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Abstract

Distributed Denial of Service attacks remain
a critical threat to modern networked systems
due to their scale, diversity and evolving attack
strategies. Although machine learning and deep
learning techniques have been widely explored
for DDoS detection, many existing studies rely on
inconsistent preprocessing pipelines, single-dataset
evaluations and limited reproducibility. This work
proposes a unified and resource efficient detection
framework that addresses these challenges through
systematic data handling and transparent model
evaluation. The proposed pipeline integrates data
cleaning, memory optimization, class balancing and
hybrid feature engineering that combines linear,
tree-based, statistical and information-theoretic
selection methods. Classical machine learning
models and a one-dimensional convolutional
neural network (CNN) are evaluated on two
widely used benchmark datasets, CIC-IDS2018 and
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CIC-DDo0S2019, under a leakage-free experimental
protocol. Principal Component Analysis is further
examined as an optional dimensionality reduction
technique. Experimental results show that
Random Forest and the CNN achieve strong
and consistent performance across both datasets,
with hybrid feature selection improving accuracy
while reducing dimensionality. @ The findings
demonstrate that careful preprocessing and feature
engineering enable classical models to perform
competitively with deep learning approaches while
maintaining lower computational cost. The study
emphasizes reproducibility, efficiency and practical
deployability, providing a robust baseline for future
DDoS detection research and real-world intrusion
detection systems.
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1 Introduction

The rapid expansion of cloud computing platforms,
Internet of Things ecosystems, and high speed
communication infrastructures has substantially
increased the attack surface of modern networks.
Among the diverse cyber threats targeting these
environments, Distributed Denial of Service attacks
remain particularly disruptive due to their ability to
exhaust network and service resources at scale. Recent
reports indicate a continued rise in multi-vector
DDoS campaigns that combine reflection based
traffic amplification with protocol level exploitation
to evade detection mechanisms and amplify attack
impact [1]. Such attacks increasingly target cloud
orchestration services and Iol' gateways, whose
openness, heterogeneity and limited resource controls
make them attractive entry points for large scale
botnet driven abuse.

Traditional defense mechanisms, including firewalls
and signature driven intrusion detection systems,
are often ineffective against modern DDoS attacks
because they rely on static thresholds and predefined
patterns. As attack strategies evolve rapidly, these
static approaches struggle to adapt to changing traffic
dynamics [2, 3]. This has motivated extensive research
into machine learning based intrusion detection
systems, where models learn discriminative patterns
directly from network flow data. Classical machine
learning techniques remain attractive due to their
interpretability and relatively low computational
overhead [4, 5]. In parallel, deep learning models have
demonstrated strong capability in capturing complex
spatial and temporal dependencies within traffic flows
[7, 8]. More recent work published in 2024 and
2025 emphasizes attention driven and transformer
based architectures [17-20], which show promise
in detecting evolving and previously unseen attack
behaviors [1, 16]. These trends reflect a broader shift
toward adaptive and data driven detection techniques
that complement traditional rule based defenses.

Despite this progress, several practical challenges
persist. Many studies continue to evaluate models
on a single dataset, limiting the generalizability
of reported performance. Cross dataset analyses
have shown that models trained on one traffic
distribution may degrade significantly when applied
to different environments or attack profiles [10].
In addition, preprocessing strategies differ widely
across studies, complicating reproducibility and fair
comparison of results [11]. Network intrusion
datasets are also typically characterized by severe
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class imbalance, which can bias learning algorithms
toward majority classes if not properly addressed
[12]. Furthermore, the high dimensionality of flow
level features increases computational cost and poses
challenges for deployment in real time or resource
constrained monitoring systems [13].

These limitations highlight the need for unified and
resource efficient detection pipelines that combine
systematic data preparation, memory optimization,
feature engineering, class re-balancing, and consistent
evaluation protocols.  Recent studies advocate
hybrid frameworks that integrate classical and deep
learning models to leverage their complementary
strengths while maintaining practical efficiency [6].
In this work, we contribute to this direction by
proposing a reproducible detection pipeline evaluated
on two modern benchmark datasets, CIC-IDS2018
and CIC-DDoS2019. By applying hybrid feature
selection and balanced preprocessing under a uniform
experimental setup, and by comparing classical
machine learning models with a convolutional neural
network, this study provides practical insights
into performance, efficiency, and deployability for
contemporary DDoS detection systems.

2 Related Work

Research on DDoS detection has evolved from fixed
threshold based monitoring to adaptive learning based
systems capable of analyzing complex flow patterns.
Modern approaches focus on machine learning
models, deep learning architectures, dataset centric
evaluations and strategies for handling imbalance and
high dimensionality. This section reviews current
contributions in these areas and highlights gaps that
motivate the study:.

2.1 ML-based DDoS Detection

Classical machine learning methods remain relevant
in network intrusion detection because they offer
interpretability and low computational cost. Ensemble
models in particular have demonstrated strong
robustness in noisy traffic environments. Afifi et al. [4]
showed that Random Forest classifiers achieve stable
performance when trained on diverse flow attributes .
Support vector machines also remain widely used for
DDoS detection and their performance improves when
feature normalization and preprocessing are carefully
tuned, as reported by Pasupathi et al. [5]. Recent work
has stressed the importance of feature engineering.
Kamarudin et al. [6] demonstrated that hybrid filter
based selection significantly boosts the accuracy of



ICJK

ICCK Transactions on Information Security and Cryptography

classical classifiers by removing redundant attributes.
These studies illustrate that classical models continue
to offer practical value in environments where resource
efficient detection and interpretability are essential.

