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Abstract

The capacity of robots to produce captions for
images independently is a big step forward in
the field of artificial intelligence and language
understanding. This paper looks at an advanced
picture captioning system that uses deep learning
techniques, notably convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), to
provide contextually appropriate and meaningful
descriptions of visual content. The suggested
technique extracts features using the DenseNet201
model, which allows for a more thorough and
hierarchical comprehension of picture components.
These collected characteristics are subsequently
processed by a long short-term memory (LSTM)
network, a specific RNN variation designed to
capture sequential dependencies in language,
resulting in captions that are coherent and
fluent.The model is trained and assessed on the
well-known Flickr8k dataset, attaining competitive
performance as judged by BLEU score metrics
and proving its capacity to provide humanlike
descriptions. = This use of CNNs and RNNs
demonstrates the value of merging computer vision
and natural language processing for automated
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caption development. This approach has the
potential to be applied in a range of industries,
including assistive technology for the visually
impaired, automated content production for
digital media, enhanced indexing and retrieval of
multimedia assets, and improved human-computer
interaction. Furthermore, advances in attention
processes and transformer-based models offer
opportunities to improve the accuracy and
contextual relevance of picture captioning models.
The study emphasizes machine-generated captions’
larger implications for increasing accessibility,
boosting searchability in large-scale databases,
and enabling seamless Al-human cooperation in
content interpretation and storytelling.

Keywords: convolutional neural networks (CNN),
recurrent neural networks (RNN), deep learning, image
captioning, LSTM, DenseNet201, attention mechanism,
BLEU score, natural language processing (NLP),
multimodal learning.

1 Introduction

Picture captioning, which describes the content of a
picture, has gained popularity in recent years. This
technology can be used in a variety of contexts,
including modifying app recommendations, virtual
assistants, picture indexing, and disabled support [1].
Recent advances in artificial intelligence have driven
computers to unparalleled levels of visual awareness,
allowing them to evaluate photos while also producing
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coherent and detailed written captions. Among
these improvements, picture captioning has arisen
as a challenging but critical endeavor that connects
Natural language processing and computer vision.
Image captioning is the process of converting visual
information into comprehensible spoken explanations,
a task that necessitates the seamless integration of
feature extraction and language modeling. The
capacity to produce contextually appropriate and
semantically rich captions has important implications
for a variety of real-world applications, spanning from
better organizing and retrieving digital content to
increasing accessibility for those who are blind or
visually challenged. Image captioning is to provide
a statement that is both linguistically reasonable and
semantically accurate to the image’s content [2].

Our creative, continuously updated visual
representation serves as a long-term memory
for previously expressed ideas during sentence
construction. This makes it possible for the network to
automatically choose important ideas to convey that
haven’t been said before [4].

. 2 =
‘man in black shirt is playing
guitar.”

Figure 1. Image captioning examples.

Figure 1 illustrates representative examples of our
model’s captioning outputs, demonstrating its ability
to generate syntactically correct and semantically
relevant descriptions for images containing multiple
objects and complex scenes.

Deep learning has transformed picture captioning,
with convolutional neural networks (CNNs) acting
as the foundation for visual feature extraction and

recurrent neural networks (RNNs) enabling the
sequential creation of descriptive text [5]. CNNs excel
in learning visual hierarchies by capturing spatial
patterns, object structures, and fine-grained features.
DenseNet201, a cutting-edge CNN architecture is
used in this work because of its capacity to optimize
feature reuse via densely linked layers, increasing the
richness of retrieved visual data. Unlike typical CNNs,
which have diminishing gradients and redundant
parameters, DenseNet201 enhances information flow
and computational efficiency, making it ideal for
complicated image processing workloads.

Following their retrieval, the traits need to be
precisely converted into comprehensible language.
RNN:Ss, particularly long short-term memory (LSTM)
networks, which are designed to replicate long-range
associations in sequential data, are used to do this.
In contrast to standard RNNs, which struggle with
vanishing gradients in lengthy sequences, LSTMs
preserve and update contextual information selectively
over time using gated techniques. With this approach,
the model can produce captions that accurately convey
an image’s information while maintaining linguistic
coherence. The hybrid architecture of our model, as
illustrated in Figure 2.

There is a girl
with pigtails
sitting in front
of a rainbow
painting .

Figure 2. The following diagram examples of CNN and
RNN.

Flickr8k and Flickr30k datasets employ 1,000
photographs for validation and testing, with the
remaining images used for training [2]. To assess the
proposed model’s performance, the Flickr8k dataset
is used, which contains 8,000 photos associated with
various human-annotated captions. We reserve
MSCOCO captions dataset The remaining 98K
photographs are utilized as training data, while 5K
photos are used for validation and 5K images for
further testing [3]. The dataset contains a diverse mix
of products, situations, and activities, making it a great
benchmark for assessing captioning algo-rithms. The
model’s performance is assessed using BLEU score
metrics, which compare the linguistic correctness and
fluency of output captions to human comments.

Aside from its technological contributions, automatic
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picture captioning has broad uses. It assists visually
challenged people by providing verbal explanations
of visual material. It allows for automated metadata
development in media and content creation, which
improves content classification and retrieval efficiency.
Furthermore, captioning systems allow for more
intuitive communication between users and Al-driven
apps, opening the path for advances in multimodal
AL

Despite advances in this discipline, problems persist.
Captions frequently need contextual knowledge,
comprehension of complex concepts, and reasoning
about the interconnections between things in a
picture. Future initiatives include combining
attention mechanisms with transformer-based
designs, such as Vision Transformers (ViTs) and
multimodal transformer models, to increase contextual
understanding and captioning quality. This study
advances the synergy between CNNs and NLP
models, contributing to the continued development
of Al systems capable of producing human-like
descriptions with better precision and contextual
awareness, as illustrated in Figure 3, which outlines
the process of feature extraction.

Features

i | Decode Features
{ I
" Fl with LSTM ’

Final Caption

Encode Image with
CNN

Text
Generation &
Prediction

Image
Processing &
Understanding

Input Image

Figure 3. Feature extraction diagram.

