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Abstract
This study investigates convolutional neural
network (CNN) architectures for predicting
steering angles in self-driving vehicles navigating
unstructured roads, using road-facing image
data. Two complementary experiments are
conducted. First, the impact of three activation
functions—Exponential Linear Unit (ELU),
Rectified Linear Unit (ReLU), and Leaky ReLU—is
evaluated on a baseline CNN model. Trained on
14,754 images and validated on 3,585 images, the
model with ELU activation achieves the lowest
validation mean squared error (MSE) compared
to ReLU and Leaky ReLU, demonstrating superior
convergence and generalization. Second, the
effect of model complexity is examined using ELU
activation across simple, moderate, and complex
CNN variants. Results indicate that the moderately
complex architecture yields the best performance,
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outperforming both simpler (underfitting) and
more complex (overfitting) models in terms of
validation MSE. These findings underscore the
critical role of appropriate activation functions
and balanced network depth in achieving robust,
efficient steering prediction for autonomous driving
in challenging, unstructured environments.

Keywords: convolutional neural networks, steering angles,
activation functions, exponential linear units, rectified linear
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1 Introduction
Self-driving vehicles represent a transformative
technological frontier, combining advances in
artificial intelligence, computer vision, and control
systems. Steering angle prediction [1] is a critical
task in autonomous navigation, requiring real-time,
high-accuracy outputs to maintain vehicle stability
on complex roadways [2]. Recent advancements in
deep learning, particularly Convolutional Neural
Networks (CNNs) [3], have shown promise in
predicting steering angles from road images. CNNs,
by their ability to learn hierarchical spatial features,
are well-suited for this task.
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Activation functions [4], which introduce
non-linearity [5] into neural networks, are a vital
component in CNN architectures. They play a key
role in determining the model’s ability to learn and
generalize. ReLU, ELU, and Leaky ReLU are among
the most commonly used activation functions [4, 6]
in deep learning models. While ReLU is known for
its simplicity and computational efficiency, it suffers
from the “dying ReLU” problem, where neurons
can become inactive. ELU, on the other hand, has
shown the potential to overcome this issue by allowing
negative values, thus improving model convergence.
In addition to activation functions, the architecture’s
complexity [7]—defined by the number of layers
and parameters—plays a significant role in a model’s
accuracy and efficiency. Complex architectures often
risk overfitting, while simpler architectures may
struggle to learn complex patterns in data. Striking
the right balance is crucial, especially in real-time
applications like autonomous driving [8], where
computational overhead is a constraint.
In this study, we conduct two sets of experiments.
First, we examine the effects of ReLU, ELU,
and Leaky ReLU on a baseline CNN model.
Second, we evaluate the impact of varying model
complexity—using simple [7], moderate, and complex
CNN architectures—on accuracy and generalization
performance on steering angle prediction for
self-driving vehicles in an unstructured road [2].

2 Literature Review
The application of convolutional neural networks
(CNNs) for steering angle prediction [9, 10] in
autonomous driving has received substantial attention
in recent years. Early approaches largely focused on
structured road environments, where lane markings
and standardized road layouts simplify the task of
learning steering patterns. Bhalla et al. [11] proposes
a computer vision model that learns from video data.
It involves image processing, image augmentation,
behavioral cloning and convolutional neural network
model. Ranjith Rochan et al. [12] presents novel
method of computing steering angle for driverless
vehicle using computer vision based techniques of
relatively lower computing cost.
Notably, NVIDIA’s end-to-end learning model
demonstrated that CNNs could predict steering
angles [9] directly from images, effectively
bypassing the need for traditional rule-based
systems. Sokipriala [10] design a model that would be

