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Abstract
Early diagnosis of cardiac abnormalities depends
on accurate classification of heart sounds, but
centralized training methods run the danger
of violating patient privacy. We thus propose
a privacy-preserving and reliable heart sound
abnormality detection system combining
Blockchain Technology with Federated Learning
(FL). Training is spread among seven clients,
each simulating an independent data source,
using a preprocessed dataset from the PhysioNet
Challenge 2016 to enable distributed learning
without sharing raw data. CNN-LSTM model
using FedAvg achieved the best performance: 94%
accuracy, 0.90 precision, 0.96 recall, and an AUC
of 0.98 among five deep learning architectures
evaluated with FedAvg and FedProx strategies.
Along with metadata including client ID and
round number, SHA-256 hashes of local and global
model weights were recorded on a local Ethereum
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blockchain following every communication round
to guarantee model integrity. The hash of the final
model is revalidated against the blockchain to
confirm authenticity prior to deployment. It then
guarantees safe, distributed, clinically valuable
AI-based diagnostics by real-time classification of
heart sounds as normal or abnormal.
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1 Introduction
Particularly in helping with early diagnosis and
decision support, the use of artificial intelligence (AI)
in healthcare has expanded fast recently. One such
field is heart sound analysis, which is very important
in spotting possible cardiac problems before they
become more severe. Big amounts of heart sound data
are being gathered as wearable monitoring devices
and digital stethoscopes become more common [1].
Sharing this information with centralized systems,
however, begs for major questions about patient
privacy, data abuse, and regulatory compliance.
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In sensitive fields like healthcare, traditional
machine learning approaches—which demand
centralizing data for training—are progressively seen
as unworkable [2].
By allowing the training of machine learning models
across several hospitals or devices without ever
transferring patient data, federated learning (FL)
presents a hopeful substitute [3]. This method keeps
data safely on-site and lets every institution help the
model to be improved. FL poses fresh difficulties
despite its privacy-preserving character: it is hard
to verify whether model updates are real or whether
they have been altered during the training process [4].
Ensuring the trustworthiness and integrity of models
is just as crucial in medical uses where decisions can
impact life as in ensuring their accuracy.
We present a new system combining Blockchain
Technology with Federated Learning to generate a
transparent, tamper-proof training environment [5],
so addressing this problem. Every contributing
device or hospital teaches a local model on its own
heart sound data. Following training, every model
update produces a distinct fingerprint—known as a
cryptographic hash—which is generated and recorded
on a blockchain ledger together with metadata
including client trained the model and at which round.
This guarantees that the whole training background is
verifiable and cannot be changed, so strengthens the
dependability and security of the model for clinical
application.
Using a heart sound dataset obtained from the
PhysioNet Challenge 2016, preprocessed and
distributed among seven clients to replicate real-world
hospital environments in our system. We tested
CNNs and LSTMs among other deep learning models
meant to process audio signals. Among these, the
CNN+LSTM model trained with FedAvg showed
the most consistent and accurate outcomes [6]. Like
a cardiologist listening for abnormalities during a
physical examination, this architecture catches the
minute sound patterns of the heart as well as their
sequence of occurrence.
Every variant of the model—local as well as global—is
tracked on a local Ethereum blockchain using smart
contracts, so guaranteeing security. The fingerprint
of the model is checked against the blockchain to
confirm that no manipulation has happened before
it is applied for real-time diagnosis. Once confirmed,
the model can evaluate fresh heart sound inputs
and generate instantaneous predictions: 0 for normal

and 1 for aberrant [7, 8]. This configuration
supports distributed, real-time, privacy-conscious
cardiac screening without violating model integrity
or data confidentiality.

All things considered, our work fills a significant
demand for reliable, safe, and interpretable artificial
intelligence in the medical domain. Combining
Federated Learning with Blockchain lets healthcare
providers work together to create strong diagnostic
models without compromising patient privacy or data
control. Our system not only increases the accuracy
of heart sound classification but also generates
confidence in technology, something crucial for
practical acceptance in clinical environments [9].

1.1 Objective
The goal of this study is to create a privacy-preserving
and secure heart-sound abnormality identification
system based on Federated Learning and Blockchain
Technology. With this approach, decentralized
training of models becomes achievable on different
clients without the sharing of raw medical data, thus
preserving patient privacy. In order to enhance trust
and integrity in the system, blockchain technology is
used to save cryptographic hashes of model updates,
thus making the process verifiable and tamper-free.
This system overcomes major challenges such as data
leakage and model tampering to provide accurate,
secure, and reliable AI-based diagnostics in the
healthcare industry.

