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Abstract
The classification of Capsicum spp.  varieties
is often hindered by their morphological

similarities, making accurate identification a
challenging task. To address this issue, this
study applies a hybrid computational approach
that combines data dimensionality reduction
techniques using Principal Component Analysis
and Factor Analysis with various supervised
Machine Learning algorithms. The dataset,
which is unprecedented in the literature and was
collected under controlled agricultural conditions,
enables a robust evaluation of models including
Logistic Regression, Support Vector Machine,
K-Nearest Neighbors, Random Forest, Decision
Tree, and Gradient Boosting. Model performance
was assessed using Leave-One-Out and K-Fold
cross-validation methods. Additionally, the
SHapley Additive exPlanations method was applied
to assess the importance of the features in species
classification, providing greater interpretability
that reinforces the relevance of morphological and
agronomic descriptors in differentiating pepper
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varieties. The results show that all models achieved
high performance metrics, including accuracy,
F1-score, precision, and recall, consistently above
0.89, validating the effectiveness of the proposed
approach. These findings highlight the potential
of integrated Machine Learning frameworks for
species classification in agriculture, contributing
to practical applications and advancing intelligent
analysis of biological data.

Keywords: species prediction, pepper, machine learning,
classification algorithms, factor analysis.

1 Introduction

The Capsicum genus, encompassing a wide array
of peppers and bell peppers, is a botanical group
within the Solanaceae family. Native to Central and
South America, these plants have been extensively
studied due to their economic, culinary, and medicinal
value [1, 2]. Among its domesticated species, two
hold significant cultural and commercial importance:
Capsicum frutescens and Capsicum chinense.
These species are renowned for their distinctive
morphological, chemical, and genetic traits, making
them a focus for research in plant biology and food
sciences [3].

Within these species, C. frutescens includes varieties
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such as Cayenne, Tabasco, and Malagueta, widely
appreciated for their pungency and adaptability
to diverse climates. Similarly, C. chinense
comprises cultivars like Bhut Jolokia, Habanero,
and Biquinho, known for their intense heat and
unique flavor profiles. The rich diversity within these
groups presents challenges and opportunities for
classification, particularly as genetic, morphological,
and biochemical factors intertwine to define the
identity of each variety.

The accurate classification of pepper species and
varieties is a complex task due to overlapping
phenotypic characteristics and genetic variability.
A robust classification framework is essential
for optimizing agricultural practices, ensuring
biodiversity conservation, and facilitating targeted
breeding programs. Recent advances in Machine
Learning (ML) have shown potential in addressing
such challenges by leveraging high-dimensional
genetic data. ML algorithms enable researchers
to extract meaningful patterns from vast datasets,
providing insights into subtle distinctions among
species and varieties. These methods allow for
efficient and precise classification even in the presence
of complex genetic relationships.

There are few studies that apply ML in tabular, genetic,

and agronomic data to classify peppers, despite
disruptive success in other agricultural applications [4,
5]. One of them was done by Ramirez-Meraz et
al. [6] who used ML to classify Capsicum annuum
cv. Jalapeno after collecting data on this species.
The authors evaluated carbohydrate contents, amino
acids, organic acids, among other things. They were
able to distinguish 10 new breeds of those species
with this technique. The use of genetic data makes
differentiation possible even when the appearance of
the species is very close (which is a difficulty for the
training of models that use images).

Another author was Durmus and Atasoy [7].
The authors applied multivariate ML methods to
investigate organic compound content of different
pepper spices. The authors evaluated traits such as
terpenoids, acids, glucose, fructose, and used Random
Forest to classify the species. They came up with
excellent results, showing once again the effectiveness
of using vital data from these species.

Hafsah et al. [8] carried out a Classification of cayenne
pepper genotypes using physical characteristics during
the growing period until harvest using ML. The
authors also achieved great results with data such as
plant and dichotomous heights, age at flowering, age at
harvest, fruit stalk length, chili dimensions, individual

Table 1. Studies applied to the classification of peppers.

Author Objective Algorithms used Results
Meena et al. [9] Identifying the Geographical Origin KNN, DT, RF and SVM. SVM had the best result
of Red Pepper Powder. with 97.22% accuracy in the
predictions.
Abubeker et Classification of pepper "Kantheri YOLO V5. The method obtained an
al. [10] mulaku". accuracy of 90%.
Houetohossou et Evaluate deep learning performance GoogleNet, VGG16,and GoogleNet showed greater
al. [11] to classify diseases in peppers when ResNet50. result stability than VGG16
data is unbalanced. and ResNet50, especially
under various levels of
imbalance.
Djoulde etal. [12] Classify pepper seeds. MLP, DT, LDA, NB, SVM had an accuracy of 87%.
SVM and KNN.
Jeong et al. [13] Discrimination of the geographical Explainable extreme XGBoost had an accuracy of

origin of chili peppers using
laser ablation-inductively coupled
plasma mass spectrometry, X-ray

fluorescence, and near-infrared
spectroscopy.

Karadag et Detection of pepper fusarium

al. [14] disease = based on  spectral
reflectance.

Bhagatetal. [15] Bell  pepper leaf  disease
classification.

gradient boosting. 97.5%.

