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Abstract

Adaptation learning is a data-driven technique
that gives instructions based on the experiences
made during data analysis. It plays an integral
role in providing engineering solutions based
on specific needs. Researchers have used the
second-order statistics criterion for decades to
conceptualize the optimality criteria using Shannon
and Renyis information-theoretic measures. Some
gaps have been identified in this research work, and
useful findings have been proved with generalized
information-theoretic measures of Renyis as Tsallis
entropy of order o and Kapur entropy of order o and
type [ using the Parzen-Rosenblatt window. This
work explored the problem of constructing kernel
density estimators and their application in adaptive
systems training.
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1 Introduction

In today’s world, information means knowledge,
ideas, opinions, emotions, feelings, errors, experiences,
etc., which is either a content of direct or indirect
observation. Information is indeed an asset, and it
grows at an exponential pace. Year by year data
has been grown in abundance but the distillation of
information from the data is the main concern and a
significant problem in information processing. This
allows us to design optimal data processing system
to extract information from data. The increasingly
complex situations will increase the number of
uncertain phenomena and the uncertainties about
each phenomenon always tend to increase. To
decrease uncertainty, information is collected, but
that is uncertain in this world, too. Uncertainty is
modeled through PDF or PMEF, but working with
functions takes a lot of work. Therefore, PDF can be
synthesized through statistical descriptors, such as
statistical moments. When the information is available
underlying distribution, it is easy to construct learning
systems that use the PDF(or joint PDF, marginal
PDF, or conditional PDF) of the data obtained from
the joint distributions but main challenges are data
smoothing to process vast volumes of data. Kernel
smoothing technique is the prominent non-parametric
technique in which a PDF can be estimated to explore
useful patterns in the data, while ignoring immaterial
information. These problems have applications in
training adaptive systems to find optimality criterion
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while designing fast and accurate algorithms that
speed up data processing. To solve classification
problems for feature reduction, these algorithms
have been used. Therefore, information-theoretic
criterion measures have been required that lower
down the uncertainty in the system. Wiener [1]
used second-order statistics to take up training in
adaptive systems, but second-order statistics is not
sufficient to deal with the problems of optimality
criterion. In adaption and learning, the objective is
to explore entropy estimators that estimates quantity
and optimize parameters. In engineering applications,
entropy estimation from real data is a non-trivial
problem. Information theory provides a theoretical
framework that helps design and optimizes learning
algorithms. Many researchers used generalized
Shannon [2] entropy and Renyi [3] entropy to derive
estimators with applications in training adaptation
systems and learning. Therefore, new non-parametric
estimators for Tsallis [4] entropy and Kapur [5]
entropy have been proposed, which have applications
in designing learning algorithms to train adaptive
systems.

2 Literature Review

Entropy as alearning criterion was proposed by Barlow
et al. [6] for various feature-learning algorithms
proposed by Atick [7], Intrator [8], Olshausen etal. [9].
Univariate and multivariate PDFs-based Shannon
entropy expressions were discussed by Lazo et al. [10]
and Ahmed et al. [11]. Shannon [2] proposed a
measure of uncertainty, which is additive in nature.
In 1961, Renyi [3] generalized the idea of Shannon [2]
and proposed a non-additive measure of entropy to
calculate the mean using the expectation of a recursive
estimator. Other forms of information-theoretic
measures appeared from the works of entropy [12, 13]
that give strength to the field of information theory to
grow. Over the last two decades, information theoretic
measures have been used in learning problem to
improve performance and determine the information
extracted from the data [14]. Researchers [15-19]
further used Renyi entropy and proposed various
measures. A group of Researchers [14, 20, 21],
used the applications of Renyis entropy to solve the
problem of machine learning, such as, dimensionality
reduction, feature extraction, blind source separation,
etc. Principle [20] introduced information theoretic
learning into adaptive systems. k-NN technique
has limited scope due to its poor performance,
whereas, Parzen window method performs slightly
better in comparison, but it is quite challenging to

implement due to discontinuities. These limitations
can be addressed by using a smooth kernel function.
Researchers [22-30] described the classical kernel
density and described different facets of KDE and its
practical importance. Non-parametric power system
security risk assessment model was proposed by Ul
Hassan et al. [31]. They used Parzen window density
estimation and obtained PDFs for power systems to
estimate PDF using KDE. Kernel density estimators are
widely used to estimate entropy [32] because of easy
implementation, computationally faster, and simple to
understand [33].