2 Existing System

Recent years have seen a significant shift in the
development of photo captioning systems, with a
range of methodologies and frameworks intended
to close the gap between visual identification
and language-creation [7]. Template-based and
retrieval-based techniques were major components
of early picture captioning models.  Typically,
template-based approaches produced strict, formulaic
captions by using predetermined phrase structures
that were filled with identified objects or characteristics.
Conversely, retrieval-based algorithms would search a
dataset for related photos and modify the captions for
those images. Despite offering a basic comprehension,
these early methods lacked the adaptability and
contextawareness required to produce organic,
evocative captions.
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As deep learning progressed, attention turned
to data-driven approaches that make use of
neural networks to more efficiently complete
picture captioning jobs [8]. The development of
encoder-decoder architectures was a significant
advancement that set the stage for the most advanced
image captioning models available today. An encoder,
usually a convolutional neural network (CNN),
analyzes the input picture in this framework in order
to extract useful information. A decoder, usually
a recurrent neural network (RNN), receives these
characteristics and uses the visual information from
the encoder to produce descriptive text. Because the
algorithms could now directly learn patterns from
image-caption pairings in big datasets, this method
enabled more fluid and contextually correct caption
synthesis.

By adding attention techniques, which let the model
to concentrate on particular areas of an image while it
creates each word in the caption, contemporary image
captioning models have improved the encoder-decoder
structure even further [9]. By giving the network the
ability to dynamically change its focus and mimic how
people describe pictures by sequentially focusing on
pertinent details, attention mechanisms overcome a
major drawback in simple encoder-decoder models.
Because models can now create thorough descriptions
that capture both major and subtle components of
a picture, this innovation has resulted in significant
advances in the quality of generated captions.

The use of transfer learning has proven crucial in
helping to enhance picture captioning systems [19].
Because they can capture high-level visual
characteristics that have been learnt from large
picture datasets like ImageNet, pretrained CNNss like
VGG16, ResNet, and DenseNet are frequently used
as encoders. The captioning model’s performance is
greatly enhanced by these pretrained networks, which
provide it a strong base without requiring a lot of
processing power to train from scratch. DenseNet201
has been a popular option in recent systems because
of its dense connection design, which increases
parameter efficiency and maximizes feature reuse.

As the decoder component has evolved, long
short-term memory (LSTM) and gated recurrent unit
(GRU) networks are increasingly popular choices for
language synthesis tasks in picture captioning [18].
In particular, LSTMs have proven to be highly
effective at preserving contextual coherence and
managing long-term dependencies, which makes them
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ideal for producing accurate and linguistically fluid
captions. Certain systems use generative adversarial
networks (GANs) with reinforcement learning to
improve captions and make sure they closely resemble
human-like descriptions.

Various datasets, such Flickr8k, Flickr30k, and MS
COCO, which offer a variety of image collections with
annotated captions, are still used to assess existing
systems [17]. These datasets provide a quantifiable
indicator of caption quality and allow researchers
to compare model performance using assessment

criteria like as BLEU, METEOR, and CIDEr scores [20].

Despite significant advancements, there are still issues
with current systems, such as creating captions for
intricate scenes with several items, comprehending
object connections, and creating captions with a variety
of artistic elements.

A sequence-to-sequence model was proposed by Nag
et al. [16], in which a succession of objects and their
locations are encoded by an LSTM network, and
the representation is decoded by an LSTM language
model to provide captions.Their method improves
caption accuracy by extracting item layouts (object
categories and positions) from photos using the
YOLO object detection paradigm. Additionally, they
provide a version that uses the pre-trained VGG image
classification model on ImageNet to obtain visual
features. An object category (encoded as a one-hot
vector) and a location configuration vector with the
item’s width, height, top-most position, and left-most
position are sent to the encoder at each time step.It
was all back to normal. The object detection model
does not inherit the mistake, even when the model is
trained via back-propagation. They demonstrated that
the accuracy of their model was improved by using the
CNN and YOLO modules. Not all of the information
provided by YOLO'’s object properties, including object
size and confidence, was used.

Using YOLO9000 and Faster R-CNN, Vo-Ho et al. [10]
created an image captioning system that extracts object
properties. An attention module handles each kind
of feature, producing local features that reflect the
model’s current emphasis. The LSTM model calculates
the probability of each word in the vocabulary set
at each time step after concatenating the two local
feature sets. The best possible caption is selected by

analyzing the data using a beam search approach.

They extracted features from photographs using the
ResNet CNN. After extracting a list of tags from
a picture using YOLO9000, they divided each tag

into words and eliminated repeats to get a list of
only unique words.They then insert each word in
a ddimensional space using the word embedding
approach. They generated language using LSTM units.
Only the top twenty tags with the highest likelihood
are retained.

In order to provide various descriptions, Cornia et
al. [11] presented a novel framework for picture
captioning that blends controllability with grounding.
They employed a recurrent architecture to explicitly
anticipate textual chunks based on regions while
adhering to the limitations of the control when
provided a control signal in the form of a series or
a collection of picture regions. Flickr30k Entities and
COCO Entities, a more sophisticated variant of COCO
with semi-automated grounding annotation, are used
for the experiments. According to their research, the
method yields state-of-the-art results for customizable
picture captioning in terms of caption quality and
variety. In contrast to other attempts, we utilize every
object characteristic that is accessible. The efficacy
of this approach is demonstrated in the experiments
section.

Verb-specific Semantic Roles (VSR) were presented
by Chen et al. [12] as a novel CIC control signal. A
verb and semantic roles that represent the actions and
responsibilities of the entities involved make up VSR.
In order to recognize and contextualize every aspect
associated with every role in a VSR, they developed the
Grounded Semantic Role Labeling (GSRL) paradigm.
Then, in order to teach students descriptive semantics
that is human-like, they introduced a Semantic
Structure Planner. Lastly, they used a role-shifting
paradigm to construct captions.

An inventive Anchor-Captioner method was presented
by Wang etal. [15]. They started by determining which
important tokens needed more focus and utilizing
them as anchors. The associated anchor-centered
graph (ACG) was created by joining the appropriate
sentences for each anchor. Lastly, to increase
the variety of generated captions, they employed
multi-view caption production using several ACGs.