1.2 Contributions
Our work mostly makes the following important
contributions:

• Combining Federated Learning and Blockchain
Technology, it suggests a privacy-preserving
and reliable heart sound abnormality detection
system.

• Using the FedAvg approach over seven
distributed clients, it develops and implements a
CNN+LSTMmodel, obtaining good performance
in real-time heart sound classification.

• To guarantee model integrity, traceability, and
tamper-evidence all through the training process,
it combines blockchain to document SHA-256
hashes of local and worldwide model updates.

• Using the verified global model, it provides
real-time diagnosis and accurate predictions of
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either normal or aberrant heart sounds without
compromising sensitive patient data.

1.3 Organization
The remainder of the article is organized in thismanner.
"Related Works" gives a summary of earlier research
on heart sound classification, federated learning
applications in healthcare, and blockchain-based
model verification. The "Proposed Framework"
describes the system’s overall architecture, with a
focus on how federated learning and blockchain
technology can be combined to offer private and
secure training. "System Architecture" describes the
technical components, including training workflow,
model design, data preparation, and blockchain
integration. "Implementation" explains how the
framework is implemented, with a focus on the
CNN+LSTMmodel, federated training across seven
clients, and smart contract-based logging. "Results
and Discussion" discusses the system’s performance
through the use of quantitative metrics and the results’
interpretability. The section "Challenges and Future
Work" discusses existing constraints and suggests
potential avenues for further advancement. Lastly,
"Conclusion" provides a summary of the study’s key
findings and contributions.

2 Related Work
Especially with developments in machine learning
(ML), deep learning (DL), and privacy-preserving
systems like Federated Learning (FL), heart sound
abnormality detection has become a fundamental
domain within biomedical signal processing. Over a
wide range of methods, including signal segmentation,
unsupervised clustering, and anomaly detection
across noisy and multi-institutional datasets, the
examined literature. Based on abrupt changes in
heart sound signals, Tatulli et al. [10] presented an
unsupervised segmentationmethod. Reaching top-tier
F1 scores across PhysioNet, CirCor, and PASCAL
datasets, the method—which requires little parameter
tuning—validated its resilience against inter-database
variability.
Using 12-lead ECG data, Jimenez et al. [11]
investigated federated learning for arrhythmia
classification. Their work focused on training across
several data silos without sharing raw patient data,
so preserving privacy. Particularly under both IID
and non-IID environments, the performance of the
FL-based model was found to be rather similar
to that of centralized models. Integrating wavelet

reconstruction, convolutional autoencoders, and
one-class SVM, Zeng et al. [12] proposed WCOS,
a hybrid anomaly detection system). Designed to
solve noise interference and sample imbalance, WCOS
outperformed classical semi-supervised models in
AUC standard deviation under noisy environments.
Combining horizontal and vertical FL techniques
catered for multi-institutional heart sound databases
helped Qiu et al. [13] progress this domain. Their
framework shows that cooperative training can be both
safe and diagnostically effective by matching feature
spaces and safeguarded model interpretability. Using
wavelet packets, Karan et al. [14] presented a fresh
Hilbert-domain characterization. Using packet-level
instantaneous frequency and energy deviations
alongside ECOC with SVM/KNN classifiers, their
classification framework achieves nearly perfect UAR
metrics on two standard PCG datasets.
Following time-frequency and statistical feature
extraction then PSO and SFFS-based feature
selection, Sadeghi et al. [15] By means of improved
feature engineering and SMote-based balancing,
their system—evaluated on the PhysioNet 2016
dataset—achieved 98.03% accuracy, exceeding
previous benchmarks. Applying data augmentation
and ML/DL hybrid classifiers, Abbas et al. [16]
underlined resilience against noisy heart sound
signals. The multilayer perceptron model achieved
a high 95.65% accuracy on noisy subsets from the
PASCAL challenge dataset by means of their feature
ensemble combining MFCCs and spectrograms.
These analyses show overall the advantages of
combining modern artificial intelligence methods
with traditional signal processing [17]. Table 1 lists
the approaches, keywords, and contributions of
every work referenced. These cited papers together
provide the technological basis and practical relevance
of federated detection systems and automated
auscultation. They offer important new perspectives
and benchmarks that directly guide the design and
execution of our anomaly detection in heart sound
recording systems.