able to clone a drivers behavior using transfer learning
from pretrained VGG16, the results showed that the
model was able to use less training parameters and
achieved a low mean squared error (MSE) of less than
2% without overfitting to the training set hence was
able to drive on new road it was not trained on.
However, unstructured environments [2]
—characterized by a lack of well-defined lanes,
variable road textures, and unpaved surfaces—pose
unique challenges that limit the efficacy of models
optimized for structured settings. Adnan et al. [2]
designed deep learning based autonomous electric
vehicle on unstructured road conditions.
Recent studies have explored a range of techniques,
from data augmentation and specialized activation
functions to lightweight architectures, aimed at
improving model robustness in these unpredictable
conditions. Arun kumar dubey and vanita jain we
have used rectified linear unit (Relu) and Leaky-Relu
activation for inner CNN layer and softmax activation
function for output layer to analyze its effect on
MNIST dataset [13]. Varsheny et al. [5] proposed
a novel approach to generalize the ReLU activation
function using multiple learnable slope parameters.
These learnable slope parameters are optimized for
every channel, which leads to the learning of a more
generalized activation function (a variant of ReLU)
corresponding to each channel. Goel et al. [14]
compared the performance of the CNNmodel using
four nonlinear activation function; sigmoid, tanh,
ReLU,ELU for blood glucose prediction.
To overcome the drawbacks of ReLU, such as the
dying neuron issue, Clevert et al. [15] proposed
the Exponential Linear Unit (ELU), which has
demonstrated superior performance in deep
convolutional neural networks by improving
gradient flow and reducing training time.
Another significant focus in steering angle
prediction [1, 10] research has been on optimizing
model complexity to balance accuracy with
computational efficiency. Diwate et al. [16] proposed
Lower complex CNN model which is variant of
AlexNet by removing two layers from actual AlexNet
Model.For a fire detection and binary classification
task, the lower complex CNN model achieves an
accuracy of 0.93. Oyedare et al. [7] conduct an analysis
of CNN based wireless classification that explores the
tradeoff amongst dataset size, CNN model complexity
and classification accuracy. They conclude that CNN
model with fewer parameters can perform as well as
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more complex model.

3 Experiment
3.1 Dataset and Preprocessing
The dataset used in this research comprises 29700
images captured from a car operating on Indian roads,
each labeled with a corresponding steering angle [10].
Data balancing was done to reduce the bias. After
data balancing 11766 images were removed from
the dataset. The dataset distribution is shown
in Figure 1. The balanced dataset distribution
is presented in Figure 2. The dataset was split
into 14,754 images for training and 3,585 images
for validation. The training and validation split is
visualized in Figure 3. To enhance generalization,
image augmentation techniques such as flipping,
random brightness, and shadowing were applied,
as demonstrated in Figure 4. Then the images
were resized to 200x66 pixels for consistency and
normalized to improve model convergence. The
resizing process is illustrated in Figure 5.

Figure 1. Dataset Distribution.

3.2 CNN Architecture
A Convolutional Neural Network (CNN) is a
specialized type of deep learningmodel primarily used
for processing data that has a grid-like topology, such
as images [3]. The general architecture of a CNN is
shown in Figure 6.
The detailed description of the CNN architecture used
in this research is given below:

3.2.1 Input Layer
The input to the network consists of road images with
a resolution of 200x66 pixels and 3 color channels

Figure 2. After Data Distribution.

(RGB). This input size is chosen to capture the essential
features of the road while reducing computational
complexity.

3.2.2 Convolutional Layer
The architecture includes four convolutional layers,
progressively extracting high-level features from the
input images. The details of the convolutional layers
are as follows:

• Layer 1: A convolutional layer with 24 filters
of size 5×5, applied with a stride of 2×2. The
activation function is Exponential Linear Unit
(ELU), which is known to improve learning speed
and reduce the vanishing gradient problem. L2
regularization with a factor of 0.001 is applied
to prevent overfitting. Batch normalization is
introduced to standardize the activations and
improve convergence during training.

• Layer 2: A convolutional layer with 36 filters of
size 5×5, with a stride of 2×2. ELU activation
is applied, along with L2 regularization. Batch
normalization is again employed to stabilize
training.

• Layer 3: This layer uses 48 filters of size 5×5,
with a stride of 2×2. ELU activation and L2
regularization are applied, followed by batch
normalization to ensure smooth training.

• Layer 4: The final convolutional layer contains
64 filters of size 5×5, with ELU activation and L2
regularization. Batch normalization is applied
after this layer to maintain stable activations
before flattening the output.
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Figure 3. Training and Validation.

Figure 4. Original image vs augmented image.

Figure 5. Original image vs Resized image.

3.2.3 Flatten Layer
After the convolutional layers, the output is flattened
into a one-dimensional vector, preparing the data for
the fully connected layers. This step transforms the
learned features into a suitable format for further
processing in the dense layers.

3.2.4 Fully Connected (Dense) Layers:
• Layer 1:

Dense: 100 units with ELU activation, L2
regularization to control overfitting, andDropout
of 50% to further reduce overfitting. Batch
Normalization: Added after the dense layer to
standardize outputs.
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Figure 6. General architecture of a CNN.

• Layer 2:
Dense: 50 units with ELU activation, L2
regularization, and 50% dropout. Batch
Normalization: Applied for normalized outputs.