3 Methodology

Our approach aims to create descriptions for picture
areas. During training, our model receives a set of
photos and language descriptions [6].

This study uses a hybrid technique that combines
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) to generate meaningful
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image descriptions.The model gathers information
from input photos before producing captions using
an LSTM-based sequence model. Data preparation,
feature extraction, custom data production, model
design, and assessment are all critical tasks.

We propose three unique strategies each technique
focuses on a specific strategy used in computer vision
and natural language processing (NLP) to interpret
and describe visual input.

3.1 Nearest Neighbor-Based Approach

The leftmost image is the input image, which depicts
a dog sitting at a table with a cake. The middle
portion demonstrates a retrieval-based strategy in
which the system compares the input image to a vast
database of annotated images. This method employs
an embedding space, in which pictures are represented
as high-dimensional feature vectors. The system uses
techniques like clustering or closest neighbor search
to find the most comparable image.

The rightmost result is a caption that roughly fits the
input image: “A puppy with a tie is sitting at a table
with a cake.” This approach obtains existing captions
from related images rather than creating new ones.
The description’s correctness is determined by the
dataset’s quality and variety. It is computationally
efficient but cannot generalize beyond previously
classified pictures.

3.2 Template-Based = Approach  with

Detection and Scene Graphs

Object

The left picture focuses on identified items in the scene,
such as the dog and cake. The center diagram depicts
an organized approach that includes:

A Convolutional Neural Network (CNN) functions
as an object detector, identifying essential things in
the picture. A semantic relationship model examines
the recognized objects, their features (such as colors
and sizes), and their relationships [14]. This is
sometimes arranged as a scene graph, with nodes
representing items and edges representing connections
(for example, “dog near cake”).

The procedure removes components like these:
e Objects (Obj): Identifying entities such as “dog”
and “cake.”

o Attributes (Attr): Identifying qualities like “one
dog” and “one cake.”
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e Prepositions (Prep): Understanding spatial and
contextual links (e.g., “on the table”).

The rightmost output depicts the scenario in an
organized way: “This snapshot depicts one dog and
one cake. The dog is...”

Key insight: This strategy identifies items and their
relationships before forming sentences. It provides
more organized and factually precise captions but
may lack fluidity and natural linguistic diversity.
The description may be incomplete if an object is
misidentified or relationships are improperly inferred.

33 A Deep Learning-Based Encoder-Decoder
Approach

The left picture is unmodified and serves as the input
image. The center graphic depicts an encoder-decoder
system, a popular deep learning approach for picture
captioning:

The Encoder (CNN) extracts high-level characteristics
from images. These attributes are sent into the
Decoder (LSTM/Transformer) [13], which produces
a sequential caption word by word. The system
learns to correlate visual elements with language
representations in an end-to-end sequence.

The rightmost output is a dynamically created caption:
“A dog is sitting on a couch with a toy.” This technique
does not require pre-existing captions or organized
templates. Instead, it learns patterns and creates
descriptions based on the training data.

A puppy witha
tia i sittmg at

" table witha
cake

This is a
photograph of
» ome dog and oz

ke_ The dog

A dog is sitting
*oma couch with
afoy.

Emcoder — ———~ Decoder

Conv Feafmre

Figure 4. Three strategies for creating relevant textual
descriptions.

It is capable of producing more natural, contextually
rich, and diversified captions. However, the
resulting caption may contain slight inconsistencies
(for example, the model incorrectly recognizes the
setting as a sofa rather than a table). Performance
is determined by the quality of the dataset and
the training method, as shown in Figure 4, which
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illustrates three strategies for creating relevant textual * The decoder (LSTM/GRU) creates
descriptions. captions consecutively.

- Use a fully connected layer to map picture

34 D L ing-Based I Captioni
c€P earning-base mage aptioning characteristics to the word embedding area.

Algorithm
e Step 1: Load and Preprocess the Dataset - To enhance sequential dependencies, use
. _ an LSTM network that includes attention
— Collect the image-caption dataset (such as techniques.

Flickr8k or MS COCO).
— Use dropout and batch normalization to

— Preprocess photos by resizing them to a avoid overfitting.

certain form.

e Step 5: Train the Model
— Convert photos to numerical arrays and

normalize the pixel values. — Define the loss function (categorical

cross-entropy in word prediction).
— Clean and preprocess text captions by

eliminating special characters, lowercasing, - When updating gradients, use an optimizer
and tokenizing. like Adam.
— Create a vocabulary with unique words from — Train the model on batches of image-caption
captions and assign integer indices. pairings with instructor forcing.
— Separate the dataset into training and - Monitor validation loss and use early
validation sets. stopping to avoid overfitting.
e Step 2: Extract Image Features using CNN - Save the trained model and word-index

mapping for further inference.
— Use a pre-trained CNN (such as VGG16 [1],

InceptionV3, ResNet, or DenseNet201) asa @ Step 6: Create Captions for New Images

feature extractor.
- Load a test picture and process it similarly to

— Remove the last classification layer to get the training photos.

feature embeddings. — Apply the learned CNN model to extract

- Pass each image through the CNN and get picture characteristics.
the feature vectors from the final pooling

— Use the learned LSTM model to create
layer.

captions word for word.
— Save extracted characteristics for efficient

. . . - Begin with a predetermined <start>
processing during training.

token and anticipate the following word

e Step 3: Encode Captions Using Word Embedding repeatedly.

- Tokenize captions and transform words into - Stop caption production whenever the <end>

integer sequences. token is created or the maximum length is
reached.

- To guarantee that sequence lengths are
uniform, use padding. e Step 7: Evaluate Model Performance

- Use word embeddings (such as GloVe or - Calculate the BLEU [2], METEOR [1], and
trainable embeddings) to represent words ROUGE [6] scores for created captions.

in a dense vector space. .
- Use n-gram matching to compare expected

e Step 4: Design the Caption Generation Model and ground truth captions.

- Define the encoder-decoder model: - Examine failure instances in which captions

do not fit well with the i tent.
* The encoder (CNN) performs image O Nnot 11t well wi elmage conten

processing and feature extraction. e Step 8: Improve the Model with Fine-Tuning
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— Implement Beam Search or Greedy Search to
improve caption production.