3 Proposed Framework
The model outlined in the diagram (Figure 1) employs
a federated learning system to determine whether
heart sounds are normal or abnormal, using a hybrid
CNN-LSTM architecture and integrating blockchain
for improved security and transparency.
The approach begins with an unprocessed data
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Figure 1. Diagram of the proposed framework.

set downloaded from PhysioNet.org, which is
preprocessed with normalization, standardization,
and SMOTE operations to ensure data consistency
and class balance prior to distribution to different
clients. Each client trains a separate CNN-LSTM
model, where the CNN block captures spatial patterns
and the LSTM block captures temporal sequences
from the heart sound data, and the localized updates
are combined into a global model as per the FedAvg
algorithm. The obtained global model classifies
the heart sounds as "Normal" or "Abnormal," and
its performance is measured using metrics like
Accuracy, Precision, F1-Score, AUC-ROC, Recall, and
Specificity. For security purposes, the hash of the
model is fetched based on SHA256, allocated to
the Ethereum blockchain through a smart contract,
and stored on-chain for each client. The approach
thus ensures accurate heart sound classification while
using federated learning for privacy of data and
blockchain technology for secure and transparent
tracking of model updates, thus rendering it suitable
for healthcare applications.

3.1 System Architecture Information
Integrating Federated Learning (FL) with
Blockchain-based auditability, this part shows
the system architecture for our privacy-preserving
and trustworthy Heart Sound Abnormality Detection
framework. The system is designed to operate in a
clinically realistic, distributed environment whereby

raw patient data stays local to every healthcare
node and insights from each help to create a shared
worldwide intelligence — the global model.

3.1.1 Federated Learning Framework and Client Simulation
Our architecture is based on a Federated Learning
(FL) paradigm, meant to replicate a distributed
healthcare environment in which sensitive patient
data stays strictly local yet helps to build a globally
optimal diagnosis model. Medical situations where
institutional autonomy and data confidentiality are
major constraints are especially suited for this
paradigm. Following preprocessing, the whole dataset
was split up among seven simulated healthcare
clients, each of which stood for an independent
institution—such as clinics or hospitals. Most
importantly, neither the central server nor any client
exchanged any raw data. Rather, every client trained a
local model using its own private dataset acting as an
autonomous learning node [18].

To investigate the adaptability of federated
optimization algorithms across temporal and
spatial learning environments, the local models at
each client were instantiated with different deep
learning architectures including CNN-LSTM —
hybrid structures, Long Short-Term Memory (LSTM),
and CNN [19].

It is crucial to underline, though, that these
architectures define the local computational units
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inside the larger FL pipeline only. Federated
algorithms dominated the learning process itself, most
famously:
• FedAvg, sometimes known as federated averaging,

averages local weights across clients following
each round.

• FedProx (Federated Proximal) is a variation on
FedAvg with a proximal term meant to reduce
variation across client data distributions.

Every client engaged in twelve communication rounds,
locally training for twenty years in every round. Model
parameters, not data, were delivered to the central
server for aggregation into a global model following
each round.CNN-LSTM architecture trained using
FedAvg produced the most strong and generalizable
performance across several clinical metrics among all
architecture–algorithm combinations [20].
All things considered, the foundation of the system
is the federated structure rather than the model
architecture. Under a cooperative FL framework,
every model serves as a local learner guaranteeing
data privacy, inter-institutional cooperation,
and safe convergence toward a single diagnostic
intelligence [21].

3.2 Global Model and Aggregation Protocol
Our system exploits a shared global model as the
knowledge hub instead of a centralized vector store
or external memory module. Local model weights
from all seven customers are sent to the federated
server following every training round, where they are
aggregated using FedAvg (and in some cases FedProx)
to generate an updated global model [22].
Federated Averaging (FedAvg): FedAvg combines
the weights of local models by computing a weighted
average:

wt+1 =
K∑
k=1

nk
n
wt
k (1)

where wt+1 represents the updated global weights
after round t, wt

k denotes the local weights from client
k at round t, nk is the number of samples at client k,
and n =

∑K
k=1 nk is the total number of samples across

allK clients.
This approach guarantees that clients having more
data have correspondingly more impact on the global
model.