Shannon and Renyi entropy-based entropy measures
occupied a lot of research, but many entropy estimators
of generalized non-additive entropy measures need to
be addressed. These entropy estimators may be simple
to implement and have applications in the optimization
of parameters of adaptive systems. The main concern
is to test the consistency properties of the proposed
estimator, which is the primary concern discussed in
this paper and establishes a solid theory behind ITL
using Tsallis and Kapur entropy of order « and type £.
3 Information  Theoretic and
Machine Learning

Learning

Entropy is a scalar descriptor that quantifies PDF to
identify optimal design goals. To estimate entropy
and mutual information, non-parametric estimators of
entropy and mutual information have been predicted
using information measures. In this research work,
Tsallis [4] and Kapur [5] contributions have been
used to estimate kernel density function that have
applications in training adaptive systems. An adaptive
algorithm changes its behavior during the run time
based on the available information in an a priori
defined reward criterion.

Let t; be an output produced from the input data
points z;. A learning machine having a set of free
parameters x, constructed to get input from the data
sources to produce output. Comparing that how
similar ¢; is to A; so that their difference is minimum
by changing the parameters x with some systematic
approach according to some criterion. Finally, a system
is activated that approximates the unknown z with y,
when new data point is obtained from the data source
z. In this way, a model/system has been build that
established relationship between x and z. The system
is called a adaptive system or learning machine that finds
parameters from data, learning or adaption. This is
the idea behind training adaptive systems as shown in
Figure 1, which is known as supervised learning. The
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Figure 1. Adaptation model building.

learning in which data source x is available but z is not
available is called unsupervised learning.

4 Preliminaries

4.1 Shannon Measure of Entropy

The logarithmic measure of information for an
experiment X denoted by H®°(X) as given by
Shannon [2] is defined as:

HS(X) = =" filog(f)
=1

In case of continuous random variable X, the Shannon
entropy is defined as:

.

where, w is a PDF of random variable X.

H%(X)

w(z) log(w(x)) dx

Shannon entropy is additive in nature, arises from
statistical concepts and fundamental from application
point of view.
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Shannon entropy has generalizations such as: Renyi
entropy [3], Kapur entropy [5], Tsallis entropy [4],
Arimoto entropy [34], Havrda entropy [12], etc.

4.2 Renyi Entropy

Renyi [3] proposed a measure of entropy and is
defined as:

1
l—«

HE(X) =

«

n
log ija ;o a#El,a>0,
j=1

is called the Renyis entropy of order a.

In case of continuous random variable X, Renyi
entropy is defined as:

1 o
= 1
11—« 0g</_oo

where, w(z) is a PDF of random variable X.

Asa — 1, HE(X) — HY(X).

HE(X) w®(x) dx‘) ;

In other words, Renyi entropy is the Shannon entropy
of order 1.
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The information potential of Renyi entropy is denoted
as I Pf(X) and is defined as:

IPO};(X)—/ w(x) dz.
or equivalently:
HE(X) = ! log (IPF(X)).
-

4.3 Tsallis Entropy

Tsallis [4] introduced an entropic expression identical
to Havrda & Charvat [12] in the generalization of
standard statistical mechanics and was of non-additive
nature. Let w : R® — R be the PMF of a discrete
random variable X, the Tsallis entropy is defined as:

where, @ € Rt is referred to non-extensive index
or entropy index and characterizes the degree of
non-linearity. Tsallis entropy is referred as a-statistic.

Asa — 1, HI(X) — HE(X).

In case of continuous random variable X, the Tsallis
entropy is defined as:

HT(X) = 1}(% (/Zwa(x)dx—1>

where, w(z) is a PDF of random variable X.