- End-to-end training allows you to fine-tune
both the CNN and the LSTM.

3.5 Image Processing

Table 1. Detailed of dataset.

Dataset name Train Validation Test
Flickr8k 6000 1000 1000
Flickr30k 25700 3000 3000

As shown in Table 1, the dataset we are using here is
the Flickr8k dataset, which is comprised of 8000 [16]
images along with 5 captions for each image. This
preparation stage includes scaling the photos to a
common input size, standardizing pixel values, and
enriching the dataset with techniques like rotation
and flipping to increase its variety.The preprocessing
steps include resizing, normalization, conversion to
numerical format, and storage in a dictionary format.

To preserve uniformity across the dataset, all photos
are downsized to a consistent dimension of 224 by 224
pixels [18]. After scaling, pixel values are min-max
normalized to ensure they are inside the range [0,1].
The transformation follows this formula:

PPmin

orm — 5 5
B maxP min

Py, (1)

where P denotes the original pixel value, and Pyip
and P, ax signify the minimum and maximum pixel
values, respectively. Normalization improves model
training stability and efficiency by reducing numerical
instability and speeding up convergence.

Non-alphabetical characters, such as punctuation
marks and digits, are then removed to eliminate noise
from the text data. Each caption is structured using
predefined tokens: a start token (<startseg>) is added
at the beginning of the phrase to signal the start of a
caption, while an end token (<endseq>) is appended
at the end to indicate the conclusion of the sequence.
These tokens assist the model in recognizing sentence
boundaries during training.

Tokenization plays a crucial role in converting textual
data into a numerical format. Each unique word
in the vocabulary is assigned a numerical identifier,
translating captions into integer sequences. For
example, if a caption contains ten words and the
dataset vocabulary consists of 5,000 [6] unique words,
the caption is encoded as a ten-element array, with

58

each element representing the numerical index of the
corresponding word in the vocabulary.

To ensure uniformity in sequence lengths, the
longest caption in the dataset determines the
maximum caption length (e.g.,, max_length = 34
words). Captions shorter than this limit are padded
with special tokens to match the fixed sequence length,
while longer captions are truncated accordingly. By
completing these preprocessing steps, both image
and caption data are structured in a manner that
enhances model performance, allowing for efficient
training and accurate caption generation. The use
of dictionary-based storage ensures rapid retrieval,
while text tokenization facilitates effective sequence
modeling, thereby improving the overall efficiency of
the image captioning system.

3.6 Feature Extraction with DenseNet201

We use DenseNet201, a pretrained Convolutional
Neural Network (CNN), to improve computational
efficiency and the model’s understanding of visual
material. This model was trained on a large-scale
picture dataset, such as ImageNet, so it can recognize
hierarchical patterns like edges, textures, objects, and
high-level abstract representations. DenseNet201 uses
its learnt representations to produce a meaningful
summary of each image, collecting its key aspects in a
condensed manner.

DenseNet201 processes each picture and derives
high-level feature representations wusing its
convolutional layers. This procedure can be
mathematically stated as follows:

F, = CNN(IL,). (2)

where:

e [} denotes the extracted feature vector of image
I;

e CNN denotes the DenseNet201 model,
e [; is the input image.

This feature extraction technique produces a
one-dimensional feature vector of size (1,1920),
where 1920 is the number of retrieved features.
These extracted characteristics work as condensed
representations of the image, storing visual patterns
that help generate relevant captions.

By keeping the extracted feature vectors with the
relevant photos, the model removes the need to
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reprocess images during each training cycle. This
drastically lowers computing complexity and improves
training efficiency. Instead of recalculating picture
characteristics at each epoch, the model returns
previously extracted features, allowing it to focus on
learning the mapping between visual patterns and
textual descriptions. This feature extraction method
guarantees that the model efficiently captures crucial
picture representations while minimizing training
time, thereby enhancing the overall performance of
the image captioning system.

3.7 Batch Data Handling with a Custom Data
Generator

Handling huge datasets effectively is critical in deep
learning, as loading all data at once is sometimes
impossible owing to memory limitations. To solve
this, a custom data generator is created, which allows
for bulk processing of image-caption pairings. This
method maximizes training efficiency by guaranteeing
that data is loaded dynamically, lowering the
risk of memory overflow while preserving model
performance.

The custom data generator uses an organized process:

e Batch Processing: Rather of loading the complete
dataset, the generator fetches smaller batches
of image-caption pairings to ensure memory
efficiency.

e Randomized Data Shuffling: To remove biases
caused by fixed sequential learning, the generator
randomly shuffles the dataset before each training
period. This improves the model’s generalization

capabilities.

e Mini-Batch Gradient Descent: The model
changes its parameters iteratively with
mini-batches, resulting in more steady

convergence and lower processing overhead.

Mathematical Representation of Mini-Batch Gradient
Descent.

The weight update equation for each batch b of size m
is as follows:

1 &
= : 15 Yi
W=Wa mE VL(W, zi,y;) (3)

=1

where:

o IV represents the model.

e «is the learning rate that determines the step size
during optimization.

e The gradient of the loss function in relation to the
model parameters is represented by VL(W, x;, y;).

e The mini-batch has input-output pairs (z;, y;).

e The batch size m determines how many samples
are utilized in each iteration.

This technique enables the model to gradually alter its
parameters, exploiting several tiny updates rather than
computing gradients over the whole dataset at once.
As a result, training is more computationally viable
and less likely to overfit.

By structuring data into batches and dynamically
loading it during training, the custom data generator
provides efficient memory management while
increasing learning efficiency. This method
dramatically improves model performance by
eliminating memory overflow, ensuring computational
stability, and allowing for smooth parameter updates
during the training process, as illustrated in Figure 5,
which shows the process of image captioning using a

CNN-LSTM model.
{Flickrmk Dataset }—» @

Pre-processing

L

Testing set

4

Generate tokens by
tokenizer

Feature Extraction
by Xception

Generate caption for
images

Figure 5. Image captioning using CNN-LSTM.