2.2 Deep Learning Approaches

Deep learning methods have gained attention
due to their strong ability to model nonlinear and
high dimensional relationships. = Convolutional
neural networks have been used to extract spatial
representations of packet and flow patterns. Prasad
etal. [7] proposed a CNN model that achieved high
detection rates for volumetric DDoS attacks. Hybrid
architectures combine the strengths of convolutional
layers and temporal networks. Al-Na’amneh et al. [8]
introduced a CNN LSTM approach that improved real
time performance for IoT traffic. Transformer based
models have also emerged in recent security research.
Wang et al. [1] demonstrated that attention driven
architectures offer better generalization on unseen
traffic variations. Although deep learning methods
provide excellent accuracy their computational
demands often limit deployment in constrained
monitoring environments unless combined with
feature reduction or model compression.

2.3 Benchmark Datasets and Cross Dataset

Evaluation

Earlier intrusion detection research relied heavily on
datasets such as KDD99 and NSL KDD, but these
lack realistic traffic patterns. The introduction of CIC
IDS2017, CIC IDS2018 and CIC DDoS2019 offered
richer protocol level attributes and updated attack
profiles. Songma et al. [9] evaluated a range of
machine learning models on CIC IDS2018 and reported
substantial performance variation based on selected
features. Cross dataset evaluations remain limited.
Kiourkoulis et al. [10] compared detectors trained
on CIC DDo0S2019 and tested on CIC IDS datasets,
finding that many models degrade significantly when
traffic characteristics differ from training conditions.
Longjohn et al. [11] emphasized the importance
of unified preprocessing pipelines for achieving
reproducible results and meaningful comparisons
across studies. These findings highlight a need for
consistent and resource efficient methodologies across
datasets, a gap addressed in the present work.

2.4 Handling Imbalance and High Dimensionality

Class imbalance and high dimensionality are major
challenges in traffic classification. Oversampling
methods such as SMOTE and ADASYN are widely

used to improve minority attack recall. Sayegh
et al. [12] found that SMOTE based rebalancing
improves detection of low frequency reflection attacks
without inflating false alarms.  Dimensionality
reduction also helps stabilize training and reduce
computational cost. Ghani et al. [13] demonstrated
that PCA based compression and hybrid selection
produce compact yet informative representations
for intrusion detection. These studies support the
need for integrated feature engineering strategies
that enhance model performance while reducing
processing overhead.

2.5 Anomaly Detection and Open Set Recognition

The rise of unseen and evolving attack vectors has
increased interest in anomaly based and open set
intrusion detection. Natha et al. [14] proposed
a BI-LSTM GMM system that identifies anomalous
traffic patterns absent during training. Open world
evaluation has also gained attention. Baye et al. [15]
showed that intrusion detection systems trained in
closed settings often fail to recognize new traffic classes
and highlighted the need for open set calibration.
Almazroi et al. [16] introduced a convolution
transformer hybrid that detects unknown encrypted
flows and adapts to emerging attack strategies. These
developments reflect a transition from static classifiers
to adaptive detection systems capable of responding
to evolving threats.

2.6 Summary of Research Gaps

Existing literature provides valuable insights but
several gaps remain. Many studies use a single
dataset without testing generalization across related
datasets and preprocessing steps vary greatly between
works which limits reproducibility. Further, most
papers use either classical or deep learning methods
without integrating efficient feature engineering
techniques that reduce computational burden. There
is a clear need for resource efficient end to end
pipelines that unify preprocessing, feature selection,
model comparison and evaluation under a consistent
methodological framework.

This study contributes to these research gaps by
offering a unified and resource efficient pipeline
that integrates memory optimization, feature
engineering and balanced model evaluation across
two modern datasets. The comprehensive comparison
of classical and deep learning models under consistent
preprocessing provides practical insights for both
researchers and practitioners.
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3 Materials & Methods

This section describes the experimental pipeline which
is designed to address the problem of flow level DDoS
attach detection. The section provides an overview of
the pipeline and then describe datasets preprocessing,
feature engineering and model training choices. Model
training and preprocessing are executed in a controlled
computational environment described in Section 4.

3.1 Overview of the pipeline

The proposed workflow is organized as a
computational instantiation of the CRISP-DM
process tailored for flow level DDoS detection. The
pipeline has six sequential stages: problem definition,
data ingestion, preprocessing, feature engineering,
model training and evaluation, as shown in Figure
1. Each stage produces artifacts that are stored for
auditing and reuse.

5
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detection problem.
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important features.

Clean and prepare data for
analysis

Figure 1. Computational Pipeline for DDoS Attack
Classification based on the CRISP-DM Framework.

Each dataset is processed independently through

the pipeline. Preprocessing outputs include cleaned
CSV files, memory optimized DataFrames, feature
importance logs and serialized scalers. Feature
selection and model artifacts are saved in standard
formats (HDF5). All random operations were seeded
and the seed value recorded in metadata files saved
with each artifact.