ANN, NB and KNN. KNN method with 99% of
classification performance.
RE. RF achieved 99.75% accuracy.
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chili weight, total number of chilies per plant, and
overall yield productivity.

Other studies are highlighted in Table 1. Algorithms
such as K-Nearest Neighbors (KNN), Decision Tree
(DT), Random Forest (RF), and Support Vector
Machine (SVM), Multilayer perceptron (MLP), Linear
Discriminant Analysis (LDA), Naive Bayes (NB),
Artificial Neural Networks (ANN) were used. From
the studies presented, it is evident that constructing
a pepper classification problem using genetic and
agronomic data, rather than images, offers significant
advantages. Genetic and health data offer accurate and
quantitative information about intrinsic characteristics
of peppers, such as disease resistance, nutritional
profile, and tolerance to harsh weather conditions,
which are difficult to capture through imaging. In
addition, this data allows for a more robust and
objective analysis, avoiding subjectivity and limitations
associated with image processing, such as lighting,
angle, and capture quality. This approach also
enables more efficient integration with agronomic
and genomic studies, promoting informed decisions
for genetic improvement and sustainable cultivation,
while reducing the need for intensive computational
resources often associated with image analysis.

The present study focuses on the classification of two
key Capsicum species (C. frutescens and C. chinense)
encompassing a variety of cultivars within each group.
To the best of our knowledge, these species have not
been analyzed from a ML perspective previously and
the dataset was acquired after planting them under
controlled conditions at a local experimental farm in
the southern state of Minas Gerais, Brazil.

By utilizing high-dimensional genetic data, we also
aim to develop a predictive framework capable
of distinguishing between these species and their
respective varieties. To achieve this, we employ
a combination of state-of-the-art ML algorithms,
including Logistic Regression (LR), Support
Vector Machine (SVM), K-Nearest Neighbors
(KNN), Random Forest (RF), Decision Tree (DT),
and Gradient Boosting (GB), following a new
pre-processing step of dimensionality reduction
to enhance computational efficiency and model
performance. Once again, our work innovates by
applying and comparing different algorithms to
this new problem, since, as is well established in
the literature, there is no single algorithm that is
universally best for all cases [16].

The findings of this study have the potential to
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contribute significantly to the field of agricultural
sciences and biodiversity research. By establishing
a robust classification methodology, we aim to provide
a reliable tool for researchers and practitioners,
facilitating the identification and categorization of
pepper varieties. = This not only enhances the
understanding of genetic relationships within the
Capsicum genus but also lays the groundwork for
future applications in crop improvement, resource
management, and the preservation of genetic diversity.

2 Theoretical Background

2.1 Importance of Capsicum spp. Breeding

When it comes to the genus Capsicum, certain
characteristics play a crucial role in the quality of
marketed products. For example, the shape, color, and
weight of pepper fruits [17] are some of the key traits
that meet consumer expectations. It is important to
highlight that the market is undergoing significant
transformations and gaining relevance, especially due
to the diversity of applications [18]. Peppers not only
serve as raw material in the production of condiments,
spices, and preserves worldwide but are also part of
the fresh vegetable market in Brazil. They can be
transformed into sauces, jellies, paprikas, and even
sold as ornamental plants [19].

Additionally, peppers have significant socioeconomic
importance due to their ability to generate employment
and income, especially for small producers [18]. Their
cultivation is present in almost all regions of Brazil and
serves as an excellent example of integration between
small farmers and the agro-industry [20].

Genetic improvement plays a crucial role in the
sustainable development of modern agriculture.
It enables the creation of plants that are more
tolerant, productive, and adapted to local climatic
and environmental conditions. This practice is
fundamental to ensuring food security and efficiency
in agricultural production. Over the years, breeders
have employed selection techniques to obtain varieties
through crossbreeding, resulting in plants that are
more productive and adapted to the local environment.
This process is essential for enhancing agricultural
sustainability and food security [21, 22].

Breeding programs for Capsicum spp. have played a
significant role by releasing various new varieties. As
a result, the possibility of expanding production and
occupying different market niches has increased [18].
Breeding aims to meet the essential pillars of modern
agriculture and contributes to the development of
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more productive plant varieties. This is achieved
through the selection of desirable traits, such as high
yield, greater resistance to biotic and abiotic stresses,
and improved food quality [23].

2.2 Dimensionality Reduction

2.2.1 Principal Component Analysis

Problems involving complex, high-dimensional
datasets are commonly addressed using Principal
Component Analysis (PCA). Gaudéncio et al. [24]
and Teodoro et al. [25] present this technique as
an effective solution for reducing data complexity
without losing essential information. It identifies
comprehensive influencing factors while maintaining
the basic characteristics of the data [26-29]. In
other words, the Principal Components (PC) are
characterized by uncorrelated representations of
the original correlated variables [30]. According to
Equation (1), data centering is performed as follows:

Xe=X-X (1)

where X represents the original data matrix and X is
the mean of X.

Next, as shown in Equation (2), the covariance matrix
is calculated by:

1

_ T
€= —XtXc 2)

where n is the number of observations.