The information potential of Tsallis entropy is denoted
as I PT(X) and is defined as:

[e.9]

w(x)dr — 1

IR?(X)—/
1
1—«

Hy (X) = 1P (X)

Tsallis entropy with expectation operator is written as:

. i - log (/_(:w%(y) dy)

= g (B [ ()

HI(Y) =

Using Parzen window estimator, the non-parametric
estimator of Tsallis entropy is given as:

a—1

N
1 1
L et b R

=1 j=1

qar(y) =

4.4 Kapur Measure of Entropy

Kapur [5] generalized Renyis entropy for an
incomplete probability distribution as:

Héfﬁ(X) =

where, w; > 0, Z?Zl w; < 1,a # B,a,3 > 0, is called
Kapur entropy of order a and type S.

As a — l,Hifﬁ(X) — HE(X)and asa — 1,8 =
1, HE 5(X) — H5(X).

In case of continuous random variable X, the Kapur
entropy of order « and type [ is defined as:

N (= L1

1
G—a ® !ffooo wh(z) dz
where, w(z) is a PDF of random variable X.

The information potential of Kapur entropy is denoted
as IPY(X) and I P§*(X) and is defined as:

IPE(X) = /OO w(x) dz
and IPf(X)= / h w?(z) da.

[log (IPX (X)) —log (1P§(X))]

K 1
HO¢7 (X)_B—Ol

4.5 Window Function

For a hypercube of unit length centered at origin, the
window function is defined as:

17 uzgl
e<y>={ il <

co(i=1,2,...
0, otherwise

,d)

The generalization of the window function is known
as the Parzen window;, a technique to estimate density
function. This is a non-parametric density estimation
technique, defined as:
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where m, h, f and p(y) are the number of elements,
dimension, window function and probability density
of y, respectively.

Window width and kernel are the two critical
parameters of Parzen window. Let {y1,...,yn} be the
N samples drawn from the random variable. These
samples are independent and identically distributed
(ii.d). The kernel function (arbitrary) K,(-) estimate
of the PDF is given by Parzen [35], and is defined as:

N

%Z‘ba(y - yj)

J=1

fr(y) =

Parzen window function is used to propose Tsallis
entropy estimator of order a and Kapur entropy
estimator of order o and type f.

4.6 Kernel

A window function is fitted on each data point to
determine the fraction of the data points used for the
density estimation within the window. Choosing fixed
kernel bandwidth may cover very little observation in
low-density regions, while extensive observations may
cover high-density areas. To deal with such situations,
adaptive or variable kernel bandwidth approaches
that vary the bandwidth from one to another has
been applicable. To approximate the probability
distribution of the given data without defined
distribution, kernel density estimation algorithm is
used in this work.

4.7 Kernel Density Estimation (KDE)

To estimate the density function from the underlying
data, KDE can be used to understand the topology
of the density. The first multivariate non-parametric
density estimator is defined as:

N
; 1 Yi —Yy
= — @ ‘7 N
fon = e o (5
J=1
zj € R%and ® : RY — R,

where {y;} is an i.i.d random sample of size n and h is
the smoothing parameter.
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Asn — oo, h — 0.

In many cases, h is treated as constant and to improve
the result of the density estimate, h is treated as a
variable and the following kernel estimators are given
as:

For uniform density, the kernel estimator [36] is
defined as:

For non-parametric density, kernel estimator [37] is
defined as:

) =2 Yl =) = 2 o (U,
j=1

where ® > 0 is the kernel function with h as smoothing
parameter.

However, the estimator independent of the
observations is called generalized kernel estimator.

4.8 Consistency of the Kernel Density Estimator

Rosenblatt [38] proposed kernel-based estimator
whose idea was extended by researchers [39—41].
Convergence rates were studied by Stute [42, 43]
and observed that they depends on the sample size,
density, and kernel and obtained some valuable
results on the convergence rates of the estimator
as: The generalization of empirical processes has
been proposed by Einmahl et al. [44], in which the
authors proved the convergence through mathematical
techniques by considering bandwidth as a variable
within a small interval.

Weak Consistency.

According to Wied et al. [45], let us consider that

lim nh, =00; VneN

n—0o0

At the point y, f is continuous, the estimator f,(y) is
weakly consistent in probability space P, i.e.,

Jim P (|fuy) = f(y)l > €) =0; Ve>0

Strong consistency.
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Nadaraja [46] formulated the theorem for kernel

density estimator of almost sure uniform convergence,

which is the extension of the Parzen [35].