• Layer 3:
Dense: 10 units with ELU activation, L2
regularization, and 50% dropout. Batch
Normalization: Normalizes outputs before the
final prediction layer.

3.2.5 Output Layer:
Dense: A single unit with no activation, which
predicts the steering angle as a continuous value.

3.3 Model Compilation:
The model is compiled using the Adam optimizer
with an initial learning rate of 1 × 10−3, and the
loss function is a mean squared error (MSE), as it’s
appropriate for regression tasks like steering angle
prediction. The accuracy metric is also tracked during
training.
Mean squared error:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

where N denotes the total number of samples, yi
represents the true steering angle for the i-th sample,
and ŷi corresponds to the predicted steering angle for
the i-th sample.

3.3.1 Experiment 1: Comparison of Activation Function
Performance

Activation functions [4] play a crucial role in neural
networks by introducing non-linearity, which allows
the model to learn complex patterns in the data. The
choice of activation function can significantly influence
the model’s performance, convergence speed, and
ability to generalize to new data. This experiment

aims to compare various activation functions in a
Convolutional Neural Network (CNN) architecture
for a specific task, such as image classification, to
determine which functions yield the best results.
In this experiment, we evaluated three activation
functions, training them over multiple epochs until
their performance reached a plateau [14].
i) ELU:f(x) = xifx > 0, (ex − 1) otherwise The ELU
activation function is visualized in Figure 7.

Figure 7. ELU activation function.

ii) ReLU:f(x) = max(0, x) The ReLU activation
function is shown in Figure 8.

Figure 8. ReLU activation function.

iii) Leaky ReLU:f(x) = max(0.01x, x) The Leaky
ReLU activation function is illustrated in Figure 9.

Figure 9. Leaky ReLU.
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3.3.2 Experiment 2: Model Complexity Comparison
Model complexity is a critical factor that influences
a neural network’s performance [7]. A model
that is too simple may underfit the data, failing to
capture the underlying patterns [16], while an overly
complex model may overfit, learning noise instead of
meaningful features. This experiment aims to compare
different CNN architectures with varying levels of
complexity to assess their impact on performance for
a specific task, such as image classification. In the
second experiment, we evaluated the impact of model
complexity by testing three variations of the CNN
architecture:

Figure 10. A simple CNN architecture.

• Simple Model: 2 convolutional layers, 1 flattened
layer, 2 dense layers with 50 and 100 units, and 1
output layer [16].

• Moderate Model: The base model used for
experiment 1 contained 4 convolutional layers, 1
flattened layer, 3 dense layers with 100, 50, and 10
units, and 1 output layer.

• Complex Model: 5 convolutional layers, 1
flattened layer, 3 dense layers with 200,100 and 50
units, and 1 output layer.

The architectures of the simple and complex models
are visualized in Figures 10 and 11, respectively.

Figure 11. A complex CNN architecture.

4 Result and Discussion
The experimental results were analyzed in two stages
to assess the impact of different activation functions [4]
and model complexities [7] on predicting steering
angles for a self-driving vehicle [1]. These stages
focused on key aspects that influence the performance
of Convolutional Neural Networks (CNNs), which are
crucial for making accurate predictions in real-time [8].

4.1 Activation Function Comparison
The first stage of the experimentation aimed to
determine the optimal activation function for
predicting steering angles by testing three widely-used
activation functions: ELU (Exponential Linear Unit),
ReLU (Rectified Linear Unit), and Leaky ReLU [4].
Experimenting with ELU yielded the following results
As shown in Figures 12 and 13, ELU converged after
38 epochs giving the validation loss of 22.2839 at its
lowest. The weights were restored, hence the model
trained using ELU had a validation loss of 22.2839. The
total training time taken for ELU to reach the plateau
was 61minutes and 38 seconds. The average time taken
per epoch was 97.316 seconds.

Figure 12. Validation and training loss of ELU from 1 to 30
epochs.

Experimenting with ReLU yielded the following results
As shown in Figures 14 and 15, ReLU converged after
40 epochs giving the validation loss of 57.2455 at its
lowest. The weights were restored, hence the model
trained using Leaky ReLU had a validation loss of
57.2455. The total training time taken for ReLU to reach
the plateau was 85 minutes and 1 second. The average
time taken per epoch was 127.525 seconds.
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Figure 13. Validation and training loss of ELU from 31 to 38
epochs.

Figure 14. Validation and training loss of ReLU from 1 to 30
epochs.