Then, according to Equation (3), eigenvalue and
eigenvector decomposition is performed:

C V; = )\i'Uz' (3)
where )\; and v; are the eigenvalues and eigenvectors
of the covariance matrix C.

Data transformation is achieved by projecting the
centered data onto the eigenvectors, as described in
Equation (4):

Z =XV (4)

where V is the matrix of eigenvectors.

These steps provide a transformed dataset Z that
captures the essential structure of the original data
with reduced dimensionality.

2.2.2 Varimax Factor Analysis

Following a similar approach, Factor Analysis (FA)
with varimax rotation is used for dimensionality
reduction by identifying latent factors that explain
most of the variability in the original data [31]. These
factors are constructed from weights among the factors,
facilitating pattern interpretation. This method is
widely used in environmental studies to simplify
complex datasets and create factors with clusters
of inter-correlated variables [32, 33]. As shown in
Equation (5), the factor loadings matrix (L) is defined
as:

L = [l (5)
where [;; represents the factor loading of the i-th
variable on the j-th factor.

According to Equation (6), the varimax criterion V' is
given by:
] (6)

where I? is the sum of squared loadings for the j-th
factor, p is the number of variables, and m is the
number of factors.

m p
V= Z[;Z; (@2 -1

J=1

2.3 Classification Models

To overcome traditional statistical approaches, which
can be costly due to the quantity of data, ML
methods for data classification have been developed,
as presented below.

2.3.1 Logistic Regression

LR is a technique of statistics commonly employed
for classification purposes, aiming to predict the
probability of an event by analyzing datasets, as
presented by Townsend et al. [34] and used by Pradhan
et al. [35]. In contrast to linear regression and
other approaches focused on continuous variables,
LR uses a logistic function to represent probabilities,
transforming a set of independent variables into
probabilities ranging from 0 to 1. The coefficients in
LR signify the impact of the independent variables on
the event’s probability, providing a straightforward
explanation of how each variable influences the
prediction. As shown in Equation (7), the LR function
o(z) is defined as:

(7)
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where z is the linear combination of the independent
variables.

According to Equation (8), z is the linear combination
of the independent variables:

z = o+ Bix1 + Para + - - + Brrg (8)
where By, B1,...,0; are the coefficients of the
independent variables, and z1,x2,...,z; are the
independent variables.

Equation (9) represents the probability prediction:

P(Y:1’$1,J}2,...,$k)
1 9)

1 + e~ (Botprzr+Bazat +Brzk)

where P(Y = 1 | zj,22,...,2) is the predicted
probability of the event occurring.

Equation (10) shows the LR model:

PY=1|=z)
10g<1—P(Y:1|33)

) = Bo+p1x1+Bexo+ - -+ B
(10)

Equation (11) presents the likelihood function L(/3)
used for parameter estimation:

n

L(8) = [T Pl | 2" (1 = Plyi | i)'~

=1

(11)

where y; is the observed outcome for the i-th
observation.

2.3.2 Support Vector Machine

The SVM model was introduced by Vapnik [36],
aiming to maximize the distance between support
vectors and the hyperplane to achieve optimal
classification performance. It transforms data into
a higher-dimensional space using a kernel function,
enabling the processing of non-linearly separable
data [37, 38]. This mapping makes it possible to
divide instances of each class by a margin denoted
by a hyperplane, thus enabling the detection of the
hyperplane to distinguish possible outcomes and
predict corresponding classes [39]. As shown in
Equation (12), the Lagrangian and duality form of
the SVM optimization problem is given by:
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n 1 n n
MaxZai —3 Zzaiajyiyj(xi : Xj) (12)
=1 =1 j=1
Subiject to:
Z iy =0 (13)
i=1
0<o;<C Vi (14)

where «; are the Lagrange multipliers, y; are the
class labels, x; are the input vectors, and C' is the
regularization parameter.

Equation (13) shows the decision function f(x):

f(x) =sgn(w-x+0b) =sgn (Z a;yi(Xi - X) + b)
i=1
(15)
where w is the weight vector, and b is the bias term.

Equation (14) presents the kernelized version of the
decision function [40]:

f(x) =sgn (Z ayi K (x4, %) + b) (16)

=1

where sgn is the sign function, K (x;,x) is the kernel
function.

2.3.3 K-Nearest Neighbors

Used in both classification and regression scenarios, as
in the case of Getin et al. [41], KNN is a non-parametric
method that involves inserting a new data point, and
the algorithm searches for the closest points to it in
the training data. The prediction for the new point
is then based on its classification. Adjusting the
point or hyperparameter K can lead to underfitting or
overfitting [42]. The distance metric can vary, and the
ideal value is determined through cross-validation on
the training set to maximize model accuracy [43]. As
shown in Equation (15), the distance d(x, z;) between
the new sample and all dataset points is calculated as:

(17)
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where d(z, x;) is the Euclidean distance between the
new sample = and the ith sample z; in the dataset, and
xj and z;; are the jth features of the new sample z and
the ith sample z;, respectively.

For classification problems, the predicted label g is
determined by the mode of the labels of the KNN:

g = mode(yi,, Vi, - - - Yiy,) (18)

where 3 is the predicted label or value for the new
sample, and y;, , ¥i,, - - -, ¥i, are the labels of the KNN.

