViTs have

been utilized in malware detection, previous studies
focused mainly on CNN-based models or conventional
ViTs that require substantial computational resources
[9, 12]. With its global context technique, GCViT’s
promise in the malware space is still untapped.
By methodically evaluating GCViT on the Malimg
dataset, comparing it to traditional CNN methods, and
showcasing its superior performance, this paper fills
this gap. It is suggested to use GCViT for malware
classification for the first time, utilizing its global
context technique to enhance feature representation.
To maximize malware image representation, a
thorough preprocessing pipeline created that included
scaling, normalization, and grayscale-to-RGB viridis
mapping. Extensive experiments revealed that GCViT
achieves 99.46% test accuracy, surpassing CNN models
such as VGG16 [15]. This study addresses limitations
and future research directions while offering a
thorough error analysis that highlights difficulties in
incorrectly identifying visually similar families (such
as Swizzor variations).

2 Related Work

The problem of malware detection has been extensively
studied, with approaches evolving from handcrafted
signatures to machine learning—driven paradigms.
This section reviews the major categories of related
work, highlighting their contributions and limitations,
and identifying the research gap addressed by this
study. Approaches to malware detection range
from traditional handcrafted elements to the more
contemporary machine-learning paradigms. This
section focuses on these methodologies’ strengths and
weaknesses detailing the gaps which this study will
address. Most detection techniques are still based
on static and dynamic analyses. Static examinations
inspect a devices’ binary structures, opcodes or
signatures and is fast detection but, is poor against
obfuscation and polymorphism [6, 13]. Controlled
environments which execute malware capture traces
of behavioral movements and are called dynamic
analyses. They yield richer behavior insights but,
are expensive and can be easily evaded [14]. These
techniques, although conventional, are obsolete when
considering today’s malware. There has been a
significant advancement in detection paradigms and
the change of malware binaries to grayscale images is
a good example.

Nataraj et al. [2] demonstrated the existence of
certain malware family specific traits that facilitate
image-based classification. This technique is the
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basis of the use of image classification attribution
using CNNs like VGG16 and ResNet on the Malimg
dataset [3, 9, 15]. The use of these models yields
high accuracies around 97-98% [10, 16], because
of the retention of the local features. However,
CNNs inherently prioritize locality, limiting their
ability to capture broader structural relationships. In
imbalanced datasets like Malimg, CNNs often
misclassify small families, highlighting their
limitations [17, 35].

The self-attention technique was first described by
Dosovitskiy et al. [4] with the introduction of
ViT. Before the introduction of CNNs in malware
image classification, early applications in cybersecurity
demonstrated promising results, as ViTs captured
holistic malware image features overlooked by CNNs
[12, 18, 34]. Dosovitskiy et al. [4] had already
conducted deep learning research in cyberspace.
Although ViTs had the ability to capture fundamental
relevant features of an image, CNNs would ignore
them. The original designs of ViTs were data-hungry,
expensive, and required enormous training data
sets. Options to increase efficiency include the
Swin Transformer [5] and the GCViT [1] hierarchical
transformers. The efficiency of GCViT comes from
the balance it strikes from local and global context
processing. Its ability to work with natural photos
with success is in stark contrast to its unavailability to
malware classification, which remains the case until
this study. In contrast to the work of Nataraj et al.
[2] and Kalash et al. [10] that employed CNNs for
malware image classification and achieved inference
accuracies within the 92-98% range, this work applies
the GCVil, which takes local and global spatial
information into consideration. Also, in contrast to
Seneviratne et al. [12] who applied standard Vision
Transformers to malware detection, their work is
characterized by training instabilities and excessive
parameter burdens.

However, Venkatraman et al. [23] proposed a hybrid
deep learning framework that integrates both static
and dynamic features for malware classification,
demonstrating improved detection accuracy.
By contrast, our GCVil-based pipeline achieves
99.31-99.45% test accuracy on the Malimg dataset,
surpassing these prior baselines while maintaining
a more efficient parameter footprint (~11.5M). This
comparative performance demonstrates that GCViT
not only improves classification accuracy but also
provides a scalable and computationally balanced
solution for real-world malware detection systems.