Federated Proximal (FedProx): FedProx introduces
a proximal term to account for heterogeneous data
distributions:
Each client minimizes the following objective:

min
w

{
fk(w) +

µ

2
‖w − wt‖2

}
(2)

where fk(w) is the local loss function at client k, wt

represents the global weights from the previous round,
µ is the regularization coefficient, and the term ‖w −
wt‖2 penalizes large deviations from the global model.
This term ensures stability in convergence when
clients have non-IID data. Without ever access to
patient-level raw signals, this global model develops
over time accumulating generalized representations
from distributed datasets. The revised weights are
returned to the clients, so maintaining the loop of
privacy-preserving collaborative learning.

3.3 Blockchain Integration for Model Provenance
We built a blockchain-based provenance mechanism
into our system to handle the hazards of model
tampering, data manipulation, and unverifiable
training contributions.
After each local training round ends:
1. Every client computes a SHA-256 cryptographic

hash of its trained model weights:

h = SHA-256(Serialize(w)) (3)

where Serialize(w) denotes the byte-string
representation of model weights, h is the
fixed-length (256-bit) hash output, and SHA-256
ensures that even the slightest change in model
weights yields a completely different hash.

2. The following metadata is then immutably stored
on the blockchain via a custom Solidity smart
contract:

• Client ID
• Training Round Number
• UTC Timestamp
• Local Model Hash hhh

3. After aggregation, the global model is also hashed
and recorded on-chain:

hg = SHA-256(Serialize(w′∗)) (4)
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This process creates a tamper-proof audit trail,
allowing anyone to verify:
• Which client participated in which round
• What version of the model was deployed
• Whether a given model instance matches its

blockchain-stored fingerprint
Blockchain anchoring together with federated
optimization guarantees that our heart sound
classification system is not only accurate but also
auditable and reliable.
This generates a tamper-proof ledger including
provenance for every model version. A stakeholder
can verify the integrity of the last model used and track
which client made which contribution at any future
point.

3.4 Verification and Inference Pipeline
The last model is hash-based verified before
deployment: its current hash is computed anew
and matched against the hash kept on-chain. It is used
for inference only if the hash matches, so verifying
the absence of tampering with the model. New
heart sound inputs are preprocessed identically for
real-time diagnosis and then fed to the verified global
CNN-LSTM model to generate a classification output:
• 0 → Normal
• 1 → Abnormal

Respecting strict data privacy rules, these outputs gain
from a collective intelligence developed from several
scattered institutions.

4 Implementation
4.1 Dataset Used
Real-world phonocardiogram (PCG) recordings
annotated for either normal or abnormal heart
function come from the initial dataset available on
https://physionet.org/content/challenge-2016/1.0.0/.The
dataset calls for 5012 rows and 26 columns. The
federated training environment could access the safely
kept dataset on a cloud drive.

4.2 Dataset Preprocessing
The PhysioNet/Computing in Cardiology Challenge
2016 provided the dataset used in this project; labeled
phonocardiogram (PCG) recordings annotated as
either normal or abnormal. First the dataset was
randomly mixed to guarantee objective model training

and remove any natural ordering trends. Originally
denoted as -1 for normal and 1 for aberrant, the
label encoding was remapped to a binary format of 0
and 1, respectively, to conform with standard binary
classification criteria.
Feature scaling then was done with z-score
normalizing the StandardScalar module. This
procedure guaranteed that every feature in all samples
had a mean of zero and a standard deviation of one,
so encouraging more stable and effective convergence
during training. The feature matrix was rebuilt from a
two-dimensional structure into a three-dimensional
tensor with the shape (samples, timesteps, features),
since the models used in this project—especially CNN
and LSTM—need sequential data inputs. This change
was essential to guarantee fit with 1D convolutional
and recurrent neural network layers, so allowing the
system to record spatial and temporal patterns in
cardiac sound signals.

4.3 Implementation of Federated Learning
To simulate a privacy-preserving healthcare
environment, the preprocessed dataset was
divided among seven clients, each representing
a decentralized medical institution. Federated training
was implemented using the workflow illustrated in
Figure 2:
• Every client started its model—e.g., LSTM, CNN,

CNN+BILSTM, CNN+LSTM—and trained it on
a local data partition.

• Clients trained their local models for twenty
Epochs each round. There were twelve rounds
of communication all overall.

• Data for forthcoming rounds will come from the
revised weights instead of depending just on their
local data in communicational rounds.

• Client models sent just their weights to a central
server following every round. To generate a fresh
global model, these weights were aggregated
applying the Federated Averaging (FedAvg)
technique.