3.8 Model Architecture

The model has two essential components:
1. Image Feature Extraction Module:

e DenseNet201 retrieves advanced visual
characteristics.

e These characteristics are compressed into
a 256-dimensional vector using a fully
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connected layer.
2. Text Processing Module:

e A word embedding layer transforms
tokenized words into 300-dimensional word
vectors.

e These vectors are fed into an LSTM network
to detect long-term relationships in caption
sequences.

3. Mathematical Representation of LSTM: At each time
step t, an LSTM cell changes its hidden state by:

9t = 0 (Ug - [st-1,7¢] + vg) (4)

o = o (Ui [st-1,7¢] + i) (5)
Dy = tanh(Up - [s;_1,7¢] + vp) (6)
Dy =g D1 + ji - Dy (7)

ke = o(Uy - [st—1, 7] + vi) (8)
st = ki - tanh(Dy) (9)

where:

® g1, ji, ki are the forget, input, and output gates,
respectively.

e Uy, U;, Up, Uy, are the weight matrices.

® vy, Vi, Vp, Vi are the bias terms.

e o is the sigmoid activation function.

e tanh is the hyperbolic tangent activation function.

Figure 6 shows a two-branch neural network, with
one branch processing picture characteristics (CNN
output) and the other processing text (embedded
word sequences). These branches are eventually fused
to provide meaningful captions.

The recovered picture characteristics are represented
by input2 (InputLayer), which may be obtained
from a pretrained CNN like DenseNet201. These
characteristics are processed by a Dense layer (dense)
to provide a lower-dimensional representation. The
output is subsequently reshaped using a Reshape layer
(reshape) to meet the LSTM’s sequence processing
needs.

Input3 (InputLayer) represents text input (partial
caption sequences). These word indices are converted
into continuous vector representations using an
Embedding layer (embedding), which maps words
into high-dimensional dense sets.
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The outputs of the image feature extraction and text
embedding branches are mixed using a Concatenate
layer (concatenate). The fused representation is then
sent into an LSTM layer (Istm) to capture sequential
relationships within the caption. A dropout layer
(dropout) is used to prevent overfitting. The Add layer
(add) combines modified image features with LSTM
output to enforce more complex feature interactions.

input_2 I InputLayer

Y

dense | Dense |inpul._."} InputLayer

Y

rashape | Reshape

embedding | Embedding ‘

N

Concatenate

concatenate

LSTM

Istm

add

|:‘d B ]

| dropout_1 |

dense 2 -

Figure 6. Image captioning model flowchat.

Dropout

To create the final word predictions, the combined
representation is sent via two Dense layers (densel
and dense2) followed by an intermediate Dropout
layer (dropoutl). At each time step, the model builds
a probability distribution over the vocabulary and
predicts the following word in the sequence.

3.9 Image Feature Extraction using CNN

The image captioning model employs a Convolutional
Neural Network (CNN) to extract rich feature
representations from images, which are then utilized
for generating meaningful captions. The input image
X is represented as a three-dimensional tensor:

X GRMXNXD

where M and N denote the height and width of the
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image, respectively, and D represents the number of
color channels. A pretrained CNN model, such as
DenseNet201, processes the image through multiple
convolutional layers, extracting meaningful spatial and
semantic features. The extracted feature map F' is
given by:
F =CNN(I), FecR?

where d represents the dimensionality of the feature
vector. To reduce the dimensionality and adapt the
features for sequential processing in an LSTM network,
a fully connected Dense layer is applied:

F'=WF +b;, F eR?
Wy and by are trainable weight and bias parameters,
respectively, and d’ represents the decreased feature
dimension. To integrate image features into the
sequential caption generation process, the reshaped
representation is defined as:

F" = Reshape(F'), F" e RT*?

where T  represents the number of time steps used in
the sequence model.

The extracted and transformed feature representation
is then fused with the textual input branch to generate
meaningful captions.

Instead of using a single CNN model, multi-scale
feature extraction may be accomplished by combining
intermediate feature maps from multiple layers. This
method allows the model to collect both fine-grained
local features and high-level contextual information.
Feature pyramids and hierarchical representations
can increase caption quality by preserving low-level
textures as well as high-level semantic notions.

Pre-trained CNNs like DenseNet201 and ResNet work
well on generic pictures, however they may not
generalize well to specialized domains. Fine-tuning
these models using domain-specific datasets, such as
medical pictures or satellite imagery, increases the
relevance of the retrieved characteristics. Transfer
learning and contrastive pretraining are two domain
adaption strategies that can help enhance caption
accuracy even more. Integrating attention processes
into CNN-based feature extraction increases the
model’s capacity to focus on key visual areas.
Spatial Attention allows the model to dynamically
focus on key portions of a picture while generating
captions. This guarantees that words in the caption

relate to important items or aspects in the image.
Channel Attention (SE-Net) assigns varying weights
to feature channels, allowing the model to highlight
important visual characteristics.  This approach
refines CNN-extracted characteristics and enhances
contextual comprehension. Memory-Augmented
Attention keeps contextual signals consistent across
several pictures in a sequence, maintaining coherence
when creating captions for video frames or related
images.

Pooling approaches minimize computing complexity
while keeping key visual features. Global Average
Pooling (GAP) rather than employing completely
linked layers, minimizes overfitting while retaining
spatial information. = Adaptive Pooling, unlike
fixed-size max pooling, dynamically modifies feature
dimensions before sending them to the LSTM. Dilated
Convolutions enable wider receptive fields without
increasing the number of parameters, resulting in
better feature extraction for larger objects in pictures.

CNN-extracted feature maps can be improved by
using scene graphs, which clearly depict objects and
their interactions. This strategy enhances the model’s
capacity to provide structured, context-aware captions.
By creating object interaction graphs, the captioning
model can better grasp how items in an image interact,
resulting in more detailed and meaningful captions.

Traditional CNN-LSTM designs use LSTMs for
sequence modeling. Transformer-based encoders,
on the other hand, may be used to process extracted
feature maps, allowing for better long-range
dependency modeling. Vision Transformers (ViTs),
unlike CNNs, divide an image into patches and
use self-attention to model global relationships,
which improves contextual comprehension. Hybrid
CNN/ViT Models combine the feature extraction
power of CNNs and the sequence modeling strength
of transformers.