However, the comprehensive study of literature
also reveals potential research gaps. The literature
reveals three trends. First static and dynamic
analysis methods struggle with obfuscation and
scalability. Second CNN-based image classifiers
achieve high accuracy but fail to generalize across
visually similar malware families due to their local bias.
Third transformer-based models are underexplored
in malware detection with GCViT not yet applied
in this domain. This difference serves as the
driving force behind our investigation, which involves
methodically deploying GCViT to the Malimg dataset,
also a comparison with CNN models, and evaluating
performance benefits. Our study not only advances
the incorporation of global context transformers in
malware classification, but it also builds upon the
trajectory of CNN and ViT techniques. Previous
methods for classifying malware images have mostly
used CNNE.

For instance, Kalash et al. [10] expanded on this
concept using deeper transfer learning architectures,
reporting accuracies in the range of 92-98%. Nataraj et
al. [2] initially showed the feasibility of converting
malware binaries into greyscale images and using
CNN-based feature extraction. Seneviratne et al. [12]
investigated ViTs for malware detection in more recent
times. They demonstrated that while transformers
can capture long-range dependencies, they frequently
do so at the tradeoff of increased computing cost and
unstable training. On the other hand, GCViT is used
in this work to integrate both local and global spatial
interactions in a computationally efficient way. Tested
on the Malimg dataset, our GCViT-based pipeline
outperforms CNN-based techniques [2, 10], and
previous transformer-based investigations [12] with a
test accuracy of 99.31-99.46% while keeping a smaller
parameter footprint (~11.5M). This comparison result
shows that GCViT is a good option for scalable
malware detection systems since it not only increases
predicted accuracy but also offers a fairer trade-off
between performance and model complexity.

3 Dataset and Preprocessing

This section describes the dataset and preprocessing
procedures adopted in this study. It outlines the
characteristics of the Malimg malware dataset and
details the transformation steps applied before model
training. The Malimg dataset, introduced in [2]
and later hosted on Kaggle [19], comprises 9,337
samples from 25 malware families with distinct
structural and behavioural traits. After identifying
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Family

Grayscale

Allaple.A

Fakerean

Figure 1. Malware samples showing original grayscale and transformed rgb after viridis colormap.

and removing duplicate and near-duplicate samples,
the final corpus comprised 9,309 unique files. These
include polymorphic worms such as Allaple.A and
Allaple.L, Trojan downloaders like Yuner.A, adware
families such as Lolyda.AA and Skintrim.N, and email
worms including C2LOP.P and C2LOP.gen!g. Other
examples include InstantAccess (browser hijacker),
Swizzor variants (obfuscated file infectors), and
Fakerean (rogue security software). Each family’s

binary structure produces unique visual textures
when converted into images, enabling effective
classification. Executable bytes were mapped into
8-bit pixel intensities to generate grayscale images,
then transformed into RGB format using the viridis
colormap and resized to 224x224 pixels for GCViT
input. Despite its popularity in malware research, the
dataset remains class-imbalanced, with certain families
underrepresented. Raff and Nicholas [29] highlighted
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this imbalance challenge, which can cause overfitting
and bias toward dominant families.  Previous
studies [10, 16] also reported misclassification of
minority classes, underscoring the need for balanced
preprocessing and stringent evaluation.

3.1 Preprocessing Pipeline

To prepare the dataset for training we implemented
a multi-step preprocessing pipeline based on our
experimental design. The malware images varied
in resolution. All samples were resized to 224 x
224 pixels to ensure compatibility with both GCViT
and CNN-based models. Each image originally a
single-channel grayscale image. GCViT requires an
input image with three channels. To adapt grayscale
images for models pretrained on natural RGB data
such as GCViT we applied the viridis colormap.
This transformation expanded each image into three
channels, enriched the feature space, emphasized
structural variations across malware families, and
enabled the models to leverage color distinctions. The
effect of this step is illustrated in Figure 1.

All pixel values were scaled to the range [0, 1],
standardizing inputs and improving convergence
during training. The dataset was partitioned into 80%
training, 10% validation, and 10% test sets as shown
in Figure 2.

Dataset Split

Test
(930 samples)

Validation

3010% (930 samples)
. ‘0

Train
(7449 samples)

Total Samples: 9309
Figure 2. Graph illustrating data split in this study.