4.9 Entropy Estimation for Learning

From the literature it has been revealed that Shannon
entropy measure attracts the attention of the
researchers to develop algorithms for learning
systems. Estimating Shannon entropy has been
applied to the generalized Shannon entropy such
as Renyi entropy. This work proposes to expedite
the generalized Renyi’s entropy to propose simple
entropy estimator for training learning systems using
Tsallis entropy of order o and Kapur entropy of order
a and type 3. The main objective of the work is to
understand the mathematical insights of the concept.

4.10 Proposed Kernel Estimator for Tsallis Entropy
and Kapur Entropy

. 1 1
Eﬂw:l—a Na 2}% 1 a

~ 1 N N ) Nya—1
HEX (v)= _1_ lo ( N& (Zizl D=1 ‘I’k(yl—yy)) _ ) '
aﬁ( ) F-a %8 ~7 (2 2 ‘I’A(yﬁyj))ﬁ '

5 Terminologies

i. Componentof Y: Y = {yi,...,yn} with Y? —
0.

ii. Single dimensional kernel: ®J(-).

iii. Multidimensional Kernel for joint PDF: ®%(-).

iv. Parzen estimate for joint PDF:

| X
=N Z (v —y;)-
v. Parzen estimate for marginal density of Y

Zq>)\0 Yy —yj

Sy

6 Main Results

Information-theoretic measures play a vital role in
understanding the uncertainty of the system. This
work uses the Tsallis entropy of order o and Kapur
entropy of order « and type 3 with the Parzen window
function to introduce kernel estimators. Various

theorems (I-IV) and the properties (I-III) have been
proposed for the entropy estimators (4.10) and are
discussed as follows.

Theorem 6.1 (I). Statement: Consider that Parzen
windowing is consistent with sample mean, the proposed
entropy estimators (4.10) are consistent underlying PDF of
linearly independent samples.

Proof:

Let Zy,Z>,...,ZNn be the N samples drawn from
independent and identically distributed (i.i.d) with sample
means

21,2, .- ZN
drawn from independent density function.

According to Parzen [35], the consistency of the estimate in
the estimation of PDF:

As N — oo,
7 - B[7)

where N, Zy, and E|[Z) represent the number of samples,
sample mean and expected value respectively.

Theorem 6.1 discusses the non-asymptotic nature of the
Tsallis entropy of order o and Kapur entropy of order «
and type [3 estimator.

In learning and adaptive system problems, finite number of
samples are given that provide consistent estimates of the
entropy until the global optimum is received in the desired
solution.

Theorem 6.2 (II). Statement: For equal samples: z; =
zj, the proposed entropy estimators (4.10) achieve their
minimum and maximum value when the kernel function is
evaluated at ®,(0).

Proof. For Tsallis entropy:

The Tsallis entropy estimator is given by:

N a—1
. 1 1 1
T
1 D L YCT) I
=1 \j=1
For equal samples: z; = z;, we have:
a—1
o= Ly (Teo) -
l—a Ne A l—a
=1 \j=1
Simplifying:
. 1 1
HT . P _
1) = 0 (0) -

17
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To prove that the proposed Tsallis entropy estimator For identical samples z; = z;, this simplifies to:

attains its minimum, we need to show that:

5 (o)

> NY(—®,(0) + 1)(1 — @) + N®

Casel: Fora > 1
We have:

=1

1 N a—1
1y (2% ) 60

Since:

N [N a1
> (Z Dx(zi — Zj))

e

Applying this upper bound:

a—1
Z‘I’A %~ %)
i=1 \j=1

< N max
1

For equal samples z; = z;:

< max ®y(z — 2;)* 1 = 0, (0)* !
Z’J

Case II: For a < 1,

N [N a-l
> (Z (2 — Zj))

i=1 \j=1

N a—1
> Nmiin !(Z (I))\(Zi — Zﬂ) ]

Dividing both sides by N

2@%4

18

e Kz@ )]

7]

N a—1
]\1«12 (Z‘I)A(Zizj)) > min [<I>a 1(zi—zj)}

=1 7j=1
O
For Kapur Entropy
N a—1
N 1
i e (5 (S )
A o
— log 72 Z(I)/\(Zz ZJ) ]
i=1 \j=1
For equal samples: z; = zj,
N N a—1
1 1
Hop(2) = 3= llog a2 | 220
i=1 \j=1
N [N ot
(% (o) ]
i= J=