For regression problems, the predicted value g is the
average of the values of the KNN:

1 K
] — — -y 1
I=7% ;1 Yi (19)

where K is the number of nearest neighbors
considered.

2.3.4 Random Forest

The RF algorithm is widely used in ML for
tasks involving classification and regression. Its
methodology involves combining multiple decision
trees, each trained using a random subset of the dataset,
to increase the accuracy and resilience of predictive
results [44]. An example of its execution is the work
by Chen et al. [45], who used RF to develop prediction
models for daily concentrations of PM2.5, PM10, NO2,
and O3 MDAS in Great Britain. As shown in Equation
(18), the RF algorithm operates as follows:

e Bootstrap Samplings: Using random sampling
with replacement, several subsets of the dataset
are produced;

e Feature Selection for Splitting: To find the optimal
split for each decision tree, a random subset of
features is chosen at each split.

For classification problems, the predicted label g is
determined by majority voting among the decision
trees:

(20)

where T;(x) is the prediction made by the i-th decision
tree for the input z, m is the total number of decision
trees in the RF.

For regression problems, the predicted value 3 is the
average of the predictions of all the decision trees:

i= > Ti) (21)
=1

2.3.5 Decision Tree

A DT, as used by Teodoro et al. [25] is a ML model
used for classification and regression, structured with
internal nodes and leaf nodes. It splits the data based
on criteria such as entropy and Mean Squared Error
(MSE) reduction. Decision trees are easy to interpret
and do not require data normalization, but they can
suffer from overfitting and instability, which can be
mitigated with pruning or multiple trees, such as in
RF. Each internal node represents a test based on a
feature, with two or more possible outcomes, leading
to another internal node or a leaf node that indicates
the predicted class. A path from the root node to a leaf
node forms a rule that predicts a class [46]. As shown
in Equation (20) for classification and in Equation
(21) for regression.

Entropy(S) = — Zpi logs(pi) (22)
i=1
MSE = > (5 )’ (23)

i=1

where p; is the proportion of class i examples in set S,
y; is the actual value, g the predicted value, and n is
the number of examples.

So, the information gain for a feature A is defined as:

Information Gain(S, A)

>

veValues(A)

50|

|5

(24)

= Entropy(S) — Entropy(S,)

where S, is the subset of S where feature A has value
V.

2.3.6 Gradient Boosting

Complementary to the decision tree methodology,
GB is a ML method that uses decision trees to
sequentially create predictive models. To build a
robust ensemble model, it combines several weak
predictive models [47]. The method begins with
a simple model and then iteratively improves it by
focusing on the errors found in previous models,
so each new model corrects the residuals or errors
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of the ensemble to reduce the overall prediction
error [48]. This method allows GB to achieve
extremely accurate levels in tasks such as regression
and classification. Due to its effectiveness in handling
complex relationships in data, it is popular in various
fields as shown in subsequent equations. The first
one is the initialization model with a constant that
minimizes the loss function.

n
Fo(z) = argm?}nzfz(%y) (25)
i=1
where L is the loss function and y; are the target values.

The iterative process is carried out, calculating the
residuals in the Equation (24).

Jm) _ [OL(yi, Fin1(2i))
¢ 6Fm_1(l‘i)

(26)

where F,,,_i(x;) is the prediction of the model in the
previous iteration.

(m),

7

Fit a new tree h,,(z) to the residuals r

(27)

Update the model:

Fn(z) = Fn—1(2) + nhm(2) (28)
where 7 is the learning rate, which controls the

contribution of each tree.

After m iterations, the final model is described by
Equation (27).

M
Fon(x) = Fo(z) + Y hm(2)

m=1

(29)

2.4 Validation Methods

The Leave-One-Out (LOO) technique is a form of
cross-validation where, in each iteration, a single
observation is left out of the training dataset and
used as the test set. This process is repeated for
each observation in the dataset, ensuring that each
sample is used once as the test set. LOO allows
evaluating how the model performs in each iteration,
providing an unbiased estimate of its performance.
Additionally, it helps in comparing algorithms and
detecting overfitting, being widely used in various
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studies, as evidenced by Lephalala et al. [49] and by
De Meester et al. [50]. LOO is given by:

L00= 1S I fuw)  (30)

=1

where n is the total number of observations in the
dataset, L(y;, f_i(x;)) is the loss function evaluating
the difference between the true value y; and the
prediction f_;(x;) made by the model trained on
the dataset excluding the ith observation, f,l(:zjz)
represents the prediction for z; using the model trained
without the ith observation.

Classifying data is essential, but without validation, it
is impossible to guarantee the robustness, effectiveness,
and generalizability of predictive models, avoiding
overfitting or underfitting issues. Thus, some methods
ensure this accuracy, such as LOO and K-Fold, among
others. It is evident that LOO is a versatile method
that allows data classification and cross-validation and
applying other methods for comparison will bring
better reliability. Therefore, methods like K-Fold
Cross-Validation, widely used in statistics to evaluate
the performance of a predictive model, help validate
the model’s ability to generalize to unseen data,
reducing bias and variability that can occur when
dividing the dataset into training and testing [51].
K-Fold is given by:

K
1
K-Fold = - ; Ly (31)

where K is the number of folds, Ly, is the loss for the
kth fold, where every fold serves as a validation once,
with the remaining K — 1 constituting the training set.