Stratified strategy used to preserve family distributions.

This ensured fair evaluation and prevented overlap
between training and test data. The preprocessing
not only standardized the dataset but also enhanced
the discriminability of malware patterns through the
viridis transformation, a step that proved crucial for
boosting classification performance.

3.2 Challenges of Imbalanced Malware Families

The imbalance between families is one significant issue
in the Malimg dataset. Allaple.A and Allaple.L for
instance collectively make up more than 40% of the
dataset, yet certain families such as C2LOP.gen!g have
fewer than 100 samples as shown in Figure 3.

Minority families may be misclassified as a result
of this imbalance, which can skew the classifiers
towards majority classes and ultimately increase the
rate of loss. This problem was verified by experiments:
whereas GCViT performed almost flawlessly on
dominant families, it occasionally misclassified
minority families with structural similarities such as
Swizzor.gen!E and Swizzor.gen!l. Recent work has
applied oversampling and GAN-based synthesis to
generate balanced malware datasets, significantly
mitigating skew-related performance drops [24]. This
result is consistent with previous studies [10, 17],
emphasizing the necessity of either sophisticated
sample plans or loss-balancing methods in subsequent
research.

4 Proposed Model Framework

4.1 GCViT for Malware Detection

In the past, CNNs such as VGG16 have dominated
the categorization of malware images because
they are highly effective at capturing local texture
data [3, 9, 15]. Transformer models may now scale
effectively on vision datasets because of large-scale
training techniques like minibatch SGD, laying the
groundwork for malicious image applications [25].
Lightweight transformer backbones have been
introduced for efficient malware detection on
constrained environments, balancing accuracy and
resource consumption [26]. GCViT has also been
extended to medical imaging, where global context
modeling improved tumor classification, highlighting
its adaptability across domains [29]. CNNSs, on the
other hand, are unable to capture global dependencies
among malware images due to their natural preference
for local receptive fields. When separating malware
families with slight local similarities but different
global architectures such as Swizzor and C2LOP
variants, this constraint becomes crucial. Because of its
capacity to integrate a global context mechanism with
hierarchical local self-attention, the GCViT [1] was
chosen for this investigation. Hybrid Convolutional
Neural Network - Long Short-Term Memory
(CNN-LSTM) architectures have been proposed to
capture both spatial and sequential malware features,
yielding competitive results in challenging detection
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Class Distribution in Malimg Dataset
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Figure 3. Barplot for class distribution in Malimg dataset.

scenarios [27]. Multi-modal approaches combining
static and dynamic features have been shown to
significantly improve malware detection performance
compared to single-source models [33]. In contrast to
traditional ViTs that are computationally costly, GCViT
effectively simulates both long-range relationships
and fine-grained local characteristics. Because of this
equilibrium, malware images, which display both
larger structural layouts and repeating local byte
patterns benefit greatly from it.

4.2 Model Architecture and Transfer Learning
Strategy

This implementation adopts the GCViT-XX Tiny
configuration [1], which is lightweight but expressive.
Convolutional stem-based vision transformers further
enhance representation learning for malware images,
offering strong performance gains over pure CNN
models [28]. The ImageNet head with 1000 classes has
replaced with a 25-class dense layer. The architecture
consists of four hierarchical levels with progressively
increasing embedding dimensions and attention heads.
The input size is 224x224x3 after viridis mapping,
the patch embedding dimension is 64, the hierarchical
depths are (2, 2, 6, 2) transformer blocks across four
stages, and the attention heads are (2, 4, 8, 16) across

stages. Global context modules are integrated to
capture non-local dependencies efficiently, and the
classifier head is a dense layer with 25 units (one
per malware family) with softmax activation. The
complete model has approximately 11.495 million
parameters, of which only the final classifier head
(about 12.8k parameters) was trainable. All other
layers were frozen using ImageNet-pretrained weights,
following transfer learning best practices. This
approach allowed us to leverage features learned from
large-scale natural images while avoiding overfitting
on the relatively small Malimg dataset.

