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Abstract
Federated learning has emerged as a key paradigm
in privacy-preserving computing due to its "data
usable but not visible" property, enabling users to
collaboratively train models without sharing raw
data. Motivated by this, federated recommendation
systems offer a promising architecture that
balances user privacy with recommendation
accuracy through distributed collaborative learning.
However, existing federated recommendation
systems face significant challenges in balancing
model performance, communication efficiency,
and user privacy. In this paper, we propose
FedTLRec (Federated Recommendation with
Transformer-based Parameter Aggregation and
Collaborative LoRA), which introduces a federated
recommendation framework that integrates
Low-Rank Adaptation (LoRA) for parameter
compression and Transformer-based aggregation.
It addresses key challenges in communication
efficiency and model performance by compressing
client updates via LoRA and employing a
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Transformer model with attention mechanisms
to effectively aggregate parameters from multiple
clients. A K-means clustering strategy further
enhances efficiency by grouping similar clients.
Experiments on real-world datasets show that
FedTLRec achieves superior recommendation
accuracy with significantly reduced communication
costs, while maintaining robust performance in
client dropout scenarios. Code is available at:
https://github.com/trueWangSyutung/FedTLRec.

Keywords: federated recommendation, low-rank
adaptation, transformer.

1 Introduction
The proliferation of digital services has intensified
the demand for privacy-preserving recommendation
systems that can provide personalized experiences
without compromising user data confidentiality.
Traditional centralized recommendation systems
require collecting vast amounts of sensitive user
data in a central repository, raising serious privacy
concerns and legal compliance issues. Federated
learning has emerged as a promising paradigm that
enables collaborative model training without direct
data sharing, offering a viable solution to this challenge
[1–3].
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The traditional recommendation system paradigm in
federated learning (such as FedMF [4], FedNCF [5])
treats project embedding as a global model and user
embedding as a local variable. This approach is not
optimal due to natural heterogeneity between clients.
For example, clients often have non-independent and
identically distributed (Non-IID) interactive data [1, 6].
As a result, personalized federated recommendations
have been developed to create customized models for
each customer [7, 8].

The main challenges of current federated
recommendation systems include: 1)Communication
Overhead: Traditional federated learning methods
require transmitting complete model parameters
between the client and server. This is especially
problematic for large-scale recommendation models
with extensive embedding layers. 2) Personalization
and Collaboration: These systems must balance
global knowledge sharing with individual user
preferences. They also need mechanisms that use
collective intelligence while providing personalized
recommendations. 3)Parameter Aggregation
Efficiency: Simple averaging of client parameters may
not capture complex relationships and similarities
between different clients.

To address these challenges, we propose FedTLRec,
a novel federated recommendation framework that
combines LoRA (Low-Rank Adaptation) parameter
compression with Transformer-based parameter
aggregation. Our approach is motivated by the
observation that client-side model updates often
reside in a low-dimensional subspace, making them
amenable to compression techniques. Additionally,
we recognize that effective parameter aggregation
should consider the relationships between clients
rather than simply averaging their parameters.

The key contributions of our work are as follows:

• We introduce a LoRA-based parameter
compression technique that significantly
reduces communication overhead in federated
recommendation systems.

• We introduce a Transformer-based parameter
aggregation model that effectively captures client
relationships and similarities, leading to improved
recommendation performance.

• We implement a K-means clustering strategy
to group clients with similar characteristics
before parameter aggregation, further enhancing
efficiency and performance.

• We conduct extensive experiments on
four real-world datasets, demonstrating
that FedTLRec outperforms state-of-the-art
federated recommendation methods in both
recommendation accuracy and communication
efficiency.

2 Related Work
2.1 Federated Recommendation Systems
Federated Recommendation System (FedRS) is an
important extension of Federated Learning (FL)
in the field of recommendation, which achieves
cross client personalized modeling by protecting
user privacy. Early works such as FedMF [4] and
FedNCF [5] adapted classic recommendation models
to federated settings by treating project embeddings
as global parameters and user embeddings as
local parameters. These methods successfully
protect user privacy while maintaining reasonable
recommendation performance.