To prove that the proposed Kapur entropy estimator
is minimum, we shall show that:

Case I: For a > 3,

RIS DAR O DAE NETE)

- < 2377(0)
S (S e -)

=

Din1 <Z§V:1 Dx(z — Zj)>a71
2in1 (Zﬁil D (zi — Zj))ﬁ_l

< N*PR(0)
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S (S e - )
i <Zj:1 (2 — Zj)>ﬁ_1
Nmaxi (Zjvzl <I>,\(zi — Zj))a_l
<

> B—1
N max; (Z;Vﬂ Dy (z — zj)>

=

Since LHS is replaced with the upper bound.
max; (N~ ! max; (®§ (2 — 25)))
max; (Nﬁ—l max; (‘bﬂ_l(zi — Zj)))
_ ara—pB8 a=Br,

=N max (q))\ (zi z])>

= N°Pa%P(0).

Case II: For o < £,

) N a—1
e D (Z Dy (zi — Zj))

i—1 o
= ~ 77 =@\ "(0)
1
DD (Z (2 — Zj>>
i—1 \j=1

S
Il
—

M=
P
™=

g

o

k)N
~
7

=

B

T8
A

M=
P
M=
S
|
X :
-~
b
|
=
B
=
&
/—\
T Mz 5 MZ

S
Il
—

Since LHS is replaced with the upper bound:
min; (N*~! min, Py (2 — zj))

 min; (Nf3*1 min; @Bil(zi - zj))

> NP min &~ e — zj)
’]

> NP5 P (0).

Theorem 6.2 is applicable in training supervised
learning models when all the samples are equal or

the error in samples is zero, the cost function attains
its global minimum.

Based on the Theorems 6.1 and 6.2, following
properties are discussed as:

Property 6.1 (I). Statement: Consider the density
function of the samples, the proposed entropy estimators
(4.10) are invariant to the mean of the given density function
underlying actual entropy [47, 48].

Proof. Let us consider that Z and Z be two random
variables in which Z = Z + m with m € R.

For Tsallis Entropy:

12 - 1 | [ @]

= /fg(z—l—m)dz—l}

zliai/f%(Z)dz—l]

= HI(2).
For Kapur Entropy:
K20 = 5 e ([ s300:) < voe ([ )02
= ﬁi [log </ f7(z+m) d2>
—log < fg(z +m) dz>}

e e
— HE,(2)

Let {z1, 22, ..., zn} be the samples of random variable

Zand {z1 + m,zo + m, ...
of random variable Z.

,ZN + m} are the samples

(1) Tsallis entropy.

B A ]

T7\ _
Hi(Z) =1 |qa 2 | 2@ -1
L i=1 =1 )
[ 1 & (& ]
:1—a N—Z Zlflb\(zi—zj) —1
: ]: ]
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(2) Kapur Entropy:

Property 6.2 (II). With X as the kernel size, if entropy can
be estimated for samples {z1, ..., zn} of a random variable
Z, then to estimate the samples {cz, . .., czn } of the scaled
random variable cZ, a kernel size |c|\ should be used.

Proof. Let cZ = {cz,...
variable.

,czn } be the scaled random

(1) Tsallis entropy. The Tsallis entropy of Z is defined

“ [ ]

For the scaled variable ¢Z, we have

1iaUZ () 1]
Uoofg(t)dt—l], (t:%)

= H(2).

Hy (Z) =

(67

1—a

He (cZ) =

:1—a

Thus,
HY(c2)

(2) Kapur entropy. The Kapur entropy is defined as

HE3(2) =

1 llogff%(Z) dz] |

B—a logffg(z) dz

20

For ¢Z, it follows that
HE3(cZ) = Bia [log/o; |1afz( )
[ et
S e CROLAE

— (1= BHE(Z)| +10gle],

where H' denotes the Rényi entropy and the
substitution ¢ = z/c is used.

Therefore,

HE(Z) 4 log|c|,
PN LR
HE(Z) +log|c],

g=1,

a=1.