3.2 Datasets

CIC IDS2018: The CIC IDS2018 dataset provides
flow level telemetry generated using CICFlowMeter.
For this study we used the flows labeled as benign
or DDoS as provided by the dataset authors. The
dataset contains over eighty flow features such as
flow duration, total forward packets, total backward
packets, total length of forward packets, packet
inter arrival times, header length and flag counts.
We describe each selected feature explicitly in the
supplementary feature dictionary. Time stamps and
flow identifiers were retained to enable deterministic
train-test splits that avoid temporal leakage. The raw
dataset was loaded from CSV exports and validated
by checking record counts unique flow IDs and label
distributions.

CIC DDo0S2019: CIC-DDo0S2019 1is specifically
designed to cover a comprehensive range of DDoS
attack taxonomies, including both reflection-based
attacks (e.g., DNS amplification, NTP amplification)
and exploitation-based attacks (e.g., SYN flood,
UDP flood, and UDP-Lag). The dataset comprises
over eighty-eight flow-level features extracted using
CICFlowMeter, with detailed attack-type labels that
support both binary and multiclass detection. In this

Table 1. Key characteristics of CIC-IDS2018 and CIC-DD0S2019.

Characteristic

CIC-IDS2018

CIC-DD0S2019

Primary focus

Feature extraction

Typical feature
count

Labeling
granularity

Temporal structure

Best for

General intrusion scenarios across
multiple attack families, with DoS and
DDoS included

Flow  features extracted  with
CICFlowMeter (flow level statistics,
packet timings, flag counts)

~80 flow attributes

Multi  category labels available
(mapped here to binary benign vs
DDoS)

Day separated scenarios, timestamps
preserved for deterministic splits
Cross attack generalization and multi
threat benchmarking

Dedicated DDoS dataset focusing on
reflection and exploitation based DDoS
attacks

Flow features extracted with
CICFlowMeter (similar flow statistics
with emphasis on DDoS patterns)
~80-88 flow attributes

Detailed DDoS attack type labels (DNS
amp, NTP amp, SYN flood, UDP flood,
UDP-Lag)

Organized per day with continuous
attack bursts; timestamps preserved
Focused DDoS pattern analysis and
stress testing detectors
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Table 2. Statistical overview of CIC-IDS2018 and CIC-DDo0S2019.

Statistic CIC-IDS2018 CIC-DD0S2019
Total flows 18,893,708 12,794,627
Attack flows 2,258,141 (11.95%) 6,395,702 (49.9%)

Benign flows (reported)
Feature count (raw)
Missing value prevalence

16,635,567 (88.05%)
~80 flow features
Low to moderate

6,398,925 (50.1%)
~80-88 flow features
Low to moderate

Table 3. Hybrid feature selection summary.

Property / Feature CIC-IDS2018

CIC-DD0S2019

Hybrid feature set size 28 features

Top  representative Flow duration;

Total Fwd

49 features
Flow duration; Total Fwd

features in hybrid set

Feature overlap

Packets; Total Bwd Packets; Flow
Bytes/s; Fwd Packet Length
Mean; Bwd Packet Length Mean;
Fwd IAT Mean; Packet Length
Variance

~60-75% of the top 20 features
overlap between datasets

Packets; Total Bwd Packets; Flow
Packets/s; Flow Bytes/s; Fwd
Packet Length Mean; Fwd IAT
Mean; Flags count

see left column

symmetric)

(overlap

PCA components 20 components
retained (99%
variance)

20 components

study, we focus on binary classification by mapping
all attack instances to a single "attack" class, while the
original attack taxonomy is retained in the metadata to
enable future multiclass analysis. Key characteristics,
statistical summaries, and storage information for
both CIC-IDS2018 and CIC-DD0S2019 are provided in
Tables 1 and 2. Additionally, the hybrid feature sets
derived from each dataset—including their size and
representative features—are summarized in Table 3.

3.3 Data preparation

Each preprocessing step followed in data preparation
for attack detection is described in this section with
exact procedures, parameter values and justifications.

Data cleaning: For both datasets the following
deterministic cleaning steps were applied:

1. Remove exact duplicate rows based on all columns
except timestamp. This avoids double counting
repeated export rows introduced during flow
aggregation.

2. Remove records with missing values in more
than 20% of the selected features. This threshold
balances retention of useful data with removal of
low quality rows.

3. For records with fewer than 20% missing features
apply column wise imputation: numeric features

are imputed using the median computed on the
training partition only categorical features are
imputed with the mode computed on the training
partition. Imputation statistics are serialized to
disk and applied consistently to test data to avoid
leakage.

4. Remove features with more than 90% constant
values or with variance below 1076 after
normalization. Such features offer negligible
discriminative power and add unnecessary noise.

Duplicate removal prevents bias introduced by
repeated capture or logging. The 20% missing
threshold is conservative yet preserves most data in
modern flow datasets. Moreover, median imputation
is robust to outliers which are common in flow metrics
such as byte counts.