Recent research has mainly focused on improving
personalization in federated recommendation systems.
PFedGraph [9] models user relationships through
graph construction and performs personalized
aggregation based on user similarity. GPFedRec [10]
introduces a graph-guided aggregation mechanism
to learn user-specific item embeddings. PFedRec
[7] adopts a dual personalization mechanism that
captures user preferences through a scoring function
while optimizing global item embeddings. FedRAP
[11] balances global shared knowledge and local
personalized knowledge through an additive model.
UFGraphFR [12] utilizes user text feature descriptions
and transformer modeling of interactive items to
enhance the performance of recommendation systems.

Although these methods have shown good results
in terms of effectiveness, they often suffer from high
communication costs due to insufficient consideration
of client relationships in transmitting complete model
parameters and suboptimal parameter aggregation.

2.2 Parameter-Efficient Fine-Tuning
In recent years, with the development of natural
language processing technology and computer vision
technology, parameter efficient fine-tuning techniques
have become increasingly popular. This is a method
of adapting large pre trained models with minimal
additional parameters. LoRA [13] (low rank adaptive)
is a technique that decomposes weight updates into
low rank matrices, significantly reducing the number
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of trainable parameters. AdaLoRA [14] extends LoRA
by dynamically adjusting the rank of decomposition
based on parameter importance. These technologies
show great potential in reducing model size and
training time while maintaining performance.

In the context of federated learning, FedLoRA [21]
applies LoRA to reduce communication costs in
federated recommendation systems. PFedCLR [15]
brings LoRA technology into the field of federated
recommendation systems, introducing an integrated
dual function mechanism implemented through a
buffer matrix to perform federated calibration of
local user embeddings and personalized global item
embeddings. However, in the above methods, they
all adopt a simple parameter averaging aggregation
approach without considering more complex
parameter aggregation mechanisms.

2.3 Transformer-Based Models
Transformers [16] have revolutionized many areas
of machine learning through their ability to capture
long-range dependencies and complex relationships.
In recommendation systems, SASRec [17] and
BERT4Rec [18] have demonstrated the effectiveness
of self-attention mechanisms for sequential
recommendation. In federated learning, recent
works have explored using attention mechanisms for
client relationship modeling. FedFormer [19] employs
transformers for personalized federated learning,
while FedTrans [20] uses transformer-based attention
for client selection. However, these approaches focus
on general federated learning scenarios rather than
recommendation-specific challenges. However, these
approaches focus on general federated learning
scenarios rather than recommendation-specific
challenges.

In our previous research on UFGraphFR [12], we
placed the converter on the client for sequence
modeling, which improved model performance but
significantly reduced local computation speed.

Our work combines these three lines of research
by applying LoRA for parameter compression,
Transformer-based models for parameter
aggregation, and federated learning principles
for privacy-preserving recommendations.

3 Methodology
The U is user sets and the I is item sets, respectively,
let rui be user-item interaction data between user u
and item i. Here is a recommendation system model

f for parameter θ, which predicts ŷui = f(u, i|θ) for
users u and i. On the central server, we represent
the graph between all users with G(U , E), where
U represents the set of users and E represents the
set of edges. At the same time, A = {0, 1}N×N
represents its corresponding adjacency matrix form,
and N represents the total number of users in the
user set. Aui = 1 indicates that user u and user i are
associated.

For the above model, the goal of the federated
recommendation system is to predict user u’s
preference for item i as ŷui = f(u, i|θ∗). At this point,
for each user i, there is an optimal model parameter
θ∗i , as shown in formula (1).

θ∗i = argminθ =
N∑
i=1

ωiLi(θ) (1)

where Li(θ) is the loss of the local client participating
in training, and the parameter θ∗ is learned by
minimizing the local loss of all clients with weight
ωi.

In our method, the optimal parameter θ∗i for the user
includes the local training parameter θlocali and the
global parameter θglobali . The global parameter θglobali is
aggregated through the Transfermer module.

4 FedTLRec: Proposed Method
In this section, we present FedTLRec, our novel
federated recommendation framework. As illustrated
in Figure 1, our approach consists of three key
components: 1) a LoRA-based parameter compression
module that reduces communication overhead; 2)
a K-means clustering strategy that groups similar
clients for more efficient aggregation; and 3) a
Transformer-based parameter aggregation model that
effectively integrates client updates.