From the above analysis, the kernel size must be scaled
by a factor of |c| to preserve the entropy estimation,
which completes the proof. O

Theorem 6.3 (III). The global minimum of the
entropy estimators in (4.10) is smooth for a continuous,
differentiable, symmetric, and unimodal kernel function

Dy ().

Proof. To show that the proposed entropy estimators in
(4.10) attain a global minimum, it is sufficient to show
that the underlying Hessian matrix is semi-definite.

(1) Tsallis entropy. The Tsallis entropy estimator is
given by

a—1

HY(z) = % = 2j)

a—1
— Z] ) .

Then the first- and second-order partial derivatives
satisfy

LS (e

=1 7j=1

Define the auxiliary variable

; (Z -

7j=1

d%P,
1 —adz0z,

dP,
1—adz,’

o0H, 1
ﬁzk N

0?H, 1
82’482% N
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At zZ = 0, the parameters reduce to

The first derivative is

ap@ _ o — a—1xa—2
P TN [N ®2(0)®'(0)

— N*1o%2(0)@'(0)
= 0.

The second derivatives are given by

*Pu|  (a—=1)(N—=1)3%(0)
022 N2
x [(o = 2)@"(0) + 20(0)2"(0)] .
%P,  (a—1)257%(0)
8zg(‘)zk 220 - N2

x [(a —2)@"(0) + 28(0)2"(0)] , £ # k.

Therefore, the Hessian matrix of H,, at z = 0 satisfies

(N - 1)¢§_3(0)
{]\/2 [(a -
z=0

0
N2

2)0"2(0) + 2<1>(o)<1>”(0)], t=k,
9?Hea
Dz¢0zy,

[(a —2)82(0) + 2@(0)@”(0)] : 04k

Since ®,(-) is continuous, symmetric, unimodal,

and twice differentiable, the Hessian matrix is
semi-definite, which completes the proof.

(2) Kapur entropy.

The Kapur entropy estimator is given by

M PEE)
w2

[ )

Define the auxiliary variables

Q\H
M=

Then the first- and second-order partial derivatives are

OHNs(z) 1 1 9iPK 1 OIPK
0z, B-—a \IPK 0z IPf 0z
PHS;z) 1 o (1 aipK 1 OIPf
0200z,  B—adz PK 0z, fpé( Oz |~
At z = 0, the parameters reduce to
IPK|__ =371 0),  IPf|._, = '(0).

The first-order derivatives vanish:

8fP§ o — a— oa— a— a—

o -2 [N Lp$2(0)3/(0) — N 1®S 2(0)<1>’(0)}
=0.

8fP§( s—1 B—1 5 B—2 ' B—1406-2 '

Do :W[N Py 2(0)2'(0) — NP~ 1ok (0)@(0)}
=0.

The second-order derivatives are given by

PIPK|  (a—1)(N-1)@57(0)
('“)zl% - - N2
x [(a —2)®”(0) + 28(0)@"(0)] .
021 P} (BN —1)®53(0)
8z,§ 0 N2
x [(8 —2)@"(0) + 2®(0)2"(0)] .
PIPK|  (a—1)2%7%(0)
02002z, o - N2
X [(a = 2)@(0) 4 20(0)2"(0)] , £ # k.
O*IPj _(B-1)95 %)
azﬁ)zk 520 N N2

x [(B —2)@"(0) + 2®(0)2"(0)] , £ # k.
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which shows that
o[- e ((u ~2)82(0) + 2@(0)@“(0))
N+ v = 0el 7 0)((8 - 2)02(0) + 20(0)27(0)) |

=0 1 [25780) ((a = 2)22(0) + 20(0)2"(0))
N2 ai() ((5 - 222(0) + 20(0)2"(0)) ]

PHE ;(2)
D201,

04k

Equivalently,

1 FN1><1>’2<o>(<32><1>i3<o><a2>4>‘;3<o>)} ,
- : +(N—1)2@(0)@”(0)(@3’3(0) @“*‘(o)) '
= | F’%m((azw*(m (-2 ”<o>)}
N+ 20(0)07(0) (25 720) - 277(0))

PPHE 4 (2)
D20k

4k

The eigen-pairs of the Hessian matrix of both
estimators in (4.10) are

{o. 007},
EN T

{ﬁ’ [1,0,-1,0,...,0] }

where k and /¢ denote the diagonal and off-diagonal

entries of the Hessian matrix, respectively. O

Since every eigenvector corresponding to the unique
nonzero eigenvalue changes the mean of the data,
the Hessian matrix is positive semi-definite. From
the results, it is concluded that the Hessian matrix
is positive semi-definite provided that

®,(-) > 0, the eigen value is positive for N > 1,
®, (), the nonzero eigenvalue has multiplicity N > 1,
P \()=0 and @7(0) > 0.