The training configuration employed the Adam
optimizer with sparse categorical cross-entropy as
the loss function. A batch size of 32 and 50 epochs
were used, with early checkpointing triggered by
improvements in validation accuracy. A dropout
rate of 0.2 was applied within the GCViT blocks
to enhance regularization. This setup enabled
rapid convergence, as validation accuracy increased
steadily, and the best-performing checkpoint was
retained for final evaluation. The hierarchical vision
transformer design of the GCVIiT architecture in
Figure 4 gradually decreases spatial resolution while
increasing representational depth. Different numbers
of blocks and attention heads are used to parameterize
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GCViT Model Architecture
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Figure 4. Architecture of the proposed GCViT model for malware classification.

each stage, and local self-attention operates over
varying window widths (7x7, 14x14). The combined
schematic highlights how the classification head
maps the compact 512-dimensional representations
produced by patch embedding and multi-stage
processing to 25 malware families. This figure offers
a comprehensive and technically transparent picture
of the GCViT design by displaying both the detailed
block expansion and the tiered overview. This transfer
learning configuration enabled the model to converge
rapidly, with validation accuracy. To provide a
clearer visualization of the adopted backbone, Figure
4 depicts the GCViT-XX Tiny architecture tailored
for malware classification. The illustration highlights
the hierarchical arrangement of transformer blocks,
the progressive expansion of embedding dimensions,
and the integration of global context modules that
collectively strengthen the model’s ability to capture
non-local dependencies. The final dense head with 25
outputs aligns the representation space with the target

malware families, completing the architecture.

5 Experimental Setup

To ensure reproducibility and fairness, all experiments
were conducted under a controlled and uniform
configuration.

5.1 Training Environment and Parameters

The experiments were implemented in Python 3.12
using TensorFlow 2.x and executed on Google Colab
Pro, which provides access to NVIDIA Tesla GPUs
(T4 or P100 depending on session availability).
The Colab environment ensured adequate memory
and computational resources to handle the dataset
preprocessing and training of transformer-based
models.  The preprocessing pipeline, training
scripts, and evaluation metrics were consistently
managed within Jupyter notebook workflows. The
hyperparameters used for both GCViT and VGG16
included an input size of 224x224x3, a batch size
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of 32, and the Adam optimizer. Sparse categorical
cross-entropy was adopted as the loss function, and
an adaptive learning rate schedule was applied using
TensorFlow’s optimizer defaults. The training was
conducted for a maximum of 50 epochs, with early
stopping guided by validation accuracy. A model
checkpoint callback was configured to save the model

with the highest validation accuracy during training.

The checkpoint saved at this stage was used for the
final evaluation. Transfer learning has been shown to
be effective in addressing class imbalance in malware
datasets, improving classification robustness under
skewed distributions [22].

Table 1. Training environment and hyperparameter
configuration for GCViT.

Parameter Value
Input size 224 x 224 x 3
Pretrained Weights ImageNet
Trainable Layers  Final classification head only
(~12.8k params)
Optimizer Adam (Lr =0.001)
Loss Function Sparse categorical
cross-entropy
Batch Size 32
Epochs 50
Regularization Drop Path = 0.2
Hardware NVIDIA T4 GPU (Colab

Pro+, 16 GB VRAM)

Table 1 describes the configuration used for training
GCViT on the dataset.  Subtle differences in
regularization and input resolution were the only
variations, while other parameters such as the
optimizer, loss function, and batch size were kept
constant to ensure fairness. GCVil was trained
with an input resolution of 224x224 due to its patch
embedding technique. All models were trained in a
similar GPU environment on Google Colab to ensure
reproducibility.

5.2 Monitoring Metrics

To ensure comprehensive evaluation, multiple
performance metrics were monitored throughout the
experiments. Accuracy and loss curves for the training
and validation sets were tracked across epochs to
detect overfitting and determine convergence. After
training, models were assessed on the held-out
test set, where final accuracy and loss values

provided an objective measure of generalization.

Conventional classification reports were generated

to compute per-class precision, recall, and F1-scores.
These measurements revealed weaknesses in
minority classes such as Swizzor.gen!I and C2LOP,
alongside strong performance in dominant families.
Confusion matrices for the GCViT model identified
misclassification patterns and provided deeper insight
into model behaviour. Tracking these supplementary
measures captured both overall performance gains
and the families where challenges remained. Beyond
accuracy, this evaluation assessed performance
consistency across dominant and minority classes.
Despite its transformer backbone, GCViT proved
computationally efficient. Training on approximately
7,449 images (80% of the dataset) with a batch size
of 32 completed in under three hours on Colab’s
GPU, while inference on about 930 test images ran
within seconds. This efficiency underscores GCViT’s
practicality for real-world malware classification.