4.1 LoRA-based Parameter Compression
In federated recommendation systems, a significant
portion of communication overhead stems from
transmitting large embeddingmatrices between clients
and the server. To address this challenge, we employ
LoRA (Low-Rank Adaptation) [13] to compress client
model updates.

Specifically, for each client u, we decompose the item
embedding matrix Eu ∈ R|I|×d (where |I| is the
number of items and d is the embedding dimension)
into a low-rank form:

Etu = Et−1
u + ∆Eu (2)
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Figure 1. Overview of FedTLRec. During local training, clients first train the user embeddings, parameters of the MLP,
and the LoRA matrices A and B locally. At the same time, clients upload their LoRA matrix A to the server, which then
aggregates these matrices. The server only maintains a clustering module and a Transformer module, which it uses to

aggregate the uploaded user-related parameters.

where Et−1
u is the item embedding matrix for user u

at the previous communication round t − 1, and the
low-rank update term ∆Eu is parameterized as:

∆Eu = αBuAu (3)

with the following mathematical specifications:

• Eu ∈ R|I|×d: the full item embedding matrix for
client u;

• Au ∈ Rr×d: trainable low-rank adaptation matrix
(right factor);

• Bu ∈ R|I|×r: trainable low-rank projection matrix
(left factor);

• r ∈ N+: the rank of the low-rank update,
satisfying r � min(|I|, d);

• α ∈ R: scalar scaling factor, often fixed as α = β
r

with β a tunable hyperparameter.

In our experimental setting, we adopt the constraint
r = d, which simplifies the parameterization while
still enabling substantial compression when d � |I|.
Under this condition, the low-rank update ∆Eu =
αBuAu remains expressive yet compact.

During federated training, instead of transmitting
the full embedding matrix Eu ∈ R|I|×d, each client
uploads only the smaller matrixAu ∈ Rr×d, assuming
Bu is either fixed (e.g., initialized from the global
item embedding and frozen) or reconstructable on
the server using shared context. The resulting
communication cost per client is reduced from |I| · d
to r · d floating-point values. Hence, the compression
rate ρ defined as the ratio of transmitted parameters
to the original embedding size is:

ρ =
r · d
|I| · d

=
r

|I|
(4)

Notably, the embedding dimension d cancels out,
and the compression efficiency depends solely on the
relative scale of the rank r to the item catalog size |I|.

In practice, with the typical values used in our
experiments r = d = 16 and |I| = 1000 the
compression ratio becomes:

ρ =
16

1000
= 0.016 = 1.6% (5)

This corresponds to a communication overhead
reduction factor of: 1/ρ = 1000/16 = 62.5. Thus, our
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LoRA-based update scheme achieves approximately a
62.5× reduction in uplink communication cost.

4.2 Transformer-based Parameter Aggregation
To effectively aggregate heterogeneous client
parameter updates in federated recommendation
systems, we propose a structured Transformer-based
aggregation mechanism that explicitly models
inter-client dependencies. Unlike conventional
averaging-based strategies (e.g., FedAvg), our
approach leverages self-attention to dynamically
weigh each client’s contribution based on the
representational similarity of their local parameters.

Let C = {c1, c2, . . . , cn}denote the set ofnparticipating
clients. Each client ci uploads its local LoRA adapter
parameters θi ∈ Rr×d, where r is the LoRA rank and
d is the embedding dimension. We first flatten and
project each θi into a token representation:

xi = Proj(vec(θi)) ∈ Rh,

where vec(·) vectorizes the matrix, and Proj : Rrd →
Rh is a trainable linear projection shared across clients.
The server thus receives an input sequence X =
[x1, x2, . . . , xn]> ∈ Rn×h.

Direct application of a standard Transformer on
X incurs O(n2h) self-attention complexity, which
becomes prohibitive when n � 103. To mitigate
this, we adopt block-wise attention: partition X into
k non-overlapping blocks {X(1), . . . , X(k)}, each of
length m = dn/ke. Within each block, we apply an
independent Transformer encoder:

X̃(j) = TransformerBlock(X(j)), j = 1, . . . , k,

where the Transformer block consists of multi-head
self-attention (MHSA) followed by a position-wise
feed-forward network (FFN).