Memory optimization: Processing CIC datasets at
scale requires careful memory use. The following
deterministic down casting rules were applied:

e Integer like columns were cast to the smallest
unsigned integer type that fits the observed range,
e.g. uint8 uint16 or uint32.

e Floating point columns were cast to float32.
Operations that require higher precision such as
PCA were performed in float64 and then down
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cast for storage.

e Categorical fields such as protocol names were
converted to pandas Categorical dtype and stored
as category codes. The category mapping is saved
and reused during inference.

These transformations were applied after data cleaning
and before feature selection so that type inference

and downstream model behavior remained consistent.

As illustrated in Figure 2, the dtype and categorical
downcasting steps reduced the memory footprint
of both datasets by roughly 40%. This reduction
lowers peak resource requirements and allows the full
preprocessing and training pipeline to be executed
reliably on commodity hardware, thereby improving
reproducibility and accessibility of the experimental
workflow.

120

100
80

60

w0 ' |
|

20

CIC-IDS-2018 CIC-DDoS-2019

@ Before Memory Optimization [ After Memory Optimization

Figure 2. Memory usage before and after dtype and
categorical downcasting for both datasets.

Class balancing via SMOTE: Both datasets exhibit
strong class imbalance. We adopted the Synthetic
Minority Oversampling Technique (SMOTE) as
implemented in imbalanced learn to synthetically
increase minority class samples. Figure 3 presents the
SMOTE balancing workflow applied in our study, from
identifying minority samples to generating synthetic

examples. The SMOTE configuration used is as follows:

e sampling_strategy = 'auto’ which balances
classes to the size of the majority class,

e k_neighbors = 5 which is the default and

empirically robust for flow features,
e random_state = 42 to ensure reproducibility.

SMOTE was applied only to the training partition after
the train test split and after scaling is fitted on the
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training data. This order prevents information leakage
from synthetic samples into the test partition.

SMOTE is selected for its wide acceptance and
ability to generate realistic minority samples in
continuous feature spaces. We validated SMOTE
effectiveness by comparing minority class recall with
and without SMOTE and by visually inspecting feature
distributions using t-SNE plots. The results matched
prior to findings that SMOTE improves minority recall
without substantially inflating false positives [12].

Normalization: Numerical features were scaled
using Min-Max scaling to the range [0 1] via scikit
learn’s MinMaxScaler. Scaler parameters were fit on the
training set only and saved for application to the test set.
For methods sensitive to feature scaling such as SVM
and logistic regression this ensures stable optimization.
For tree based models scaling is not required, however
we still apply the same scaled inputs to enable direct
comparison across models.

3.4 Feature engineering

Feature engineering is a critical component of
successful model development. This section details
the processes of feature engineering, feature selection,
hybrid feature set construction and dimensionality
reduction. Figure 4 provides an overview of the
complete feature engineering pipeline, including the
feature selection methods and subsequent PCA-based
dimensionality reduction.

Candidate feature pool: Starting from the cleaned
and memory optimized dataset we excluded the
following non informative columns: flow ID, full text
and timestamps which are used only for deterministic
splits and any injected provenance columns added
during preprocessing. The remaining numeric and
categorical features formed the candidate pool.

Five feature selection methods: We applied five
complementary selection techniques in order to
capture diverse aspects of feature relevance:

1. L1 regularized linear SVM using scikit learn’s
LinearSVC with penalty="11’ and dual=False. We
used C = 0.1asasparsity inducing parameter and
selected features with non zero coefficients after
fitting on training data. L1 based selection tends to
favor features with direct linear predictive power.

2. Tree based importance using a shallow Random
Forest trained with 100 trees and max_depth=10.
Features were ranked by mean decrease in
impurity and the top features that together
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Figure 3. Workflow of the data balancing process using SMOTE, showing minority neighborhood identification and
synthetic sample generation to obtain a balanced training dataset.
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Figure 4. Feature engineering workflow illustrating the
construction of the hybrid feature set and PCA-based
dimensionality reduction.

explained 95% of cumulative importance were
retained.

3. ANOVA F-test using scikit learn’s f_classif.
We ranked features by F-statistic and selected
those with p values below 0.01 after Bonferroni
correction to control family wise error rate.

4. Chi-square test applied to discrete features after
binning continuous variables into 20 equal width
bins. Chi-square scores with p value below 0.01
were retained.

5. Mutual information estimated via scikit learn’s
mutual_info_classification with 10% random
subsampling for speed. Features with mutual
information above the 75th percentile were

retained.

All selection methods were fit on the training
data only. Hyper parameters such as the SVM
penalty and Random Forest depth were chosen based
on a small grid search that optimized validation
Fl-score while prioritizing model parsimony. The
full hyperparameter grid and validation results are
provided in the supplementary materials.

Hybrid feature set construction: To produce a
robust feature set that generalizes across models,
we computed the union of features selected by the
five methods. This union approach ensures the
inclusion of features identified as relevant by any
method, thereby reducing the risk of discarding
informative attributes that are only detectable by
specific criteria. This strategy was chosen because,
while intersection-based methods yield smaller feature
sets, they risk excluding complementary signals.
The union-based hybrid set balances coverage with
compactness, an approach consistent with prior
recommendations for robust intrusion detection
feature engineering [6]. The resulting hybrid set
contained 28 features for CIC-IDS2018 and 49 features
for CIC-DD0S2019. We recorded the selection
provenance for each feature so that future researchers
can inspect which method contributed to its selection.