Experimenting with Leaky ReLU yielded the following
results
As shown in Figures 16 and 17, Leaky ReLU converged
after 43 epochs giving the validation loss of 46.6719
at its lowest. The weights were restored, hence the
model trained using Leaky ReLU had a validation loss
of 46.6719. The total training time taken for ReLU to
reach the plateau was 87 minutes and 23 seconds. The
average time taken per epoch was 121.93 seconds, and
Table 1 contains the summarized result of experiment
1.

4.2 Model Complexity Comparison
While the choice of activation function plays a
critical role in determining a CNN’s performance, the

Figure 15. Validation and training loss of ReLU from 31 to
40 epoch.

Figure 16. Validation and training loss of Leaky ReLU from
1 to 30 epochs.

complexity of the model [7]—the number of layers
and the number of parameters—also significantly
influences how well the network performs.
In the second experiment, three models were designed
with varying levels of complexity to understand the
trade-off between performance and computational cost.
Each model used the best-performing ELU activation
function from the first experiment, allowing for a fair
comparison.
The simple model had fewer layers. This model was
designed to be lightweight, requiring computational
power, making it suitable for real-time deployment on
devices with limited resources, such as edge devices
in self-driving cars.
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Table 1. Results of experiment 1.
Activation
function

Lowest Validation
loss obtained

Number of epochs
take to reach plateau

Average time taken
per epoch in seconds

ELU 22.2839 38 97.316
ReLU 57.2455 40 127.525

Leaky ReLU 46.6719 43 121.93

Figure 17. Validation and training loss of Leaky ReLU from
31 to 40 epoch.

Experimenting with the simple model yielded the
following results.

Figure 18. Validation and training loss of simple model
from 1 to 27 epochs.

As shown in Figures 18 and 19, the simple model with
ELU activation function converged after 43 epochs
giving the validation loss of 71.9829 at its lowest. The
best weights were restored, hence this model had a
validation loss of 71.9829. The total training time
taken for the simple model to reach the plateau was 68
minutes and 37 seconds. The average time taken per

Figure 19. Validation and training loss of simple model
from 28 to 43 epochs.

epoch was 95.8 seconds.
This shows that the model with fewer layers
was not able to capture the complexities of the
dataset effectively, resulting in higher validation loss
compared to more complex models. The choice
of the ELU activation function helped with faster
convergence, but the overall architecture still limited
the model’s ability to learn intricate patterns. This
indicates that increasing the depth or adjusting
other hyper-parameters might be necessary for better
performance. Further experiments with different
architectures could provide insights into improving
model accuracy and reducing validation loss.
The moderately complex model struck a balance
between simplicity and depth. It included more layers
than the simple model, allowing it to capture more
complex patterns in the data, without being overly
cumbersome in terms of computation.
Experimenting with the moderate model yielded the
following results.
As shown in Figures 20 and 21, the moderate
complexity model converged after 38 epochs giving
the validation loss of 22.2839 at its lowest. The
weights were restored, hence this model trained had a
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validation loss of 22.2839. The total training time taken
for this model to reach the plateau was 61 minutes and
38 seconds. The average time taken per epoch was
97.316 seconds.

Figure 20. Validation and training loss of moderate model
from 1 to 30 epochs.

Figure 21. Validation and training loss of moderate model
from 31 to 38 epochs.

This shows that the moderate complexity model was
able to effectively capture the complexities of the
dataset, achieving a lower validation loss compared
to simpler models. Its architecture likely allowed it
to learn the underlying patterns and relationships
in the data more efficiently. This balance between
model complexity and performance suggests that fine-
tuning hyper-parameters and layer configurations can
significantly impact model accuracy and convergence
speed. The complex model featured numerous layers

and a large number of parameters. This model was
designed to capture even the most intricate patterns in
the road images, but its computational demands were
significantly higher.
Experimenting with the complex model yielded the following
results.
As shown in Figures 22 and 23, the moderate
complexity model converged after 34 epochs giving
the validation loss of 50.7887 at its lowest. The
weights were restored, hence this model trained had a
validation loss of 50.7887. The total training time taken
for thismodel to reach the plateauwas 202minutes and
2 seconds. The average time taken per epoch was 356.6
seconds, which is the highest time taken per epoch
among all the experiments.

Figure 22. Validation and training loss of complex model
from 1 to 20 epochs.

Figure 23. Validation and training loss of complex model
from 21 to 34 epochs.
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Table 2. Results of experiment 2.