The MHSA is formally defined as:

MHSA(X) = Concat(head1, . . . ,headH)WO, (6)

with each head computed as:

headi = softmax

(
(XWQ

i )(XWK
i )>√

dk

)
(XW V

i ), (7)

whereWQ
i ,W

K
i ,W

V
i ∈ Rh×dk are learnable projection

matrices for the i-th head, dk = h/H , andWO ∈ Rh×h
is an output projection.

The FFN is defined as:

FFN(Z) = GeLU(ZW1 + b1)W2 + b2, (8)

withW1 ∈ Rh×dff ,W2 ∈ Rdff×h, and dff typically set to
4h.

After processing all blocks, we concatenate the
outputs and apply a global aggregation layer to
produce the final aggregated parameter tokens:

X̄ = Concat
(
X̃(1), . . . , X̃(k)

)
∈ Rn×h, (9)

To effectively aggregate heterogeneous client
parameter updates and generate personalized model
parameters, we define the aggregation operation as
follows. For each token x̄i in the processed sequence
X̄ = [x̄1, x̄2, . . . , x̄n]T ∈ Rn×h, a personalized
parameter update is generated:

θagg
i = Reshape(x̄i) for i = 1, . . . , n, (10)

where Reshape(·) is to reshape the vector into a matrix
form and send the result to the client

Complexity Analysis. The block-wise design reduces
the attention complexity from O(n2h) to O(km2h) =

O
(
n2h
k

)
. By choosing k ∝ n (e.g., fixed block size

m = 512), the complexity becomes linear in n, i.e.,
O(nh), enabling scalability to thousands of clients.

This Transformer-based approach allows the
server to effectively capture relationships between
different clients, leading to more informed parameter
aggregation compared to simple averaging methods.

In our implementation, we split the client parameters
into multiple groups based on the maximum line
parameter to handle large numbers of clients efficiently.
For each group, we train a separate Transformer
block to process the parameters and then combine the
outputs to form the final aggregated parameters.
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Algorithm 1 FedTLRec: Federated Recommendation
with Transformer-based Parameter Aggregation and
LoRA Compression
Require: Number of clients N , total communication

rounds T , local epochs E, learning rate η,
regularization coefficient λ, LoRA parameters r,
α, and other local model parameters θlocal.

Ensure: Optimized global item embedding θglobal.
1: Initialize global parameters θ

(0)
global (e.g., item

embeddings) on the server.
2: Broadcast θ(0)

global to all N clients.
3: for each communication round t = 1, 2, ..., T do
4: Client Selection: Randomly select c×N clients

to participate in this round, where c is the client
sampling ratio.

5: Client Local Training (Parallel Execution):
6: for each selected client i do
7: Initialize local item embedding θ

(t)
item,i ←

θ
(t−1)
global.

8: Use local data to train the local model for E
epochs by minimizing the loss function Lall =
LBCE + λ · Lreg via SGD.

9: Obtain updated local LoRAparameters: θ(t)
lora,i.

10: Offline Simulation: With probability o, set
client i as offline and upload zero parameters.

11: Privacy Protection: Add Laplace noise to
parameters with scale ∆ for differential
privacy.

12: Upload the local LoRA parameters θ(t)
lora,i to

the server.
13: end for
14: Server Update with Graph Aggregation:
15: Vectorize: Flatten each client’s uploaded LoRA

parameters: w(t)
i = vec(θ(t)

lora,i) ∈ Rr×d.
16: Clustering (Optional): Apply K-means

clustering to group users based on parameter
similarity.

17: Transformer Aggregation: Apply
Transformer-based aggregation model to
local parameters within each group.

18: Update Client Embeddings: Generate
personalized parameters θ

(t+1)
i for each

client i.
19: Broadcast θ(t+1)

i to client i.
20: end for
21: Evaluation: Evaluate the final model on test data

using Hit Ratio and NDCG metrics.
22: return The final global item embedding θ(T )

global.