Occlusions, bad lighting, and clutter in the backdrop
can all have an impact on feature extraction. Robust
CNN models can address these concerns by
self-supervised learning, teaching the model to
recreate missing portions of an image to improve
feature extraction for occluded objects. Contrastive
Learning trains the model to discriminate between
multiple object representations, making it more
resistant to noise and variance in visual input.

For real-time captioning in edge Al applications,
CNN models must be optimized. Model compression
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reduces model size while maintaining accuracy.
Quantization reduces computing precision (for
example, utilizing 8-bit rather than 32-bit floating
point) to allow for speedier inference. Knowledge
distillation is the process of training a smaller model
using knowledge from a bigger, more complicated
model. Pruning eliminates superfluous parameters
to speed up processing while maintaining model
performance.

Let us assume:

The input picture has dimensions of 224 x 224 x
3 (height, width, and channels). The CNN
(DenseNet201) generates a feature map of 7 x 7 x 1024.
The feature map is converted to a 1D vector (1024 x
1024) and processed by a fully linked layer.

A convolutional layer uses a series of filters to extract
patterns. Assume: Filter dimensions: 3 x 3 x 3.

Stride: 2.

Padding: 1 and the number of filters is 1024. Using the
output size formula for convolution:

Q= (MNT—FQR) +1 (10)
where:
e () = output size
e M = input size (224)
e N = kernel size (3)
e R = padding (1)
e T = stride (2)
(2243 +2(1)) 224

2

The first convolutional layer generates a 112 x 112
feature map.

The final CNN feature map is 7 x 7 x 1024 after many
downsampling layers (pooling).

The retrieved features F € R7*7x1024 5re flattened:
Frattened = 7 X 7 X 1024 = 50176 (12)
A dense layer simplifies this to d’ = 1024:
F' =WF + by, F R (13)
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Given a weight matrix Wy of size 1024 x 50176 and a
bias vector b of size 1024, we may compute a single
output neuron value:

50176

Fi/ = Z Wfij - Fj +bfi
j=1

(14)

Learned parameters are represented by Wy and by. To
tit the sequential model, we restructure the feature
vector:

P = Reshape(F’), F" e RTXd/ (15)
: . 4
where T' = 10 (time steps for LSTM input), d’' = % =

102.4 ~ 103 (rounded).

The reshaped input F” transforms into a 10 x 103
feature matrix, ready for sequence modeling.

4 Model Training

4.1 Loss Function
The categorical cross-entropy loss function is utilized
for model training. It quantifies the difference between
expected and actual word probabilities during training
and is defined as:

M

J = pjlog(p;)

Jj=1

(4)

where
e M represents the vocabulary size.
e p; represents the real probability of word j.

e p; represents the anticipated probability of word
g

The loss function penalizes inaccurate predictions by
assigning a higher loss when the predicted probability
of the correct word is low.

4.2 Optimization Strategy

a) Adam Optimizer: Gradient-based optimization is
performed using the Adaptive Moment Estimation
(Adam) optimizer. The parameters’ updating rules
are as follows:

V= N U1+ (1)\1)qt (17)
s = Masi_1 + (1)2)q? (18)
~ V¢ N St
= —_— = —_— 1
YT TN (19)
Oéf]t

9 = 9y 20

0=V (20)
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where:

e g, is the gradient of the loss function at time ¢.

e v and s represent moving averages of the gradients.

e )\; and \; are decay rates (default: 0.9, 0.999).
e cis a small constant to prevent division by zero.
e o is the learning rate.

b) Early Stopping: To avoid overfitting, training is halted
automatically if the validation loss does not improve
after a certain number of epochs.

c) Learning Rate Reduction on Plateau: If validation
accuracy plateaus, the learning rate is lowered
by a factor (e.g., multiplying by 0.1) to fine-tune
performance.

4.3 Model Architecture

a) Image Feature Extraction: As shown in Figure 7, the
DenseNet201 convolutional neural network extracts
image features, which are processed through a dense
layer to obtain a 256-dimensional feature vector:

Fimage = Wy - DenseNet201(1) + by (21)

where [ is the input image, and Wy, by are the dense
layer weights and biases.

Dataset Flickr8k

E — Encoder (CNN) — VGG-16
mo Model training —
o  Decoder (RNN) - LSTM
= |
—  Bleu Score
Model Evaluation—

— Rouge Score

Figure 7. Image captioning model.

b) Text Feature Extraction: Captions are tokenized and
converted to embeddings before being passed to an
LSTM network:

Gieq = LSTM(D(v;)) (22)

where D(v;) represents the embedding of word v;.

LSTM equations:
a = o(Uglze-1, 9] + dg) (23)
re = o(Urlzi—1, 9] + dr) (24)
Sy = tanh(Us[z_1, yi] + ds) (25)
St =aqSi—1 47 S (26)
st = o(Uslzi—1, yt] + ds) (27)
z¢ = 8¢ - tanh(Sy) (28)

i z =
£ v

| =) |
vector
i e iy

x224x

(1x1x2048)

<sart>  Giraffes other

Figure 8. CNN-LSTM architecture.

As shown in Figure 8, Long Short-Term Memory
(LSTM) networks are a type of recurrent neural
network (RNN) [2] specifically designed to process
sequential data while addressing the vanishing
gradient problem. In the context of image captioning,
LSTMs analyze extracted text features, enabling
the model to generate coherent and contextually
appropriate captions. These networks employ a
gating mechanism to control the flow of information,
ensuring the retention of important long-term
dependencies necessary for language modeling tasks.
The main components of an LSTM cell include the
forget gate, input gate, cell state update, and output
gate.

The forget gate applies a sigmoid activation function
to select whether bits of the prior cell state should be
maintained or discarded.

@ = 0 (Uglzt—1, 5] + dg) (29)
values close to zero in the forget gate’s output
indicate that components of the previous cell state
are discarded, while values close to one indicate that
components are retained.

The input gate consists of a sigmoid activation and

a tanh activation, deciding which new information

should be added to the cell state:
Ty = U(Ur[zt—b yt] + d'r) (30)

Sy = tanh(Us[z_1, yi] + ds) (31)
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The cell state is updated based on the previous state
and the candidate values:

St =gt - St—l + 7 St (32)
allowing LSTMs to maintain long-term dependencies
effectively.