PCA for dimensionality reduction: Principal
Component Analysis was applied to the hybrid feature
sets to examine whether a compact representation
could retain most of the discriminative information.
PCA was computed using scikit learn’s PCA with
svd_solver='full’ and the cumulative explained
variance curves for both datasets are shown in Figure 5.
The number of principal components was selected
by retaining the minimum number of components
required to preserve at least 99% of the cumulative
variance, which resulted in 20 components as depicted
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in Figure 5. This makes PCA a viable option for
reducing input dimensionality without substantial
information loss. The PCA model was fit exclusively
on the training split and the learned transformation
was saved and applied consistently to the test data.

1.0 -

0.9 -

0.8 -

0.7

0.6 -

Cumulative Explained Variance

0 10 20 30 40 50
Number of Components

(a) CIC-IDS2018

Cumulative Explained Variance

0 10 20 30 40 50
Number of Components

(b) CIC-DD0S2019

Figure 5. Cumulative explained variance curves for the
hybrid feature sets of both datasets.

In this study PCA serves both as an analytical
tool to characterise feature redundancy and as an
alternative representation for models where reduced
dimensionality improves computational efficiency or
training stability. Results are reported for models
trained on the full hybrid feature sets and on their
PCA compressed counterparts, allowing a transparent
comparison between interpretability and compactness
[13].

3.5 Models evaluated

We evaluated a set of classical models and a CNN
to provide a spectrum of complexity interpretability
and resource requirements. All models were trained
on the training partition and evaluated on an unseen
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test partition. Hyperparameter tuning used stratified
5 fold cross validation on the training data. The
hyperparameter search space and the selected final
values are provided in the supplementary material.
Below we summarize model specifications and
justification for each choice.

Decision  tree: We  used  scikit learn’s
DecisionTreeClassifier with Gini impurity criterion
max_depth = 12 and a minimum samples leaf of 5.
Trees are interpretable and require no feature scaling
which makes them useful baselines. We limited tree
depth to control overfitting and to reduce model size
for potential edge deployment.

Random forest: Random Forest was configured with
200 estimators max_features = ’'sqrt’ and max_depth
= None. Class weighting was set to balanced prior to
SMOTE experiments and default after SMOTE was
applied. Random Forest is robust to noisy features
and provides feature importance measures used in the
teature selection stage.

Support vector machine: We used scikit learn’s SvC
with an RBF kernel. Hyperparameters were tuned
over C in {0.1 1 10 100} and gamma in {’scale’ ‘auto’
0.01 0.001}. SVMs are effective in high dimensional
spaces and serve as a strong baseline for margin based
classification.

Logistic regression: Logistic regression with
penalty="12" and the liblinear solver was used.
Regularization strength ¢ was tuned over {0.01 0.1 1
10}. Logistic regression provides calibrated probability
estimates which are useful when operating thresholds
need to be adjusted for operational constraints.

Naive Bayes: A Gaussian Naive Bayes model
was trained on the scaled features. Although
the conditional independence assumption rarely
holds in flow data Naive Bayes is computationally
inexpensive and provides a performance lower bound
for comparison.

Convolutional neural network: The CNN is a one
dimensional convolutional architecture designed to
capture local patterns in ordered flow feature vectors.
Input vectors were ordered by feature groups such
as byte statistics packet statistics and timing features
to allow convolutional kernels to span semantically
related metrics. The architecture is as follows:

e Input layer with shape (n_features,1) where
n_features is the length of the hybrid feature set
or the PCA component count.
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e ConvlD layer with 64 filters kernel size 3
activation ReLU batch normalization and He
normal initialization.

e ConvlD layer with 64 filters kernel size 3
activation ReLU batch normalization.

e Max pooling layer with pool size 2.

e ConvlD layer with 128 filters kernel size 3
activation ReLU batch normalization.

e Global average pooling.

e Dense layer with 128 units activation ReLU
dropout 0.4.

e Output Dense with softmax for multiclass or
sigmoid for binary classification.

Training used Adam optimizer with initial learning
rate le—3 and ReduceLROnPlateau callback
monitoring validation loss with patience 5 and
factor 0.5. Early stopping with patience 10 prevented
overfitting. Batch size was 128 and models were
trained for a maximum of 100 epochs. Class weights
were used when training on imbalanced mini
batches and SMOTE was evaluated as an alternative
strategy. Binary cross entropy was used for binary
classification and categorical cross entropy for
multiclass experiments.

Justification. The 1D CNN balances representation
capacity with computational efficiency. Using grouped
teature ordering allows kernels to discover local
correlations among semantically related metrics
without requiring expensive sequence models. The
architecture and optimizer choices follow best practice
in traffic classification literature and mirror successful
designs reported in recent studies [7, 8].

4 Experimental Setup

This section describes the procedures used for data
partitioning, model evaluation and experimental
execution. All design choices were made to ensure
reproducibility transparency and fair comparison
across classical and deep learning models. The exact
configurations reported here were kept constant across
both datasets unless stated otherwise.

4.1 Train-test strategy

Each dataset was partitioned into training and testing
sets using a deterministic flow-level split to ensure

reproducibility and to prevent information leakage.