As detailed in Algorithm 1, this iterative process
continues for T communication rounds, progressively
optimizing the global item embeddings. Finally,
the trained model is evaluated using standard
recommendation metrics such as Hit Ratio and NDCG,
yielding a scalable, robust, and personalized federated
recommendation system.

4.3 K-means Clustering for Efficient Aggregation
To further enhance the efficiency of parameter
aggregation, particularly in scenarios involving a large
number of clients, we employ a K-means clustering
strategy. This approach groups clients with similar
characteristics together, allowing for aggregation of
more targeted parameters within each group.

The clustering process works as follows:

1. For each client u, we vectorize heir LoRA
parameters Au to fu.

2. We apply K-means clustering to group clients into
K clusters: C = {C1, C2, . . . , CK}.

3. Within each cluster Ck, we apply the
Transformer-based aggregation model
independently.

4. Finally, we combine the cluster-level aggregated
parameters to form the global model update.

In our implementation, we perform clustering every
10 rounds to reduce computational overhead, as client
similarities may change gradually over time.

4.4 Handling Client Dropout
In practical federated learning scenarios, some clients
may be offline or fail to participate in certain rounds.
Our framework naturally handles client dropout
by simply excluding the missing clients from the
current round’s aggregation process. Additionally,
we implement a zero-padding strategy for offline
clients, where their parameters are set to zero during
aggregation, ensuring that the server can still produce
meaningful aggregated parameters even with partial
client participation.

4.5 Algorithm
We propose FedTLRec, a federated transfer learning
framework for recommendation that enables efficient
and privacy-preserving collaborative model training
across decentralized clients. By leveraging low-rank
adaptation (LoRA), each client performs local
fine-tuning using its private interaction data, updating
only a small set of low-dimensional parameters,
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thereby reducing communication overhead. After
local updates, clients optionally inject Laplace
noise for differential privacy and may be marked
as offline with probability o to simulate real-world
deployment scenarios. The server aggregates the
uploaded LoRA parameters by first vectorizing
them and, optionally, clustering clients based
on parameter similarity to capture behavioral
heterogeneity. A Transformer-based aggregation
module is then applied within each cluster to model
client relationships and generate personalized global
models through attention-driven fusion. These
personalized models are broadcast back to the
respective clients for the next round. As detailed in
Algorithm 1, this iterative process continues for T
communication rounds, progressively optimizing the
global item embeddings. Finally, the trained model is
evaluated using standard recommendation metrics
such as Hit Ratio and NDCG, yielding a scalable,
robust, and personalized federated recommendation
system.

5 Experiment
5.1 Datasets
To assess the performance of our proposed model,
we performed comprehensive experiments on
four well-established benchmark datasets in
the recommendation domain: MovieLens-100K,
MovieLens-1M [22], Lastfm-2K [23], and
HetRec2011 [23]. The MovieLens-100K and
MovieLens-1M datasets, sourced from the MovieLens
platform, contain user-generated movie ratings
with each user having provided at least 20 ratings.
Lastfm-2K documents music listening behaviors,
including artists played and frequency of plays
per user. We refined this dataset by filtering out
users with fewer than 5 interactions. HetRec2011
extends MovieLens-10M by incorporating mappings
to IMDb and Rotten Tomatoes pages for enhanced
movie metadata. For Lastfm-2K and HetRec2011,
user profiles were derived from user identifiers and
their total interaction counts with items. Table 1
summarizes the essential statistics of these datasets.

Table 1. Dataset statistics.

Dataset Users Items
ml-1m 6,040 3,706
lastfm-2k 1,600 12,454
hetres-2k 2,113 10,109
100k 943 1,682

5.2 Baselines
Our proposed method is evaluated against
two primary categories of baseline approaches:
centralized recommendation models and federated
recommendation models. All methods compared
rely solely on user-item interaction data to generate
recommendations, ensuring a fair comparison.

• Matrix Factorization (MF) [24]: A foundational
collaborative filtering technique that decomposes
the user-item interaction matrix into
lower-dimensional latent factor representations.
These factors capture underlying user preferences
and item characteristics within a shared latent
space, enabling the prediction of unknown
interactions through dot products of the learned
embeddings.