4.4 Implementation of Blockchain Technology
Integrated into the federated learning architecture was
a blockchain-based logging mechanism to guarantee
model integrity and offer an auditable training history.
Every customer calculates a SHA-256 hash of its
serialized model weights following every training
round. This hash is the model’s distinct fingerprint
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Figure 2. Overview of federated learning architecture.

at that round.Every customer logs the following
metadata on-chain using a Solidity smart contract
housed on a local Ethereum blockchain:

• Client ID

• Round Number

• UTC Timestamp

• Model SHA-256 of local weights

Once FedAvg aggregation forms the global model,
it is also hashed and has a fingerprint stored on
the blockchain together with pertinent metadata.
This process guarantees traceability, verifiable,
tamper-evident local and global model versions, so
supporting reliable deployment in sensitive uses
including healthcare artificial intelligence.

4.5 Evaluation
Following all the rounds of communication, the final
global model was saved and then evaluated on a
held-out test set that was not used in training. The
model was expected to make binary predictions,
where:

• 0 = Normal cardiac auscultation sound

• 1 = Abnormal cardiac auscultation

The decision of classification was made based on the
sigmoid activation function of the last dense layer
of the CNN+LSTM model that generates a score
probability between 0 and 1.

4.6 Metrics
To comprehensively assess the performance of
the model, the following evaluation metrics were
employed:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Accuracy represents the overall proportion of correctly
classified samples.

Precision =
TP

TP + FP
(6)

Precision measures the proportion of true positive
predictions among all predicted positives.

Recall = TP

TP + FN
(7)

Recall (Sensitivity) indicates the proportion of true
positive cases correctly identified by the model.

F1 Score =
2 · TP

2 · TP + FP + FN
(8)
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F1 Score is the harmonic mean of precision and recall,
balancing false positives and false negatives.

Specificity =
TN

TN + FP
(9)

Specificity measures the proportion of true negative
predictions among all actual negatives. AUC (Area
Under the ROC Curve) measures the model’s ability
to distinguish between normal and abnormal heart
sounds. A higher AUC indicates better discrimination
capability. Log Loss evaluates the uncertainty of
predictions by penalizing overconfident incorrect
classifications. Lower log loss values indicate
better-calibrated probability estimates.
These metrics collectively provide a holistic
understanding of the model’s performance,
particularly in a clinical context where both sensitivity
(recall) and specificity are critical for reliable
diagnosis.

5 Results and Discussion
5.1 Results for FedAvg Aggregation
Apart from contrasting neural network designs,
we investigated the impact of several federated
optimization strategies on general model performance.
Although the fundamental model architecture (e.g.,
CNN-LSTM) stayed constant across experiments,
the choice of optimization strategy—namely FedAvg,
FedProx, and FedOpt—was varied to grasp how each
handles distributed training under heterogeneous data
conditions. FedAvg obtained the best overall results
across all performance criteria, as the table below
shows; FedProx gave somewhat better regularization
in some cases. Although adaptive in nature,
FedOpt underperformed relative to the other two,
underscoring that its gradient-tuning benefits may not
generalize well to sensitive, non-IIDmedical data. This
analogy emphasizes the need to choose a federated
approach fit for the clinical accuracy requirements and
data distribution.

Table 1. Comparison across different aggregation
techniques of federated learning.

Strategy Acc Precision Recall F1-Score
FedAvg 0.941 0.91 0.95 0.93
FedProx 0.912 0.87 0.91 0.89
FedOpt 0.885 0.83 0.89 0.85

Table 1 shows a comparative analysis of three
popular federated optimization algorithms—FedAvg,

FedProx, and FedOpt—against chosen performance
metrics using deep learning for heart sound anomaly
detection. The results demonstrate that FedAvg
is the most efficient overall, with an accuracy of
94.1% and an F1-score of 0.93, demonstrating superior
generalizability over decentralized datasets. While
FedProx shows slightly reduced accuracy, it shows
superior precision and recall, thanks to its resistance
to client variability. In contrast, FedOpt shows
slightly inferior performance on all metrics measured,
suggesting that its adaptive optimization parameters
are not as effective in this specific medical application.
These results support the fact that FedAvg, combined
with CNN-LSTM architecture, is the most reliable
choice for this federated learning task.

5.2 Model Architecture Comparison under FedAvg
Several deep learning models were investigated
under the same FedAvg strategy in order to assess
how neural architecture affects federated learning
performance. Every model was independently trained
over distributed clients under the same training
parameters. Hybrid models such as CNN-LSTM
and CNN-BiLSTM outperformed stand-alone CNN,
LSTM, and BiLSTM architectures as compiled in
Table 2 and illustrated in Figure 3. With 94% accuracy
and an F1-score of 0.93, CNN-LSTM performed
the best among them in capturing both spatial and
temporal patterns in heart sound signals, as clearly
demonstrated in Figure 3. This emphasizes in
federated medical artificial intelligence systems the
need of model architecture.