2.5 Evaluation Metrics

Evaluation metrics are essential in the analysis
and improvement of ML models and data science,
providing systematic methods to assess and validate
predictive performance and the generalization ability
of models. In classification problems, commonly used
metrics include confusion matrix, accuracy, F1-score,
precision, and recall.

The confusion matrix accounts for the correct and
incorrect predictions made by the model concerning
class classifications [52]. Accuracy is a metric that
expresses how many of the total predictions are
accurate. Recall is the percentage of correctly predicted
examples to all truly positive examples, whereas
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Precision shows the percentage of correct predictions
to positive predictions. The F1-score is the harmonic
mean between precision and recall, ideal for situations
with class imbalance [53, 54]. Table 2 displays the
evaluation metrics.

Table 2. Evaluation metrics.

Metrics Evaluation
Confusion It is a 2x2 table for binary problems, where
Matrix columns show the model’s predicted classes and
rows show the actual classes: True Positive (TP),
False Positive (FP), True Negative (TN), and
False Negative (FN).
Accuracy
TP+ TN
Accuracy_TP+TN+FP+FN (32)
Precision TP
Precision = TP+ FP (33)
Recall TP
Recall = m (34)
F1-Score Precisi Recall
Fl-Score — 2 . Lrecision - Reca (35)

Precision + Recall

In regression problems, metrics such as the Coefficient
of Determination (R?), Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE)
are used, as utilized by Vasconcelos et al. [55]. The
percentage of the data’s variance that the model can
explain is indicated by the R2. Whereas MSE computes
the mean of the squared errors, MAE computes the
average of the absolute errors between predicted and
actual values. RMSE is the square root of MSE,
providing an error measure in the same unit as the
original data, and MAPE calculates the average of
absolute differences between predicted and actual
values in percentage terms.

3 Methodology

This section is divided into two parts: i) how the data
was collected and ii) the application of ML algorithms
for the classification of species in the genus Capsicum,
focusing on the varieties C. frutescens and C. chinense.

3.1 Experimental Methodology

The first step was to plant the peppers. The seeds
were planted in polystyrene trays with 128 cells, using
commercial Bioplant® substrate. The seedlings, with
fewer than six true leaves, were transplanted into

five-liter pots containing the same type of substrate.
Monthly fertilization was carried out with N-P-K
(4-14-8). Seventeen pepper genotypes belonging to
two species of the Capsicum genus were used, as
presented in Table 3.

Table 3. Peppers species and genotypes (varieties) used in

the work.
Scientific Name  Varieties

e Malagueta

e Tabasco
Capsicum e Cayenne
frutescens e Etna ornamental

e Pirdmide Ornamental
e Bhut jolokia

e Cumari

e Habanero chocolate
e Habanero vermelha
e Habanero amarela
e Peito de mocga

e Murupi

e Pidozinho

e Cheiro do norte

e Biquinho vermelha
e Biquinho amarela

e Arari bode amarela

Capsicum chinense

It provides a list of pepper varieties, including the
species C. frutescens (Cayenne, Tabasco, Peter, Malagueta,
Etna Ornamental, and Pirdmide Ornamental) and C.
chinense (Bhut Jolokia, Biquinho Amarela, Habanero
chocolate, Habanero Amarela, Habanero Vermelha, Cumari,
Peito de Moga, Murupi, Pidozinho, Cheiro do Norte,
Biquinho Vermelha, Biquinho Amarela, Arari Bode
Amarela).

The variables defined for the dataset were selected
as quantitative and qualitative descriptors. The
quantitative descriptors include fruit weight (x1¢),
fresh mass of mature seedless fruit (z9), collected
using an analytical balance (model Bel M214Ai) with
results expressed in grams, and dry mass of mature
seedless fruit (x14), measured after drying the fruits
in an oven (model SSDcr) for 72 hours at 60 °C with
ventilation, following the same procedure used for
fresh mass data collection.

The length of the mature fruit (x9), diameter of the
mature fruit (z3), pericarp thickness (z7), corolla
diameter (z13), leaf size (x3) was measured with a
caliper (Stainless Hardened, precision of 0.01 mm) at
the median portion of the fruits, with results expressed
in millimeters (mm). The number of seeds per fruit
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Figure 1. Data collection of Capsicum spp.

(20) was obtained by counting the seeds. Plant height
(x15), crown diameter (x7), stem diameter (z5), and
stem length (x16) were measured using a measuring
tape, with results expressed in centimeters (cm).

For qualitative descriptors, the evaluated characters
were: fruit shape (z4), branch density (z11), leaf
shape (x2), corolla color (x12), immature fruit color
(z17), intermediary fruit color (x¢), and mature fruit
color (x13), following the morphological-agronomic
characterization according to the International Plant
Genetic Resources Institute (IPGRI) (1995). Branch
density was classified as sparse, intermediate, or
dense. Leaf shape was categorized as deltoid, oval, or
lanceolate. Corolla color was classified as white, light
yellow, yellow, yellow-green, purple with white base,
white with purple base, white with purple margin, or
purple. Immature fruit color was recorded as white,
yellow, green, orange, purple, or dark purple. Mature
fruit color was described as white, lemon yellow, pale
orange-yellow, orange-yellow, pale orange, orange,
light red, red, dark red, purple, brown, or black. In
each case, the values were represented as the average
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of triplicate determinations.