• Neural Collaborative Filtering (NCF) [25]:
An influential neural network-based
recommendation model that employs embedding
layers to represent users and items separately. It
utilizes a multi-layer perceptron (MLP) to model
complex, non-linear interactions between these
embeddings, predicting user preference scores
effectively.

• LightGCN [26]: A streamlined graph
convolutional network designed specifically
for collaborative filtering. It simplifies
traditional GCN architectures by focusing
solely on neighborhood aggregation, which
efficiently propagates collaborative signals on the
user-item interaction graph to learn enhanced
representations.

• FedMF [4]: A federated adaptation of matrix
factorization where clients perform local updates
to user embeddings. Only gradient updates
related to item embeddings are transmitted to
the server for secure global aggregation, thereby
maintaining user data privacy throughout the
process.

• FedNCF [5]: A federated variant of the Neural
Collaborative Filtering model. In this framework,
user embeddings remain as private parameters
on local devices, while item embeddings
and the MLP interaction module are trained
collaboratively across clients via federated
averaging on the server.

• pFedGraph [9]: A personalized federated
recommendation approach that integrates graph
neural networks to capture local user-item
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interaction patterns. It employs a personalized
aggregation strategy to preserve and leverage
client-specific behavioral patterns during the
federated training process.

• Graph-Guided Personalization for Federated
Recommendation (GPFedRec) [10]: A
federated recommendation system that utilizes a
graph-based aggregation mechanism informed by
client-level similarity relationships. This method
explicitly models correlations between users to
enhance recommendation performance and has
significantly influenced our design.

• Personalized Federated Recommendation
(PFedRec) [7]: framework designed for
personalized federated learning where a global
item embedding is maintained on the server.
Each client then performs localized fine-tuning
of this global embedding to better align with its
unique data distribution and user preferences.

• FedRAP [11]: A federated recommendation
approach featuring adaptive personalization,
which employs meta-learning principles to
dynamically balance the contributions of global
model updates and local adaptations throughout
the training process.

• PFedCLR [11]: A federated recommendation
approach leverages LoRA and introduces a
dual-function mechanism implemented via
a buffer matrix to jointly calibrate local user
embeddings and personalized global item
embeddings.

5.3 Performance Comparison
Table 2 shows the performance comparison between
FedTLRec and baseline methods across all datasets.
Ourmethod outperformsmost baselines in two aspects
HR@10 and NDCG@10 This proves the effectiveness
of our method.

We implemented this framework based on PyTorch. To
ensure a fair comparison, we set the embedding layer
dimension to 16, the client MLP layer dimensions to
32→16→8→1, the LoRA parameter r = 16, the LoRA
scaling factor lora_alpha = 16, a batch size of 128,
a learning rate of 0.001, 1 local training epoch, and
100 global rounds to allow for sufficient convergence.
In each round, all client machines participated in the
training (though 20% of the clients were offline). On
the server side, a K-means clustering mechanism was
first employed to partition the clients into 4 clusters

every 10 rounds. Subsequently, each cluster was fed
into a Transformer model for parameter aggregation.
During the Transformer computation, the parameters
uploaded by users were processed in groups of 128
clients (padding with zeros when insufficient).

From the results, we can make several key
observations:

1. Our method (FedTLRec) achieves the best or
second-best performance across all four datasets
(ML-100K, ML-1M, HetRec2011, LastFM-2K)
in both HR@10 and NDCG@10. Notably,
it consistently outperforms all existing FedRS
methods when LDP is applied. Compared to the
strongest non-private FedRS baseline (PFedCLR),
FedTLRec improves NDCG@10 by up to 13.12%
on ML-1M and 8.42% on HetRec2011, while
maintaining competitive HR@10 (e.g., only 0.19%
lower than PFedCLR on ML-100K).

2. On the ML-1M dataset, FedTLRec achieves a
near-perfect HR@10 of 0.9998 and an NDCG@10
of 0.9505, representing a 13.12% relative
improvement in NDCG@10 over PFedCLR the
previous best method. Similarly, on HetRec2011,
it obtains an NDCG@10 of 0.9212, surpassing
PFedCLR by 8.42%, which highlights its superior
ability to produce accurate and well-ranked
recommendations under data heterogeneity.