6 Results and Analysis

6.1 Training and Validation Performance

The GCViT model was trained for a maximum of 50
epochs with validation accuracy monitored for early
stopping. GCViT converged faster compared to CNN
models such as VGG16. The training and validation
curves show that GCVIiT achieved rapid convergence,
maintaining a validation loss of approximately 0.0129
throughout the training duration. The corresponding
test accuracy ranged between 99.31% and 99.46%,
depending on the evaluated checkpoint. Figures 5 and
6 illustrate GCViT’s performance, highlighting its rapid
convergence and the stable alignment between training
and validation metrics, which together demonstrate
robustness and superior generalization compared to
CNN-based models.

Training vs Validation Accuracy

1.00 e e A
=T :
0.95 (
> 0.90
(9]
©
1
= 0.85
)
Y]
< 0.80
0.75 —— Training Accuracy
Validation Accuracy
0 10 20 30 40 50

Epochs

Figure 5. Training and validation accuracy curves for the
GCViT model over 50 epochs.
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Training vs Validation Loss
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Figure 6. Training and validation loss curves for the GCViT
model over 50 epochs.

6.2 Test Set Performance

The final evaluation was conducted on the held-out test
set (10% of Malimg dataset). Results are summarized
below in Tabel 2.

Table 2. GCVIiT classification performance.

Model

GCViT (Run 1)
GCViT (Run 2)

Test Accuracy Test Loss

99.31% 0.0206
99.46% 0.0129

Table 2 summarizes the classification performance
of the proposed GCViT model. In Run 1, the
model achieved a test accuracy of 99.31% with a
corresponding test loss of 0.0206. In Run 2, the
accuracy further improved to 99.46% with a reduced
test loss of 0.0129. These results demonstrate the
model’s strong generalization ability and robustness
across multiple runs.

6.3 Per-Class Metrics and Confusion Matrix

According to the updated classification reports
obtained from the test predictions, GCViT consistently
achieved F1-scores above 0.98, with high precision and
recall across nearly all malware families. Minority
families such as C2LOP.gen!g and Skintrim.N, which
are typically challenging for CNN-based models, were
classified by GCViT with Fl-scores of approximately
0.92 and 1.00, respectively, surpassing VGG16's

performance of about 0.89 on the same categories.

The robustness of GCViT is further validated by
the confusion matrix analysis, which revealed that
GCVIiT substantially reduced the misclassifications
that VGG16 produced between visually similar
families (e.g., Swizzor.gen!E vs. Swizzor.gen!I, and

C2LOP.gen!g vs. C2LOP.P). Nonetheless, due to the
nearly identical byte-pattern textures of the Swizzor
variants, a degree of overlap in classification errors
remained.

Families with IDs 6, 7, 21, and 22 demonstrated
relatively lower recall compared to other classes,
despite the majority achieving near-perfect scores.
Specifically, Swizzor.gen!E achieved an Fl-score of
0.88, while swizzor.gen!I recorded 0.82, indicating
the challenge of differentiating visually similar
polymorphic variants. In contrast, C2LOP.P and
C2LOP.gen!g attained strong F1-scores of 0.97 and 0.92,
respectively, highlighting the model’s effectiveness in
managing most intra-family visual similarities.

With an overall accuracy of 99.46%, GCViT
demonstrated nearly flawless separation across
the majority of malware families, as illustrated in
Figure 7. The few remaining misclassifications
were concentrated in polymorphic or obfuscated
families such as Swizzor.gen!E and Swizzor.gen!I.
These challenging cases are summarised in Table 3,
where recall values for certain classes fell below 0.9
even though overall precision remained high. This
demonstrates both the resilience of GCViT and the
intrinsic difficulty of distinguishing malware families
with closely aligned structural characteristics.