Descriptors were evaluated at two distinct moments:
some from the appearance of the first flower, while
others were measured when more than 50% of each
plant had at least one mature fruit, following the
protocol of IPGRI [56]. A summarized photographic
record of the entire data collection process for the
case study is illustrated in Figure 1, which includes
85 observations: 25 from C. frutescens and 60 from
C. chinense. Each genotype was represented by 5
observations.

Figure 2 illustrates the 17 fruits of the two studied
species, C. chinense and C. frutescens, where:
(a) Malagueta, (b) Tabasco, (c) Cayenne, (d) Etna
Ornamental, (e) Pirdmide Ornamental, (f) Bhut Jolokia,
(g) Cumari, (h) Habanero Chocolate, (i) Habanero
Vermelha, (j) Habanero Amarela, (k) Peito de Moga, (1)
Murupi, (m) Pidozinho, (n) Cheiro do Norte, (o) Biquinho
Vermelha, (p) Biquinho Amarela, and (q) Arari Bode
Amarela.
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Figure 2. Fruits of Capsicum spp.

3.2 Numerical Methodology

The numerical methodology was designed to develop
effective predictive models for classifying pepper
species, with a focus on parameter adjustment and
mitigating potential overfitting, which is common
when working with small datasets. The process was
divided into key stages, such as data preprocessing,
dimensionality reduction, model selection and
training, and result validation. This entire process was
carried out using Python, utilizing various libraries
and tools to implement each stage effectively.

The data were preprocessed to ensure data integrity
and quality. It was necessary to encode categorical
variables by transforming them into numerical formats
for the application of ML models. This was done
using the One-Hot-Encoder, which creates a binary
column (0 or 1) for each category of the variables,
allowing the information to be properly represented
for the model. The independent variables (features)
were separated from the dependent variable (target),
ensuring a clear distinction between predictors and
the prediction target. This step is crucial to avoid
processing errors and ensure that the models receive
clean and structured data. The data were split into
training and testing sets, with 80% used for training
and 20% for testing.

The target variable (species) was encoded as an
integer numeric variable, with values of 0 or 1. The

variables genotypes, leaf shape, branch density, corolla
color, fruit shape, immature fruit color, and mature
fruit color were transformed into dummy categorical
variables for one hot encoding, resulting in a total of
60 columns.

PCA was performed, followed by FA with Varimax
rotation to reduce data dimensionality. It’s important
to note that a comparison was also made between
the results obtained from PCA and those from FA
regarding evaluation metrics.

A variety of ML models were used, such as LR,
SVM, KNN, RF, DT, and GB. These algorithms
were intentionally selected to cover a spectrum
ranging from simple and interpretable models
(LR, DT), to ensemble-based approaches with
higher computational cost and robustness (RF, GB),
distance-based methods (KNN), and margin-based
classifiers (SVM). This diversity allowed a more
comprehensive comparison of model behaviors under
the same dataset conditions. Each model was tuned
using Optuna, a hyperparameter optimization tool
that employs techniques like Bayesian optimization to
find the best parameter configuration. The goal was to
balance complexity and performance, while avoiding
overfitting.

To explicitly address overfitting risk due to the small
dataset size, LOO validation was applied, as it provides
nearly unbiased estimates by using each sample
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Figure 4. Histogram for quantitative variables used as Machine Learning inputs.

once as a test case.
LOO was combined with Stratified K-Fold, ensuring

that class balance was preserved during validation.

This methodological choice ensured greater reliability
in performance estimation compared to traditional
K-Fold alone.

To verify the quality of the models, performance
metrics such as accuracy, precision, recall, and F1-Score
were used. These metrics were calculated from the
predictions obtained during the validations, allowing
comparisons among model. Figure 3 summarizes the
step-by-step process of the proposed methodology.
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To strengthen the evaluation,

4 Application of Analysis, Challenges and
Results

Before applying ML classification techniques, an initial
exploratory data analysis was conducted. It began
with descriptive statistics, followed by histograms
to investigate the distribution patterns of numerical
features. Subsequently, the analysis deepened to assess
the suitability of the chosen algorithms. Figure 4
illustrates these histograms concerning the numerical
variables.

The correlation between numeric variables was
assessed, as shown in Figure 5, highlighting those
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Figure 6. Dendrogram for the clusters of Capsicum genotypes.

with a correlation coefficient above 0.70. In addition
to verifying the variables, a cluster analysis was also
performed on the observations using the Ward Linkage
method and Euclidean distance. Based on this, the
dendrogram was used to assess species separability of
the species, as illustrated in Figure 6.