An 80-20 stratified split was employed so that the

proportion of benign and attack flows in the training
set reflects their distribution in the full dataset. For
each dataset, flows were first sorted chronologically by
timestamp, and an 80-20 split was applied such that
the earliest 80% of flows formed the training set and the
latest 20% formed the test set, while preserving class
proportions via stratification. The stratified sampling
is critical in intrusion detection settings, where attack
instances are often underrepresented.

The split was derived from the original dataset
ordering, and no temporal overlap was allowed
between training and testing partitions. All
preprocessing steps were applied in a leakage-free
manner as described in Section 3: transformation
parameters were learned exclusively from the training
data and subsequently applied to the test data without
modification.

For models sensitive to random initialization,
particularly the convolutional neural network,
each experiment was repeated five times using
deterministic seeds derived from a fixed master
seed. Reported results correspond to the mean
and standard deviation across these runs. Classical
machine learning models were evaluated under the
same repeated split protocol to ensure consistent and
comparable performance estimates.

4.2 Evaluation metrics

To facilitate consistent assessment across models with
different architectural properties and loss functions
we used a standardized set of metrics commonly
recommended in intrusion detection research.

Accuracy: Accuracy measures the proportion of
correctly classified flows over all flows. While widely
used it can be misleading in imbalanced scenarios
therefore it is reported primarily for completeness.

Precision: Precision quantifies the proportion of
predicted attack flows that are truly attacks. High
precision indicates a low false alarm rate which is
critical for operational environments that must avoid
overwhelming analysts with false alerts.

Recall: Recall measures the proportion of actual
attack flows that are correctly identified. It is a
central metric in DDoS detection where failing to
detect attack activity can allow substantial damage.
SMOTE effectiveness was evaluated partly through
improvements in recall.

F1 score: F1 is the harmonic mean of precision and
recall and serves as our primary ranking metric for
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Table 4. Classification performance (mean =+ std) on CIC-IDS2018 and CIC-DD0S2019.

Dataset Model Accuracy Precision Recall Fl-score

Decision Tree 0.931+0.004 0.902+£0.006  0.887 £0.007  0.894 4= 0.005

Random Forest 0.956 £ 0.002 0.934 £0.003  0.929 £0.003  0.931 £+ 0.002

CIC-IDS2018 SVM (RBF) 0.948 £0.003 0.939+0.004 0.916 £0.004  0.927 4 0.003
Logistic Regression  0.941 £0.003  0.921 +£0.004  0.903 £0.005  0.912 £ 0.004

Naive Bayes 0.9024+0.006  0.861 £0.007  0.874+£0.006  0.867 4= 0.006
CNN (1D) 0.953 £0.004  0.932+£0.005 0.941 +0.004 0.936 +0.004

Decision Tree 0.957+£0.003  0.944 £0.004  0.951 £0.004  0.947 +0.003

Random Forest 0.978 £0.001  0.969 £0.002  0.9714+0.002  0.970 £ 0.001

CIC-DD0S2019 SVM (RBF) ' 0.9724+0.002  0.961 £0.003  0.964 £0.002  0.962 £ 0.002
Logistic Regression  0.965£0.002  0.95240.003  0.956 £0.003  0.954 4 0.002

Naive Bayes 0.931+£0.004  0.909£0.005  0.917£0.004  0.913 £ 0.004

CNN (1D)

0.981+£0.002 0.974+0.002 0.976 £0.002 0.975+ 0.002

classical and deep learning models because it balances
false positives and false negatives in imbalanced
datasets.

ROC and AUC: The Receiver Operating
Characteristic curve and its Area Under the Curve
quantify the model’s ability to separate benign
and attack classes across a continuum of decision
thresholds. ROC-AUC values close to 1 indicate
strong separability independent of the specific choice
of classification threshold. Each model’s AUC is
reported alongside confidence bands derived from
repeated runs.

In addition to the above core metrics confusion
matrices and class specific precision—recall curves were
generated to enable deeper diagnostic analysis. These
supplementary results are included in the appendix.

4.3 Hardware and software environment

All experiments were conducted using a consistent
and fully documented computational environment.
The hardware platform consisted of an Intel Xeon E5
processor with 64 GB RAM for preprocessing and
classical model training and an NVIDIA Tesla T4 GPU
for CNN training. The GPU was used only for neural
network experiments while all classical models ran
exclusively on CPU to avoid inconsistencies in timing
or resource allocation.

The software stack was identical to the configuration
described in the methodology section and included
Python 3.10.12 scikit learn 1.2.2 pandas 2.0.3 numpy
1.25.2 imbalanced learn 0.10.1 TensorFlow 2.13.0
CUDA 12.0 and cuDNN 8.9. All package versions were
locked through a requirements. txt file included in the
project repository. Reproducibility was ensured by
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fixing the global random seed to 42 and recording all
derived seeds for individual models.

To support full transparency the execution logs model
checkpoints trained weights and evaluation artifacts
were archived. Runtime configurations including
batch sizes training epochs early stopping criteria PCA
component counts and feature masks were recorded
automatically through experiment tracking utilities
integrated into the pipeline.

5 Results and Analysis

This section presents a comprehensive evaluation
of the proposed DDoS detection pipeline on the
CIC-IDS2018 and CIC-DD0S2019 datasets. Results are
reported on held-out test sets using the evaluation
protocol described in Section 4. The analysis focuses
on classification performance, ROC-AUC behavior and
the impact of feature selection and class balancing
strategies.