6.4 Error Analysis of Difficult Classes

A closer look at misclassified samples provides further

insight. The Swizzor variants were occasionally
misclassified,  particularly Swizzor.gen!E and
Swizzor.gen!I, which are structurally similar

polymorphic malware and thus inherently difficult
to distinguish visually [2]. The c2LoP family also
posed challenges, as misclassifications occurred
between C2LOP.gen!g and C2LOP.P; both variants
exhibit fragmented visual structures that appear
similar under the grayscale-to-viridis transformation.
Minority families with fewer than 10 test samples,
such as Skintrim.N and Wintrim.BX, were classified
with perfect precision and recall, suggesting that the
model generalises well even under data imbalance.
Despite these limitations, GCViT demonstrated strong
resilience in handling minority classes effectively.

Although minor confusion between Swizzor.gen!E
and Swizzor.gen!I persisted, this limitation was
significantly reduced compared to CNN baselines.
GCViT improved the recall for these difficult families
to above 0.85, underscoring the advantage of
attention-based modelling. The VB.AT family achieved
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Figure 7. The GCViT confusion matrix shows strong per-class discrimination with minor errors concentrated in visually
similar malware variants.

complete separation, reflecting GCVil’s ability to
capture both local and global dependencies effectively.
These results confirm that, unlike convolution-only
architectures, @ GCVil’s hierarchical attention
mechanisms enhance fine-grained discrimination
among visually overlapping malware families.

6.5 Comparative Summary

Overall, the experimental findings establish that our
GCViT-based model offers substantial improvements
over prior approaches. Earlier CNN-based works, such
as those by Nataraj et al. [2] and Kalash et al. [10],
pioneered the idea of using “visual” representations
of malware, achieving accuracies between 92% and
98%. However, these models suffered from significant
misclassifications in families with similar structural
patterns. More recent transformer-based approaches,
such as those by Seneviratne et al. [12], demonstrated

Table 3. Hardest four classes for GCViT (precision, recall,
Fl-scores).

Class Precision Recall Fl1-score
Swizzor.gen!E 1.000 0.786 0.880
Swizzor.gen!I 0.778 0.875 0.824

C2LOP.P 0.938 1.000 0.968
C2LOP.gen!g 0.895 0.944 0.919
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the potential of Vision Transformers to capture
long-range dependencies, but their models were often
over-parameterized and faced stability issues during
training.

To contextualise the performance of the proposed
GCViT model, a comparative analysis was conducted
against three pre-trained CNN architectures: VGG16,
EfficientNetB0, and DenseNet201. Each model was
fine-tuned on the Malimg dataset under identical
preprocessing and training conditions.

As shown in Table 4, GCViT outperformed all
baseline CNNs across multiple metrics, including
Cohen’s Kappa [36] and Matthews Correlation
Coefficient (MCC) [37], highlighting its superior
reliability in handling class imbalance and subtle
structural variations among malware families. GCViT
achieved the highest Kappa (0.995) and MCC
(0.990), confirming almost perfect agreement between
predicted and true classes and minimal bias toward
dominant malware families. These additional metrics
reinforce that GCViT not only attains top accuracy
but also sustains balanced classification performance
across all families, including minority classes such as
Skintrim.N and C2LOP.gen!g. By capturing both local
and global dependencies, the transformer backbone
appears to reduce overfitting tendencies observed
in conventional CNNs. Overall, these findings
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Table 4. Comparative performance of GCViT and baseline CNN architectures on the Malimg dataset.

Model Accuracy (%) Loss Precision Recall Fl-score Kappa (k) MCC
GCViT 99.46 0.013 0.995 0.995 0.995 0.995 0.990
DenseNet201 98.54 0.027 0.986 0.985 0.985 0.985 0.970
EfficientNetB0 98.12 0.030 0.982 0.981 0.981 0.982 0.962
VGG16 98.36 0.035 0.984 0.983 0.983 0.984 0.966
VGG19 98.42 0.033 0.985 0.984 0.984 0.985 0.968

affirm the stability and fairness of GCViT-XXTiny
for malware image classification under realistic,
imbalanced conditions.

In experiments, GCViT consistently outperformed
these baselines, achieving between 99.31% and 99.46%
accuracy on the Malimg dataset. Crucially, the model’s
11.5 million parameters represent a lightweight
configuration compared to many transformer-based
models, yet this reduction in size did not compromise
performance. GCViT thus combines high predictive
power with computational efficiency, setting a new
benchmark for malware image classification.