The output gate regulates the next hidden state, which
is passed to the subsequent LSTM cell and used for
final predictions:

e = o (Vlri—1, 2] +¢q) (33)

Tt = qt - tanh(Tt) (34)
The hidden state r; serves as the main output at each
time step, influencing future predictions.

In image captioning, LSTMs play a crucial role in
processing text sequences. The extracted image
features serve as the initial input to the LSTM, followed
by the word embeddings of the caption sequence. Each
word in the caption is converted into a dense vector
representation through an embedding layer, ensuring
that words with similar meanings have closely related
representations:

Gseq = LSTM(D(Ut)) (35)

where D(v;) represents the embedding of word v;.

The LSTM predicts the next word progressively using
the context supplied by the previously produced
words and the retrieved picture attributes.This process
allows the model to generate fluent and contextually
meaningful captions. By preserving long-term
dependencies, LSTMs help maintain coherence in
generated sentences, ensuring that each predicted
word aligns appropriately with the image content and
the prior words in the sequence. This ability to retain
and process sequential information makes LSTMs
highly effective in language modeling and caption
generation tasks.

c) Integrating Image and Text Features: The image
features Emage and text features Fieyt are concatenated:

E combined = Concatenate ( Fimage 5 ﬂext) (36 )

d) Final Caption Generation: The final layer is a softmax
classifier that predicts the next word:

eWoht

N, W h.
Zj:wle e

P(U}t | U)l;t_l,I) = (37)
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a boy in green
shorts swims past a
boy in black shorts
in an outdoor pool .

A boy is lying down
in midst of many
soft toys , and
spiderman quilt .

s

Two brindle dogs
running in the grass

A group @
adult women in
bikinis sit in a
field of wild grass
and flowers , some
under a striped

umbrell

The man in the black
and white shirt is
Two women playing running with a ball

field hockey .

2

Figure 9. Outputs of our model.

where P(w;) represents the probability of the next
word, h; is the LSTM hidden state, and W, is the weight
matrix of the softmax layer.

The process continues until an “endseq” token is
generated, marking the sentence completion. Figure 9
Shown the outputs of our model.

5 Results and Discussion

A comparison of the loss curves for two models
is presented in Figures 10 and 11, which illustrate
the training (loss/train) and validation (valloss/val)
losses across multiple epochs. These curves provide
insights into the models” learning effectiveness and
generalization to new data.

Figure 10 covers 5 epochs, reflecting a shorter training
duration, while Figure 11 spans 12 epochs, offering
a more detailed view of the learning trajectory. The
layout of Figure 10 is compact with a conventional
aspect ratio, whereas Figure 11 adopts a larger format,
enhancing readability and facilitating the analysis of
long-term trends.

Both models exhibit overfitting, though with distinct
patterns. In the first model, the validation loss
starts modestly but rises after approximately 3 epochs,
indicating early overfitting as the model struggles to
generalize despite performing well on training data. In
the second model, the validation loss stabilizes around
epoch 5 and increases only marginally thereafter,
suggesting a more consistent training process, though
overfitting becomes evident after 6 epochs. Techniques
such as dropout or L2 regularization could help
mitigate these issues.

The visualization styles also differ in interpretability.
The first model’s plot uses a basic white
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background with standard tick marks, resulting
in a straightforward but less visually engaging
presentation. In contrast, the second model’s plot
employs a seaborn-style light blue/gray background,
offering a cleaner and more professional appearance.
Additionally, the first model labels its curves as “loss”
(training) and “valloss” (validation), while the second
uses “train” and “val,” which are shorter and more
intuitive.

Regarding loss trends, the first model begins with a
high initial loss (5.25), which decreases rapidly but
shows early overfitting as validation loss rises after
epoch 3. The second model starts with a lower initial
loss (4.25) and declines steadily over 12 epochs, with
validation loss diverging slightly after epoch 6 but
remaining relatively stable. The extended training
period in the second model provides a clearer picture
of convergence, though both models suggest the
need for regularization, early stopping, or additional
training data to address overfitting. The second
model’s broader format and seaborn design further
enhance visual clarity, making loss patterns easier to
discern.

— loss
val_loss

525 1
5.00 A
475 A

4.50

loss

4.25 1

4.00 A

375 1

350 4

T T T T T T
0 1 2 3 4 5
epochs

Figure 10. Existing Train-Val graph.

model loss

— tain
vl

Figure 11. Our model Train-Val graph.

As shown in Table 2, the evaluation of the image
captioning model employing DenseNet201 + LSTM
on the Flickr8k dataset demonstrates its capability
to generate relevant, human-like captions. The

model’s performance was assessed using BLEU scores,
qualitative observations, and training performance
analysis. The BLEU scores, as shown in Table 2,
indicate that the model effectively captures key objects
and actions in images. The higher BLEU-1 and
BLEU-2 scores suggest that the model identifies
relevant keywords and objects, whereas the relatively
lower BLEU-3 and BLEU-4 scores imply a need for
improvement in generating more complex sentence
structures.

Table 2. BLEU score comparison on Flickr8k dataset.

Model B-1 B-2 B-3 B-4
VGG16 + LSTM 047 028 0.19 0.08
InceptionV3 + LSTM 048 0.27 0.18 0.08
Multi-feature 0.50 0.30 0.20 0.09
Attention Model 051 031 0.22 0.10
DenseNet201 + LSTM 0.52 0.32 0.23 0.11
The DenseNet201-based model outperformed

conventional CNN-based architectures such as VGG16
and InceptionV3, benefiting from the closely coupled
layers improve feature reuse and gradient flow. The
attention mechanism further contributed to generating
contextually accurate captions. Qualitative analysis
revealed that the model excels at recognizing objects
and simple actions, generating fluent and coherent
captions. However, challenges remain in handling
complex scenes, fine-grained details, and contextual
inference. While it accurately describes visible objects,
it sometimes fails to infer abstract relationships or
emotions, leading to more literal and less expressive
captions.

startseq dog is
running through the
water endseq

startseq two dogs
are running through
the grass endseq

startseq dog is
licking his nose
endseq

startseq two people
are standing on the
grass endseq

Figure 12. Final outputs Of image captioning model.