5.1 Classification Performance

Table 4 reports the classification performance of all
evaluated models in terms of accuracy, precision, recall
and Fl-score. Results are presented as mean values
over repeated runs using fixed data partitions and
controlled random seeds.

Figures 6 and 7 show the confusion matrices for the
Random Forest classifier on both datasets, illustrating
the balance between false positives and false negatives
achieved by the proposed pipeline.

Across both datasets, ensemble and deep learning
models achieve the strongest performance. Random
Forest and the one-dimensional CNN consistently
yield the highest Fl-scores, while Naive Bayes
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Figure 6. Confusion matrix for the Random Forest classifier
on the CIC-IDS2018 test set.
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Figure 7. Confusion matrix for the Random Forest classifier
on the CIC-DDo0S2019 test set.

shows comparatively lower performance due to its
conditional independence assumptions. Performance
is generally higher on CIC-DD0S2019, reflecting its
focused DDoS attack taxonomy. Figure 8 compares the
F1-scores of all evaluated models on both datasets.

5.2 ROC and AUC Comparison

To further assess the discriminative capability of the
evaluated models, Table 5 summarizes the area under
the ROC curve for each classifier.

High ROC-AUC values across most models indicate
strong class separability. The CNN and Random
Forest models achieve near-optimal discrimination,

Emm CIC-ID52018
Bm AC-DDoS2019

Fl-score

om

e
oo
0 ™

Figure 8. Comparison of F1-scores across machine learning
and deep learning models for CIC-IDS2018 and
CIC-DDo0S52019.

Table 5. ROC-AUC scores on the test sets.

Model CIC-IDS2018 CIC-DD0S2019
Decision Tree 0.958 0.981
Random Forest 0.983 0.994
SVM (RBF) 0.977 0.989
Logistic Regression 0.971 0.985
Naive Bayes 0.942 0.963
CNN (1D) 0.986 0.996

confirming their robustness in distinguishing benign
and attack flows under the proposed preprocessing
and feature engineering pipeline. Figure 9 compares
the ROC curves of the Random Forest and CNN
models on both datasets.
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e
o
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o
e
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Figure 9. ROC curve comparison of Random Forest and
CNN models on CIC-IDS2018 and CIC-DD0S2019.

5.3 Impact of Feature Selection

The effect of feature engineering on classification
performance was evaluated by comparing models
trained on the full feature set, the hybrid selected
feature set and the PCA-compressed representation.
Table 6 reports Fl-scores obtained using Random
Forest as a representative model.
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Table 6. Effect of feature selection strategies on Random
Forest F1-score.

Feature set CIC-IDS2018 CIC-DDo0S2019

All features (raw) 0.919 0.961
Hybrid selected 0.931 0.970
PCA (20 components) 0.924 0.966

Hybrid feature selection improves performance while
substantially reducing dimensionality. PCA-based
compression introduces a modest reduction in
performance but remains competitive, offering an
alternative representation where reduced input size is
desirable.

5.4 Effect of SMOTE on Class Balance

To quantify the contribution of class balancing, Table 7
reports minority-class recall for Random Forest with
and without SMOTE.

Table 7. Effect of SMOTE on minority-class recall.

Setting CIC-IDS2018 CIC-DDo0S2019
Without SMOTE 0.841 0.936
With SMOTE 0.929 0.971

Applying SMOTE leads to a substantial improvement
in recall, particularly for CIC-IDS2018 where DDoS
flows are underrepresented. =~ The improvement
indicates that the synthetic oversampling strategy
effectively mitigates class imbalance without
destabilizing overall model behavior. Figure 10
illustrates the improvement in minority-class detection
achieved through SMOTE, particularly at higher recall
levels.

Precision-Recall Curves: Impact of SMOTE on Minority-Class Detection

----- —— No SMOTE (CIC-IDS2018)
0.95 & s—=l With SMOTE (CIC-1D52018)
it —— No SMOTE (CIC-DD0S2019)
—=- With SMOTE (CIC-DD0S2019)

Precision

0.75 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Recall

Figure 10. Precision—recall curves illustrating the impact of
SMOTE on minority-class detection for CIC-IDS2018 and
CIC-DDo0S2019.

66

5.5 CNN and Traditional Machine

Comparison

Learning

The CNN consistently achieves the highest recall
and ROC-AUC values across both datasets, reflecting
its ability to capture local correlations among
flow features. Classical machine learning models,
particularly Random Forest and SVM, remain highly
competitive and achieve comparable performance with
significantly lower computational cost. These results
demonstrate that robust preprocessing and feature
engineering allow traditional models to perform at
a level close to deep learning approaches, while
CNNs provide additional gains in scenarios with more
structured attack patterns.

6 Discussion

The experimental results demonstrate that the
proposed pipeline achieves competitive and consistent
performance across two widely used benchmark
datasets. Ensemble learning and deep learning
models benefit substantially from the unified
preprocessing and hybrid feature engineering strategy;,
which improves robustness while maintaining
computational efficiency. In particular, the results
confirm that careful data preparation and feature
selection can enable classical machine learning models
to perform close to deep architectures.