3. Despite applying local differential privacy (LDP),
FedTLRec demonstrates robust performance on
the LastFM-2K dataset, which contains a large
and sparse item space (over 12,000 music
artists). It achieves the highest HR@10 (0.7919)
and NDCG@10 (0.7229) among all methods,
improving upon the best baseline (GPFedRec
in HR@10, PFedCLR in NDCG@10) by 0.2%
and 0.9%, respectively. This confirms that
our framework maintains effectiveness even in
complex, large-scale settings while preserving
user privacy.

5.4 Ablation Study
5.4.1 Lora’s rank
To validate the effectiveness of LoRA (Low-Rank
Adaptation) in FedTLRec and explore the impact of its
key hyperparameter, the adaptation rank (r), onmodel
convergence and recommendation performance, we
designed a series of ablation experiments. All
experiments were conducted on the MovieLens-100k
dataset, using the same federated training framework
(FedTLRec). We fixed the client sampling ratio
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Figure 2. Trend of the hit rate (HR@10) of the model on the test set with different r values as the training rounds change.

to 100%, the number of local training rounds to
1, and the total number of communication rounds
to 50. We only adjusted the LoRA rank r ∈
{4, 8, 16, 32, 64, 128, 256, 512}.

It’s worth noting that if LoRA is not implemented
at all (i.e., full parameter fine-tuning is employed),
the server-side aggregation module, based on the
Transformer architecture, must receive and fuse the
complete model parameters uploaded by all clients,
leading to a dramatic increase in server-side memory
and computational overhead. In this experimental
setup (943 users, 1682 items, 16 potential dimensions),

the full-parameter version of the model would
require over 10 million parameters, making efficient
aggregation and training impossible on conventional
hardware. Therefore, LoRA is not only an efficient
parameter fine-tuning strategy but also a key technical
prerequisite for achieving the scalability of this
framework.

Figure 2 (with a curve) shows the model’s hit rate
(HR@10) on the test set as a function of training epochs
for different r values. Experimental results show that
the rank of LoRA has a significant nonlinear effect on
the model’s convergence speed and final performance:

Table 2. Performance comparison on four datasets. The best FedRS results are bolded and the second best are underlined.
Ours (FedTLRec) applies local differential privacy (LDP). "Improvement" is calculated over the best

existing FedRS method.

Method ML-100K ML-1M HetRec2011 LastFM-2K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

MF 0.6543 0.3788 0.6088 0.3446 0.6275 0.3688 0.8440 0.6191
NCF 0.6119 0.3422 0.5858 0.3267 0.6171 0.3663 0.7896 0.6069
LightGCN 0.6787 0.3994 0.6684 0.3885 0.6611 0.3975 0.8448 0.6853

FedMF 0.4846 0.2723 0.4876 0.2734 0.5376 0.3206 0.5839 0.3930
FedNCF 0.4252 0.2290 0.4180 0.2311 0.5083 0.2982 0.4933 0.3220
pFedGraph 0.6204 0.4937 0.7262 0.5991 0.6962 0.5523 0.6485 0.6085
GPFedRec 0.6840 0.3982 0.6836 0.4012 0.6488 0.4016 0.7896 0.6499
PFedRec 0.6702 0.3929 0.6611 0.3849 0.6531 0.3948 0.7549 0.6634
FedRAP 0.8823 0.7980 0.8661 0.7666 0.8486 0.6325 0.6257 0.5924
PFedCLR 0.9989 0.9225 0.9603 0.8402 0.9522 0.8496 0.7778 0.7164

FedTLRec 0.9979 0.8405 0.9998 0.9505 0.9749 0.9212 0.7919 0.7229

Improvement ↓ 0.19% ↓ 8.8% ↑ 4.1% ↑ 13.12% ↑ 2.3% ↑ 8.42% ↑ 0.2% ↑ 0.9%
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Figure 3. Trend of the hit rate (HR@10) of the model on the different offline rate.