7 Discussion and Novel Insights

According to the experimental findings, the GCViT
performs noticeably better in classifying malware
images than conventional CNN baselines. Viridis
colormap and GCViT is applied to malware images for
the first time using our process. Beyond numerical
gains, a number of important revelations surface
that help clarify the function of transformer-based
systems in cybersecurity. CNNs are very good at
identifying local texture features, but they can’t catch
long-range structural dependencies because of their
limited receptive fields. Repeated local patterns
(such as byte-sequence fragments) across families are
frequently found in malware images, which could trick
CNN s into confusing different families as being the
same. In order to overcome this constraint, GCViT
combines hierarchical attention with early detection
of fine-grained local characteristics. Modules for
global context: including cross-image dependencies
at a deeper level. This dual capability allows
GCViT to simultaneously model local textures and
global structure, yielding more accurate family-level
discrimination.

7.1 Impact of Viridis Colormap Transformation and
Robustness Against Imbalanced Families

The design choice in this research emphasized the

use of the viridis colormap to transform grayscale
malware images into the RGB color space. Unlike

grayscale-to-RGB duplication, which merely replicates
the single channel across three channels, viridis
mapping enhances contrast in textureless areas and
increases feature diversity for the model. This step is
particularly critical for GCViT, which was pretrained
on viridis-transformed images and achieved a test
accuracy of 99.46%. Previous CNN-based studies
relied on simple grayscale duplication [15], whereas
the findings of this work highlight the importance
of colormap enrichment in improving classification
performance. Dataset imbalance has long been a
major challenge in malware classification [10, 17],
often leading CNNSs to struggle with minority families.
GCViT, however, addressed this issue more effectively.
For instance, in the Skintrim.N family (80 samples),
GCViT achieved an Fl-score exceeding 0.95, compared
to VGG16’s 0.89. This improvement is attributed to the
attention-based mechanism, which reduces reliance on
dominant class features and enhances the recognition
of underrepresented families.

7.2 Research Positioning and Key Contributions

GCViT’s incorporation into malware detection
exemplifies a broader trend: the integration of
cybersecurity tasks with advanced computer vision
models. Although transformers have traditionally
been applied to natural images and natural language
processing tasks, this study demonstrates their
versatility in security-critical domains.  GCViT
set a new benchmark on the Malimg dataset
with an accuracy of 99.46%. Importantly, this
level of performance was achieved without
the need for handcrafted features or behavioral
traces, underscoring the scalability of image-based
approaches for malware detection.

The distinct contributions of this work can be
summarized as follows.  First, it presents the
systematic application of GCViT to malware image
classification. Second, it demonstrates superiority over
CNN-based baselines. Third, it introduces viridis
colormap transformation as an effective preprocessing
strategy for malware visualization.  Fourth, it
provides a detailed error analysis that highlights the

11
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persistent challenge of structurally similar families
such as Swizzor and C2LOP. Finally, it establishes a
new state-of-the-art performance benchmark on the
Malimg dataset.

8 Limitations and Challenges

Despite the promising results achieved by GCViT
on the Malimg dataset, several limitations must
be acknowledged to contextualize the findings and
guide future improvements. First, class imbalance
remains a significant concern. The Malimg dataset
exhibits quantifiable bias, with families such as
Allaple.A containing thousands of samples, while
minority families such as Skintrim.N contain fewer
than one hundred. Although GCViT mitigated
some of these effects, imbalance still influenced
misclassifications, particularly in structurally similar
families such as Swizzor and C2LOP. Second, the
dataset size is relatively small, comprising only 9,337
samples. This is substantially fewer compared to
other vision benchmarks and limits the generalization
ability of models, particularly transformers, which
are designed to operate optimally at scale. Third,
the dataset is outdated, having been released in
2011 [2]. Malware has evolved considerably since
then, and Malimg may not capture the level of
complexity associated with contemporary threats
such as ransomware or advanced persistent threats
(APTs). Finally, robustness remains a challenge, as
empirical studies confirm that adversarial attacks
can severely degrade the performance of malware
detectors, exposing inherent weaknesses of deep
learning-based approaches [30], [32]. Recent surveys
[17] emphasize the rapid evolution of malware and
the necessity for resilient detection strategies, outlining
open challenges and practical deployment issues that
must be addressed in future research.