Due to the high dimensionality following variable

encoding, PCA was applied to the standardized
variables, capturing 80% of the explained variance and
selecting eigenvalues greater than 1, as suggested by
Kaiser [57]. This reduced the number of variables
to 11. Following PCA, FA with Varimax rotation was
conducted, retaining the number of factors determined
by PCA. Figure 7(a) illustrates the number of PC and
the proportion of explained variance, while Figure 7(b)
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presents the same for rotated factors. The Figure 8(a)
displays the dispersion of species across the first two
PC, with Figure 8(b) depicting this for rotated factors.

In the next stage, multiple models were trained and
tested, including LR, SVM, KNN, RF, DT, and GB.
The choice of these algorithms was based on the
intention to cover both simpler and more interpretable
methods, such as LR and DT, and more robust and
computationally demanding ones, such as RF, SVM,
and GB.

e Simpler models, like LR and DT, offer
interpretability and low computational cost,
serving as useful baselines;

Ensemble-based models, like RF and GB, provide
greater generalization capacity, though at a higher
computational cost and with greater sensitivity to
parameterization;

Margin-based models, such as SVM, are robust
for class separation in multidimensional spaces,
though they demand careful parameter tuning;

e Distance-based methods, like KNN, are intuitive
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and easy to apply, but may be sensitive to noise
and dimensional variability.

Given the small dataset size, traditional K-Fold might
not provide precise estimates. Therefore, LOO
validation was applied, where each observation serves
as a test, being more appropriate for small datasets and
helping to mitigate overfitting. For greater robustness,
stratified cross-validation was also combined with
LOO.

Initially, tests were carried out using the original
variables, without dimensionality reduction. At this
stage, results were less favorable, with overfitting
occurring in some models, evidenced by discrepancies
between training and test performance. PCA partially
reduced this issue but inconsistencies persisted. The
use of FA with Varimax rotation proved to be the
most effective approach, eliminating overfitting and
yielding high performance across all models.

Table 4 presents the results obtained after FA, showing
that simpler models (e.g., LR) and more robust ones
(e.g., SVM) achieved similarly superior performances
compared to the others. This finding suggests that
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the optimal model selection depends not only on
algorithmic complexity but also on the adequacy of
preprocessing and dimensionality reduction methods

to the dataset.

Table 4. Results of classification models using Factor
Analysis with varimax rotation.

Model Accuracy Precision Recall F1-Score
Logistic Regression 0.9765 09782 09775 0.9767
Random Forest 0.9059 0.9170  0.9070  0.8999
Decision Tree 0.8941 0.8998  0.8940  0.8958
Support Vector Machine ~ 0.9765 09772 0.9647  0.9762
K-Nearest Neighbors 0.9647 0.9646  0.9657  0.9645
Gradient Boosting 0.9176 09189 09175 0.9181

In addition to evaluating classification metrics, we
also conducted an interpretability analysis to identify
which variables most contributed to the model
predictions. For this purpose, the SHAP (SHapley
Additive exPlanations) method was applied, which
quantifies the contribution of each variable to the
models” decision-making process.

The results (Figure 9) show that crown diameter (1),
leaf size (x3), leaf shape (z3), pericarp thickness
(z7), fruit diameter (z3), fruit weight (z19), stem
diameter (z5), and corolla color (x12) were the
most important variables, playing a decisive role
in classifying Capsicum species.  Traits related
to fruit biomass (fresh mass (z9) and dry mass
(z14)) also exhibited high relevance, reinforcing that
morphological, biometric, and qualitative descriptors
are fundamental for genotype differentiation.
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Figure 9. Contribution of features to model predictions
according to SHAP analysis.

This analysis not only complements accuracy results

but also provides biological insight, highlighting
which morphological and fruit descriptors are most
discriminative, with direct implications for breeding
and genetic improvement programs.

5 Discussions

5.1 Conditioning Models

It is worth noting that without using Stratified
K-Fold together with LOO, the performance with
original variables, PCA, and FA was very poor,
showing overfitting in at least five out of six models.
This highlights that, in terms of ML models, not
using Stratified K-Fold together with LOO imposes
limitations on the evaluation of the dataset. Thus,
adding mechanisms such as those presented here
provides an alternative to improve the classification
performance of the dual-path approach with attention
mechanisms (DPACR) model by Zhang et al. [58].

In this study, the diversity of algorithms tested proved
fundamental to assessing how model complexity
interacts with overfitting control. Simpler models,
such as Logistic Regression and Decision Tree,
provided interpretability and lower computational
costs, while ensemble-based models (Random Forest
and Gradient Boosting) aimed at greater robustness
but showed higher sensitivity to overfitting in
small datasets. Support Vector Machines presented
strong separation capacity, although requiring careful
parameterization, whereas KNN offered intuitive
classification but was affected by dataset size and
dimensionality. In addition, the SHAP interpretability
analysis reinforced that morphological and biometric
traits, such as crown diameter, leaf size, and
pericarp thickness, played a decisive role in the
predictions, corroborating the biological consistency
of the obtained models.

Using FA with Varimax rotation as proposed, all
methods achieved results above 0.85 in accuracy,
precision, recall, and F1-Score. The best results were
achieved with LR and SVM, respectively. For the
original variables, LR performed the best, with results
like those using FA, while for PCA, DT showed the best
performance, also similar to FA.