Training performance analysis

showed

stable

convergence with decreasing training and validation

loss,

though minor overfitting was observed.
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Techniques such as data augmentation and
regularization can be further explored to enhance
generalization. The model’s ability to produce detailed
descriptions reinforces its potential, yet incorporating
external knowledge bases or advanced attention
mechanisms could further refine its interpretative
skills.

The DenseNet201 + LSTM-based image captioning
model produces useful, human-like captions for
pictures, outperforming typical CNN + LSTM designs.
The BLEU score evaluation shows high performance
in capturing keywords, objects, and actions, with
BLEU-1 (0.52) and BLEU-2 (0.32) scores indicating
the model’s capacity to detect essential aspects
inside a picture. However, poorer BLEU-3 (0.23)
and BLEU-4 (0.11) results indicate the difficulty
of creating complicated, multiword sequences that
closely match human-annotated captions. Despite
these problems, the model outperforms traditional
techniques like as VGG16 + LSTM and InceptionV3
+ LSTM, owing mostly to DenseNet201’s fast feature
propagation, gradient flow, and dense connections,
which improve representation learning. Furthermore,
the self-attention process increases contextual
awareness, ensuring that generated captions are
grammatically correct, fluid, and cohesive, as shown
in Figure 12, which illustrates the final outputs of the
image captioning model.

Qualitative examination reveals the model’s
capabilities in accurate object detection, as it
excels at describing single-object images with distinct
foregrounds, such as “a dog running in the park” or
”a child playing with a toy.” However, constraints
emerge in complicated and abstract environments,
where several things and activities coexist. The
model struggles with fine-grained features, frequently
forgetting minor characteristics such as facial
expressions, emotions, or complex connections
between objects. Furthermore, while it may accurately
identify literal components of a picture, it falls
short of capturing deeper semantic links, implicit
meanings, and emotional context. A comparison
with human-annotated captions demonstrates that
human descriptions include purpose, subjectivity, and
emotional depth, all of which pose challenges for the
model.

Training and convergence analyses show that the
model has robust learning patterns, with consistent
reductions in training and validation loss over epochs.
While the difference between training and validation
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loss is still small, mild overfitting tendencies indicate
the need for data augmentation, dropout, and other
regularization strategies. Learning rate scheduling has
been shown to be useful in improving convergence
while avoiding problems like vanishing gradients and
excessive overfitting.

Overall, the DenseNet201 + LSTM model
demonstrates a strong foundation for automated
image captioning, with competitive performance
across a wide range of picture categories. While
it achieves high word-level accuracy and phrase
coherence, further work is needed to improve
its capacity to catch abstract linkages, contextual
subtleties, and complicated scene dynamics.

6 Future Work

Several avenues for development in picture captioning
models may be investigated, including architectural
innovations, integration with external knowledge
sources, multimodal learning, dataset extension, and
real-time deployment optimization. The combination
of transformer-based architectures, such as Vision
Transformers (ViTs) with GPT-based models, can
considerably improve semantic reasoning, long-range
dependency modeling, and sentence coherence
in produced captions.  Selfsupervised learning
approaches can increase generalization by training
models on big datasets without the need for human
annotations. =~ Hybrid techniques that combine
CNNs and transformers can preserve robust feature
extraction capabilities while enhancing contextual
understanding and sentence comprehension.
Incorporating commonsense knowledge graphs
(e.g., ConceptNet, ATOMIC) can aid models in
inferring implicit links, such as object affordances
("A dog can eat cake” rather than "A dog is reading
a book”). Fine-tuning models with external datasets
that give cultural, social, and situational context can
aid in context-aware caption production. Semantic role
labeling (SRL) approaches can improve contextual
inference by ensuring that captions include not just
objects but also their functions, interactions, and
intended behaviors.

Using adaptive attention processes, the model may
dynamically focus on different areas of the image
based on the produced words. Memory-augmented
attention can assist maintain contextual signals across
several pictures in a sequence, resulting in more
cohesive captions for image series, video frames,
or related images. Graph-based attention improves
scene understanding by explicitly modeling item
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connections, spatial location, and interactions. In video
captioning jobs, using audio cues, scene metadata,
and temporal signals can increase understanding
by providing more context to narrative descriptions.
Large-scale vision-language pretraining models such
as CLIP, ALIGN, Flamingo, and BLIP can improve
caption quality by better aligning visual and linguistic
embeddings.  Zero-shot and few-shot learning
strategies can help captioning algorithms generalize
to previously unknown objects and settings with
minimum labeled data.

One of the most difficult components of picture
captioning is conveying an image’s abstract, emotive,
and creative elements. Future enhancements may
include incorporating sentiment analysis and emotion
recognition into captioning algorithms, allowing
them to provide descriptions that reflect mood,
tone, and subjective impression. Improving scene
graph representations through improved relational
reasoning can help models grasp deeper object
interactions, allowing for more descriptive and
meaningful captions. Models may also be

refined to provide innovative and stylish captions
for use in digital art, narrative, and content
creation. Extending datasets beyond established
benchmarks like MS COCO by including datasets
like Conceptual Captions, Open Images, and
LAIONS5B can dramatically enhance generalizability.
Addressing bias reduction through dataset balance
and fairness-aware training algorithms can result in
inclusive and impartial caption creation across diverse
demographics and cultural situations. Active learning
algorithms may be used to constantly enhance datasets
by taking into account user comments and enhancing
model flexibility over time.

To allow realtime captioning in edge Al applications,
models should be optimized using approaches
like model compression, which reduces model
size without affecting speed.  Quantization (a
reduction in computing accuracy for efficiency),
information distillation (teaching smaller models
with information from bigger ones), and pruning
(removing superfluous weights to accelerate
inference) can further enhance performance. These
improvements will make Alpowered captioning
more accessible to real-time assistive devices,
autonomous systems, augmented reality (AR),
and human-computer interface (HCI) applications.
Furthermore, using lightweight models on edge
devices can improve applications like smart glasses for

visually impaired people, robotic vision, and real-time
video captioning in mobile apps.
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