8.1 Model-Related Limitations

Dependence on Pretraining as GCViT relied on
ImageNet-pretrained weights. While transfer learning
enabled excellent performance, the features learned
from natural images may not perfectly align with
malware image representations. This introduces a

dependency on external datasets for effective training.

Overfitting Risks: Although mitigated through early
stopping and dropout, the relatively small dataset
increases the risk of overfitting. The near-perfect
accuracy reported (99.46%) should be interpreted
cautiously, as it may not directly translate to unseen
malware distributions. Interpretability Challenges:
Like other deep learning models, GCViT functions as a
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“black box,” making it difficult to interpret specific
decision boundaries. This limits its adoption in
domains where explainability is critical for analysts.

8.2 Practical and Deployment Constraints

The method only uses static picture representations
of binary data. Although effective, this leaves
out behavioral dynamics recorded during runtime
operation, which may be essential for identifying
complex or obfuscated malware. Even though GCViT
is more effective than vanilla ViTs, GPU acceleration
is still necessary for training. Lighter changes would
be required for deployment in restricted areas (such
as embedded IoT security systems). Only Malimg
was used to validate performance; it is unclear if the
same accuracy holds true for bigger and more varied
benchmarks like Microsoft’s BIG2015 dataset.

9 Future Research Directions

The results of this study establish GCViT as a powerful
model for malware detection. Several promising
research directions emerge to further improve the
operational stability and real-world usability of
such systems. First, evaluation must move beyond
the Malimg dataset by incorporating contemporary
benchmarks such as the Microsoft BIG2015 and
EMBER datasets [3, 20]. These datasets provide larger
sample sizes, multiple malware families, and current
threats including ransomware and cryptocurrency
miners. Validating GCViT on these benchmarks
would demonstrate its effectiveness in handling
evolving malware environments. Second, hybrid
models that integrate GCViI with CNN-based
feature extractors should be investigated. CNNs
excel at capturing localized byte-level textures,
which may enhance GCViT’s ability to model
complete structural patterns. Such multi-model
architectures could reduce misclassifications in
cases involving structurally similar families. Third,
efficient deployment is critical. Real-world security
systems for mobile and IoI' endpoints require low
computational overhead.  Future work should
therefore explore distilled or quantized transformer
variants to maintain high accuracy while reducing
memory and energy requirements [21]. Investigations
into MobileViT-inspired or pruning-based GCViT
architectures represent particularly promising avenues.
Fourth, extending GCViT beyond static image analysis
is necessary. While image-based representations are
effective, they cannot capture runtime behaviors.
Combining GCViT with behavioral features extracted
from API calls or network traces may improve
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detection of obfuscated and polymorphic malware.
Multi-modal approaches that integrate vision
transformers with sequence models could provide
a more holistic defense. Finally, continual learning
frameworks should be developed to address the rapid
evolution of malware. By adapting incrementally to
new families while retaining knowledge of previously
seen ones, GCViT could avoid catastrophic forgetting
and maintain long-term detection robustness.

10 Conclusion

Malware is still one of the biggest problems in
cybersecurity. In this study we used the Malimg
dataset, which converts malware binaries into images,
to test the GCViT for malware categorization. Our
pipeline included scaling, normalization and a
grayscale-to-viridis colormap transformation to
support transfer learning from ImageNet models.
GCViT achieved between 99.31% and 99.46% accuracy
and reduced errors in families such as Swizzor
and C2LOP. It also showed better balance between
dominant and minority classes.  These results
show that GCViT has clear benefits over CNN
models because it can capture both local and global
context. This work is the first to apply GCViT to
malware detection in a systematic way and shows
the importance of viridis mapping for better visual
features. It also gives a detailed error analysis
of difficult families. The study has some limits.
The dataset is unbalanced, it depends on ImageNet
pretraining and it faces challenges with interpretability.
Future research should use larger datasets, try hybrid
models, design lightweight versions and explore
explainable AI. GCVIiT sets a new state of the art
in malware image classification and points to new
directions for robust and scalable detection systems.
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