Figure 3. Comparisons among the different Models.

In Table 2 and Figure 3, five federated learning
models—namelyCNN, LSTM, BiLSTM,CNN-BiLSTM,
and CNN-LSTM—are tested on seven metrics:
accuracy (acc), precision, recall, F1-score, AUC,
specificity, and log loss. Remarkably, the CNN-LSTM
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Table 2. Comparison across different deep learning models using federated learning
Models Acc Precision Recall F1-Score AUC Specificity Log Loss
CNN 0.92 0.89 0.94 0.91 0.96 0.90 0.24
LSTM 0.88 0.85 0.91 0.93 0.89 0.96 0.34
BiLSTM 0.91 0.87 0.95 0.91 0.95 0.88 0.29
CNN-BiLSTM 0.92 0.90 0.94 0.92 0.97 0.91 0.26
CNN-LSTM 0.94 0.91 0.95 0.93 0.98 0.91 0.17

model has the lowest log loss of 0.17, thereby proving
its supremacy by attaining the highest values in
accuracy (0.94), precision (0.91), recall (0.95),
F1-score (0.93), and AUC (0.98), as visually confirmed
in Figure 3. Therefore, the CNN-LSTM model is the
best performer in this study in general since it has the
lowest error and improved predictive power.

6 Challenges and Future Works
Even though the suggested system meets its core
purposes, there is room for future development and
expansion. There are several areas of future work that
could improve its scalability, usage, and performance.
Some suggestions are:
• Evaluating the generalizability of the

framework across several datasets: Although
the results from the PhysioNet 2016 dataset
show superior performance for the system,
its results on real-world and heterogeneous
clinical datasets still need to be confirmed. The
future studies can compare the model on larger,
multi-center heart sound datasets with higher
clinical and demographic heterogeneity. The
system’s stability in real-world clinical practice
and the assessment of its generalizability would
be determined by this comparison.

• Exploring system scalability in real federated
system:The present setup mimics federated
clients; yet real-world deployment of the system
in actual distributed healthcare settings, e.g.,
hospitals or rural clinic settings—may be hindered
by practical challenges like non-homogeneous
network latency, hardware constraints, and data
skewness. Future research could explore applying
the framework in real-world settings to evaluate
performance under varying run conditions.

• Improving resource efficiency and
communication effectiveness: Federated
learning is bandwidth and computationally
expensive since it takes several rounds of
communication. Applying model compression,

client sampling, and asynchronous update,
experimentation with different techniques
can render the system more deployable on
low-resource edge devices, such as digital
stethoscopes or mobile units.

• Growing blockchain adoption and
effectiveness: Blockchain adds further
computational and storage overhead, even
as it offers proof of tamper-evident training.
Future work may consider more scalable
alternatives, including permissioned or Layer-2
blockchains, or layering several Layer-2 solutions
to restrict on-chain congestion with guarantees of
verifiability.

• Enhancing model clarity and clinical openness:
Doctors need to be able to trust AI predictions if
their application in medicine is to be a success.
Particularly in cases of borderline or uncertain
heart sound cases, the incorporation of XAI tools
into the system will allow practitioners to see
and understand model decisions. By overcoming
such obstacles, the system can be a more
scalable, clinically valid, and secure solution for
cardiac screening based on artificial intelligence,
and hence greatly promote privacy-sensitive
healthcare innovation in real-world applications.

7 Conclusion
In this work, we have combined Federated Learning
with Blockchain Technology to create a safe and
privacy-preserving system for heart sound anomaly
detection. The system guarantees that sensitive
medical data stays local and protected by allowing
distributed model training among several clients.
Strong accuracy in correctly classifying heart
sounds as normal or aberrant was shown by a
CNN+LSTM model trained on FedAvg. Following
every communication round, cryptographic hashes
of local and worldwide model updates were entered
on a blockchain to preserve the integrity and
openness of the training process. This method forbids
illegal changes and lets post-training verification
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possible. The last confirmed model guarantees clinical
relevance, trust, and responsibility as well as real-time
predictions. All things considered, this framework
provides a scalable, interpretable, and safe answer for
cardiac screening driven by artificial intelligence in
actual medical settings.
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