In adaptive systems, the global optimum is
characterized by a finite-eigenvalue Hessian matrix
in the weight space with zero gradients. Therefore,
the proposed entropy estimators in (4.10) attain a
global minimum and are suitable for adaptive entropy
minimization systems.

Property 6.3 (III). In the case of joint entropy estimation,
let the multi-dimensional kernel function ®x(-) and an
orthonormal matrix R satisfy

Py (9) = x(R™1).

Then, the proposed entropy estimators in (4.10) are
invariant under rotation.
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Proof. Let the random vectors Z" and Z" be related by
7 = RZ,

where R € R™ ™ js a real orthonormal matrix
satisfying RTR=1.

Discrete case.

(1) Tsallis entropy. The Tsallis entropy estimator for
the rotated samples Z is given by

N _ a—1
Hy(Z) = 1= {zx}a > (Z;-Vzl Py (Rz; — RZj)) - 1] :
Using the kernel invariance property ®x;(Rz; — Rz;) =
s (2 — z;), we obtain

a—1

A 1 N

N F
-« 1
= (R [AD(Z) +1] - 1

Since R is orthonormal, | R| = 1, which yields

H3(Z) = Hy(2).

(2) Kapur entropy. The Kapur entropy estimator for
Z is given by

a—17

1 N N
e > D en(Ra - Ry)

i=1 \ j=1

z (Zcbz RZZ—RZJ)) o

) )

i (géz % — zj) )ﬁl

Applying the kernel invariance again, we have
_ 1 N
HY5(Z) = P {bg <|Rl Z (Z Py (2

i=1 \j=1
—log | |R['P—

=1

_ ﬁia (0 - a)Hf2) - (- p)Hf(2)]
Thus,
a, ( ) - HR(Z) a=1
ﬁ 9

Therefore, the proposed entropy estimators are
invariant under rotation, which completes the proof.
O
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Continuous case.

(1) Tsallis entropy. The Tsallis entropy of a
continuous random variable Z is defined as

}{T

o= g e

Using the change of variables z = Rz with R being an
orthonormal matrix, we have

L /Oo b

1 -« —oo|}ﬂa

= 1 g / T 15()dz — |RI
l -« oo d

R —1].

HT(Z) = £8(2) || dz — 1}

Rearranging the terms yields

AT(Z) = R [/ () a1
11—«
—HR’ 1—a 1—a
1
l—a 7T 11—«
= H (7 — .
R HE(2) + R —
Hence,
1
H3(Z) = |RI'"°[HI(2) + 1] - —.

Since R is orthonormal, |R| = 1, which implies

i7(Z) = HI(2).

(2) Kapur entropy. The Kapur entropy in the
continuous case is given by
[0

7o

Applying the same change of variables, we obtain

o foe (1 [ pe0a:)
g (1717 [~ pa ),

— Bia [(1 —a)HE(Z)- (1 - ﬁ)Hé*(Z)]

log

07

Hyp(Z) =

Hy'y(Z) =

Therefore,

p=1,

R O
HE (2) = {Ha<z>+1gR, -

HEY(Z) + log | R,

Since R is orthonormal and |R| = 1, the Kapur entropy
is also invariant under rotation.

Theorem 6.4 (III). Let 7 be a random variable with the
PDF f,(-) = fz(:) * ®x(-). Then:

(i) For the Tsallis entropy estimator,

lim HX(Z)

N—oo

— H1(2) > H(2).

Moreover, ®5(-) = 0 if and only if

lim HY(Z)= HY(Z)= H(Z).
N—ro0
(ii) For the Kapur entropy estimator,
lim HX;(Z2) = HE5(2) > HE 3(2).