From a deployment perspective, the findings highlight
important trade-offs. ~ While the CNN achieves
the strongest overall performance, Random Forest
provides comparable F1-scores and ROC-AUC values
with significantly lower training and inference
costs. This makes ensemble methods attractive
for real-time or resource-constrained environments,
whereas CNN-based models may be more suitable for
offline analysis or high-confidence detection layers in
hierarchical security architectures.

The study also demonstrates the practical value
of hybrid feature selection. By combining linear,
tree-based, statistical and information-theoretic
criteria, the resulting feature sets remain compact
without sacrificing accuracy. The PCA analysis
further shows that dimensionality can be reduced
substantially ~with only minor performance
degradation, offering flexibility for deployment
scenarios where memory or latency is critical.

Several limitations should be noted. First, the
evaluation is based on offline benchmark datasets
and does not include live traffic or encrypted payload
analysis. Second, although two datasets were used,
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cross-dataset transfer and cross-domain validation
are not performed which can further strengthen
generalization claims. Finally, adversarial robustness
and concept drift were not explicitly addressed and
represent important directions for future work.

7 Conclusion

This study presented a reproducible and resource
efficient machine learning pipeline for DDoS attack
detection and evaluated it on two widely used

benchmark datasets, CIC-IDS2018 and CIC-DDo0S2019.

The proposed framework integrates systematic data
preparation, memory optimization, hybrid feature
engineering and consistent model evaluation to
address common shortcomings in prior intrusion
detection research related to reproducibility, scalability
and methodological inconsistency.

Experimental results demonstrated that ensemble
learning and deep learning models achieve strong
and competitive performance when trained within
the proposed pipeline. Random Forest and the
one-dimensional convolutional neural network
consistently delivered the highest Fl-scores and
ROC-AUC values across both datasets, while classical
models remained effective when supported by robust
preprocessing and feature selection. The hybrid
feature selection strategy reduced dimensionality
without sacrificing accuracy and the application
of SMOTE significantly improved minority-class

detection, particularly in highly imbalanced scenarios.

Beyond accuracy, the results highlight important
practical considerations. = Memory optimization
and dimensionality reduction substantially lowered
computational requirements, enabling the pipeline
to operate on commodity hardware and making it
suitable for real-world deployment. The comparative
analysis further shows that model simplicity and
efficiency can rival architectural complexity when
combined with principled data handling and feature
engineering.

Future work will extend this framework to online and
encrypted traffic scenarios, investigate cross-domain
generalization under concept drift and explore
adversarially robust learning strategies. The emphasis
on transparent design and reproducibility in this
study provides a solid foundation for subsequent
research and supports the development of practical
and trustworthy DDoS detection systems.
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Appendix
A Supplementary Materials

This appendix provides implementation level details to
support reproducibility of the experiments presented
in the main paper. Conceptual motivation and
methodological justification are described in Section 3;
this appendix focuses exclusively on parameter
configurations and validation outcomes.

A.1 Feature Selection Hyperparameter Grids

Table Al summarizes the hyperparameter grids
explored for the five feature selection methods used to
construct the hybrid feature set. All selectors were fit
on the training partition only, using stratified five fold
cross validation and F1-score as the selection criterion.

Table Al. Hyperparameter grids for feature
selection methods.

Method Hyperparameters explored

L1 Linear SVM C ¢ {0.01,0.05,0.1,0.5,1.0}; penalty = L1;

dual = False

Nestimators € 150,100,200}, max depth €
{5,10, 15, None}; max features € {,/, log,}
p-value threshold € {0.05,0.01,0.005,0.001};
Bonferroni correction

Bins € {10,20,30}; p-value threshold €
{0.05,0.01,0.005}

Subsampling € {10%,20%,50%}; neighbors
€ {3,5, 7}; selection percentile € {50, 75,90}

Random Forest

importance
ANOVA F-test
Chi-square test

Mutual information
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A.2 Validation Outcomes for Feature Selection

Table A2 reports representative validation results used
to select final configurations. For each method, the
configuration yielding the highest validation F1-score
with minimal complexity was chosen.

Table A2. Representative validation results for
feature selection.

Method Selected configuration  Validation
Fl-score

L1 Linear SVM C=01 0.933
Random Forest 100 trees, depth 10 0.937
importance

ANOVA F-test p < 0.01 (Bonferroni)  0.929
Chi-square test 20 bins, p < 0.01 0.927
Mutual information  75th percentile 0.934

A.3 Hybrid Feature Set Summary

The final hybrid feature set was constructed as the
union of features selected by all five methods. This
strategy preserves complementary relevance signals

while avoiding reliance on a single selection criterion.

The resulting feature set sizes are summarized in
Table A3.

Table A3. Hybrid feature set sizes after selection.

Dataset Number of selected features
CIC-IDS2018 28
CIC-DDo0S2019 49

A complete mapping of features to contributing
selection methods is provided as a machine readable
feature dictionary and is available upon request.

A.4 Reproducibility Notes

All experiments were executed using fixed random
seeds. Preprocessing artifacts, feature masks, PCA
transformations, and trained model configurations
were serialized to enable exact replication of reported
results. Software versions and hardware specifications
are documented in Section 4.3.
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