CNNmodels Lowest Validation
loss obtained

Number of epochs
take to reach plateau

Average time taken
per epoch in seconds

Simple 71.9829 43 95.8
Moderate 22.2839 38 97.316
Complex 50.7887 34 356.6

Table 3. Results Produced by moderate complexity model.

Images Predicted angle True angle Error Time

-33 degrees -38 degrees 5 degrees 15 ms

35 degrees 40 degrees 5 degrees 14 ms

2 degrees 4 degrees 2 degrees 12 ms

-9 degrees -14 degrees 5 degrees 15 ms

-124 degrees -122 degrees 2 degrees 14 ms

124 degrees 115 degrees 9 degrees 14 ms

In retrospect, the complex model gave the lowest
training loss of 73.7307 among all the experiments
that were conducted. However, its validation loss was
worse than that of the moderate complexity model.
This shows that the complex model had overfitted
the training dataset, hence it was unable to perform
well on the validation dataset, despite the usage of
l2 regularization. This observation highlights that
regularization alone does not guarantee improved
generalization, especially in models with excessive
complexity. Table 2 contains the summarized result of
experiment 2.

Analyzing the above results shows that the higher the
model complexity, the larger the training time gets.
However, increasing the model complexity does not
guarantee lower loss on the validation dataset. Also as
the complexity increases the plateau is reached faster.
To further demonstrate the performance of the
moderate complexity model, we tested it on sample
images from unstructured roads. The prediction
results are summarized in Table 3.
Themoderate complexitymodel delivered outstanding
results, evenwhen tested on unstructured road images.
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Despite the absence of normalization, the steering
angle predictions maintained exceptional accuracy,
with errors of just 5°, 5°, 2°, 5°, 2°, and 9°. This
showcases the model’s robustness, handling complex
real-world conditions with ease.
What’s more remarkable is the speed. The prediction
times ranged between 12 to 15 milliseconds per image,
running on the M1 chip, which is not classified as
extravagant hardware. This translates to an impressive
66 frames per second (fps), demonstrating the model’s
real-time capabilities, even though the M1 chip is not
specialized for self-driving vehicles unlike theNVIDIA
DRIVE Series [17], Tesla Full Self-Driving (FSD) Chip,
and Intel Mobileye series.
This combination of low error rates and fast prediction
times makes this model both practical and highly
efficient for autonomous driving, ensuring accurate,
and timely steering responses without requiring
top-tier hardware.

5 Conclusion
In conclusion, this research has illuminated critical
insights into the dynamics of activation functions and
model complexity in deep learning, with significant
implications for applications like self-driving vehicles
on unstructured roads. The first experiment
highlighted the effectiveness of the Exponential Linear
Unit (ELU) activation function, which facilitated
convergence within 38 epochs and resulted in a
validation loss of 22.2839. This finding underscores
the importance of selecting appropriate activation
functions to enhance model performance and training
efficiency.
The second experiment revealed a striking contrast in
model complexity: the moderate complexity model
achieved a superior validation loss of 22.2839 after 43
epochs, despite having fewer layers. This outcome
emphasizes that while deeper architectures may
intuitively seem advantageous, they can lead to
overfitting, as demonstrated by the more complex
model’s inability to generalize effectively, even with
L2 regularization in place. The training time of
97.316 seconds per epoch for the moderate complexity
model in comparison to the 356.6 seconds training
time per epoch for the more complex model further
reinforces the need for a strategic model design that
balances complexity with performance. Notably,
the moderate complexity model demonstrated low
steering angle prediction errors of just 5°, 5°, 2°, 5°, 2°,
and 9°as shown in Table 3, highlighting its robustness.

Furthermore, with prediction times averaging between
12 to 15milliseconds, the model is expected to reach
an impressive frame rate of over 66 frames per second
(fps), ensuring timely decision-making crucial for safe
autonomous navigation.
These insights are particularly relevant to the
development of self-driving vehicles navigating
unstructured environments, where model robustness
and generalization are crucial for safe and effective
operation. By carefully selecting activation functions
and optimizing model complexity, future work
can enhance the reliability of predictive models in
real-world driving scenarios.
Moving forward, this research sets the stage for
inquiries into more nuanced regularization techniques
and hyper-parameter optimization, particularly as they
relate to activation functions and architectural depth.
By continuing to explore these avenues, we can refine
our approach to model design, ultimately leading
to more robust and effective solutions for complex
applications like autonomous driving for unstructured
roads.
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