When r = 4, the model exhibits the best overall
performance: it converges around epoch 30, reaching
a final test HR of 0.9830 and a validation HR of 0.9894,
significantly outperforming other configurations.
When r = 8 or r = 16, the model still converges stably,
but the final HRs are 0.7147 and 0.7179, respectively,
indicating a significant performance decline. When
r ≥ 32, the model’s convergence speed slows sharply,
and final performance continues to deteriorate. For
example, when r=64, the final HR is only 0.2227,
while when r = 512, it drops to 0.1410. The training
curve does not saturate within 50 epochs. This
phenomenon suggests that in the federated graph
recommendation scenario, an excessively large LoRA
rank can actually harm themodel optimization process.
We speculate that the reasons for this are: (1) high
rank introduces too many degrees of freedom, making
effective learning difficult in a federated setting with
sparse data (each client holds only a portion of the
interaction records) and limited communication (only
one aggregation per round); and (2) the regularization
term (reg = 0.1) and dropout (dp = 0.1) increase the
penalty effect on large-capacity adapters, inhibiting
the transmission of effective signals.

5.4.2 Offline rate
In real-world federated recommendation scenarios,
client devices (such as mobile terminals or IoT devices)

often experience intermittent offline states due to
network fluctuations, battery constraints, or user
behavior. To evaluate the robustness of FedTLRec
under such non-ideal communication conditions, we
systematically investigate the impact of client offline
rate on model performance.

Specifically, we fixed the LoRA rank r = 4 on the
MovieLens-100k dataset (as shown in Section 4.3,
this is the optimal configuration) and only adjusted
the offline rate poff ∈ 0.0, 0.1, 0.2, . . . , 1.0 for 11 sets
of experiments. Here, poff = 0 indicates that all
clients are always online, while poff = 1 indicates
that all clients are marked as "offline" with probability
1 (i.e., do not upload parameters) in each training
round. However, because the client sampling rate is
set to 100%, they still participate in local training and
parameter upload (simulating an extremely unstable
connection).

Figure 3 demonstrates FedTLRec’s robust performance
under varying client dropout conditions. The model
achieves peak performance with moderate dropout
(poff = 0.5, HR@10=0.9968), where client absence acts
as beneficial regularization. It also maintains strong
stability under high dropout (poff ≥ 0.8, HR@10>0.82),
confirming its resilience in unstable environments.

Performance dips at both low (poff = 0.1) and
high (poff = 0.8) dropout rates (HR@10=0.8282).
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For low dropout, sporadic client absence disrupts
aggregation consistency without activating robustness
mechanisms; for high dropout, sparse effective
updates hinder information fusion and optimization.
These results collectively validate FedTLRec’s
adaptability across diverse connectivity scenarios.

6 Conclusion
In this paper, we presented FedTLRec, a novel
federated recommendation framework that
combines LoRA-based parameter compression
with Transformer-based parameter aggregation. Our
approach addresses key challenges in federated
recommendation systems, including communication
overhead, parameter aggregation efficiency, and
model personalization.

The main contributions of our work are threefold: 1)
We use LoRA to significantly reduce communication
overhead by compressing client model updates,
reducing data transmission by several times; 2) We
introduce a Transformer-based parameter aggregation
model that effectively captures relationships between
clients, leading to improved recommendation
performance; 3) We implement a K-means clustering
strategy to further enhance aggregation efficiency and
performance.

Extensive experiments on four real-world datasets
demonstrate that FedTLRec consistently outperforms
state-of-the-art federated recommendation methods
in terms of both recommendation accuracy and
communication efficiency. Our ablation studies
confirm the effectiveness of each component in our
framework, and additional experiments show that
FedTLRec is robust to client dropout and can maintain
high performance even in challenging federated
learning environments. In our implementation, we
handle large numbers of clients efficiently by splitting
them into groups based on a maximum line parameter,
and we perform clustering every 10 rounds to reduce
computational overhead.

For future work, we plan to explore more sophisticated
client clustering methods that can dynamically adapt
to changing client characteristics. Additionally, we aim
to investigate the application of our framework to other
federated learning scenarios beyond recommendation
systems.
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