These findings indicate that overfitting control was
not only achieved through validation strategies
(LOO and Stratified K-Fold) but also strongly
influenced by dimensionality reduction and model
choice. Importantly, the results reinforce that simpler
algorithms can perform on par with more robust
methods when preprocessing and validation are
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properly applied.

Thus, as shown in the work of Zhao et al. [59],
the use of K-Fold indicated that the ML models
exhibited strong generalization capabilities, with
minimal variations in MAE and RMSE. This aligns
with the presented work, based on the metrics of
confusion matrix, accuracy, precision, and Fl-score.
The results indicate that the models performed well
in classification tasks. Precision quantifies the ratio of
TP to all positive predictions, while accuracy reflects
the percentage of correct predictions relative to all
predictions. The F1-Score balances precision and
recall by calculating their harmonic mean. Recall, also
known as sensitivity, quantifies the percentage of TP
compared to all actual positives.

The initial hypothesis was to verify whether training a
ML model could classify Capsicum spp. species using
biodescriptors as an alternative to image recognition
algorithms, which typically require more labeled data
and greater effort. The idea was to validate this
initial hypothesis by training models with tabular data
instead of using images. The main challenge was the
considerably small amount of data. In the end, based
on the metric results, it was found that virtually all
models are good options for this classification function
when using FA.

5.2 Study Object and its Limitations

The study object presented consists of a database
developed in a laboratory following planting steps.
Thus, it is easy to understand that generating
experimental repetitions or even replicas, when
working with tabular data, is a very challenging
task, as it requires labor, growth time, fertilization,
and specific care to prevent diseases. Furthermore,
some experiments are destructive in nature (i.e.,
measurements that require cutting the seedlings),
which can lead to errors and often to the need for
sample discards.

Another important aspect is that the dataset was
obtained under controlled conditions, using the same
soil type, cultivation environment, and agricultural
management practices. These variables were kept
fixed throughout the experiment in order to reduce
external interferences and ensure consistency of the
results. However, this approach limits the diversity of
scenarios considered and restricts the generalization
of the models to environmental conditions, soil types,
and management practices that were not included in
this study.
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Another limitation of the study object relates to the
qualitative characterization of plant-specific factors,
which may vary across technicians, even when
following a standard protocol. Therefore, the use of
classification models based on machine learning, as
presented by Li et al. [60], could facilitate this stage
in future work, in addition to enabling analyses based
on other classifications, such as cluster size and main
stems.

5.3 Future Studies

Future studies will focus on genotype identification
and the application of computer vision, through the
development and implementation of sophisticated
algorithms capable of analyzing genetic markers and
patterns with high precision. This approach aims
to automate phenotypic recognition, significantly
reducing the time and effort required for manual
analyses, as well as allowing the processing of
large genomic datasets to identify subtle variations
associated with desirable traits in peppers.

In addition, we intend to expand data collection
to include plants cultivated under different
environments, soil types, and growth stages.
This expansion will make it possible to evaluate
the robustness and generalization capacity of
the proposed models, as well as to enable direct
comparisons with the results obtained in the present
study. In this way, it will be possible to verify to
what extent the models developed under controlled
conditions remain effective in more complex and
diverse scenarios, contributing to broader practical
applications in breeding programs and agricultural
management.

6 Conclusion

This article explores the development of a ML
algorithm aimed at classifying Capsicum spp.
data, playing a crucial role in breeding programs,
particularly in effective diversity management.
Despite the limited sample size compared to ML
methodologies using large datasets, the results show
that the algorithms can accurately classify Capsicum
spp. species. Furthermore, the study compares
different approaches, such as PCA and FA with
varimax rotation, providing valuable insights for
advances in the field. With the main points of the
study being:

e Developed a ML algorithm for classifying
Capsicum  spp. data, supporting breeding
programs and diversity management. Despite
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the limited sample size, the algorithms proved
effective in classifying Capsicum spp. species;

e Detailed analysis revealed differences between
using original variables, reducing dimensionality
with PCA, and FA with varimax rotation;

e Overfitting was observed in some models using
original variables and PCA. FA with varimax
rotation proved high efficacy, though less
commonly explored compared to PCA;

e The use of multiple ML models aims to compare
the performance of each, as each model has
different assumptions, generalization capabilities,
and sensitivities to specific patterns in the data.
This approach allows for the verification of result
consistency and a deeper understanding of the
dataset’s characteristics;

o All six models performed well with FA, achieving
results above 0.89 in all evaluated metrics, with
LR and SVM standing out with results above 0.96;

e Cross-validation with LOO and Stratified K-Fold
reinforced the findings; without these techniques,
overfitting appeared in three tests;

e Positive outcomes were obtained using tabular
data, which typically yield inferior results
compared to computer vision techniques;

e Models achieved high performance, although
none reached a perfect score of 1.00 in any metric;

e The study emphasizes the importance of
advanced innovation systems to optimize
agricultural processes, improve crop management,
and provide valuable tools for farmers and
researchers;

e These systems not only enhance agricultural
efficiency and reduce human errors but also
significantly elevate crop management practices;

e The hypothesis regarding the challenge of training
models with tabular data was confirmed.
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