N—o0

Moreover, ®5(-) = 0 if and only if

lim HY;(Z) = HE,

«a
N—o0 ’

(2) = Hyp(2).

Proof. It is known that the Parzen estimate of the PDF
of a random variable Z converges to fz(-) * ®,(-) as
N — oo.

(i) Tsallis entropy. The Tsallis entropy estimator . (Z)
converges to the true entropy of the estimated PDF.

Recall that
. . N a—1
o B
Hy(Z) =1 |+ Z} Z}‘DA i — 2j) -1
i J

To prove that H! (Z) > HX(Z), consider

U_Z/_Z@A(T)[fz(z—ﬂ]admz— 1} .

HI(Z) = ——

Equivalently,

(1-a)HI(Z +1_/ / D\ (7)[f2(2—7)]" dr d=.

Using Jensen'’s inequality, we distinguish two cases.
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Casel: o > 1.

(1—)HT(Z)+1< /oo B, (7) [/_ng(z—T)dz] dr

[e.e]
S/
—00

< IPI'(7).

(1) IPT(Z)dr

Casell: a < 1.

(1-a)HY(Z)+1> /OO ®5(7) [/_Z 5z —1) dz] dr

> /oo (1) IPT(Z)dr

> IPI(Z).

Therefore, for both o > 1 and « < 1, it follows that
HI(Z)> HL(2),

with equality if and only if ®,(-) = 0. O

(ii) Kapur entropy. The Kapur entropy estimator
H 5 5(Z) converges to the actual entropy of the
estimated PDF. Recall that

1 Y "
w3 (L)
T N p-1
ﬁ Z (Z (I>)\(Zi — Zj))

X5(Z), consider the

To prove that HX

continuous form
/jc Uoo a(r) [ (= - T)]“dT] dz

/_Z [/_: (1) [f2(2 — T)]ﬁdT} dz

Equivalently, we may write

/_: {/_C: (1) [f2(2 —T)}adT} dz

/:: [/:: &5 (7)[f2(z — T)]ﬁdf] dz

g(Z) 7—al0g

exp((8 — ) HE3(2)) =

24

Using Jensen’s inequality and noting that ®,(7) is a
valid probability kernel, we obtain

/% [/ sz—T)dz}d
[@A U sz—T)dz]d

_ 1P (Z)
- IPY(Z)

eXP((ﬂ - a)Hf,@(Z))

Taking the logarithm on both sides yields

HE3(2) > HE3(2).

Equality holds if and only if ®)(-) =
completes the proof of (ii).

0, which

Casel: a > 3.

exp[(B — )

[ oozt - nas ar
T

/_oo . D(7) [f2(2 — 7)) dz] dr

/OO @A(T)[ T dz] dr

/_ D)\(7) [ _OO fg(z —T) dz] dr
/OO O\ (1) IPE(Z)dr
<=5
/ (1) IP§(Z) dr
1P} (Z)
~ IPK(2)

Case II:
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AL
e
/oo B\ (7) [/Oo f%(z—T)dz} dr

/7@(7 U sz—T)dz]dT

/Oo ®,\(1) IPK(Z) dr
>
/ By(r) IPK (Z) dr

—0o0

D5\ (1) [fz(z —7)]¢ dz} dr

exp[( — a) B(Z

Vfz(z —1))P dz] dr

L IPE(2)
T IPF(Z)

From the above results, it is concluded that the
mean-invariant quantities 1P (Z), IPX(Z), and
1 PﬂK (Z) correspond to the integrals of the a-th and
B-th powers of the probability density function of Z.

Regardless of the values of o and §3, the direction of
the inequality is preserved, yielding

A

(Z) > H

Hy(Z) > Hy(Z),  Hyy ap(Z)-

Since )
E[f2()] = f2()x @r(),

the above results remain valid in the finite-sample
setting.

Consequently, it is proven that, for a finite sample
space, asymptotic noise is effectively rejected
during the adaptation process.
Theorem 6.4 provides a theoretical foundation
for information-theoretic, entropy-based adaptation
criteria.

7 Results and Discussion

The Parzen window approach is employed to construct
kernel density estimators for the Tsallis entropy of
order o and the Kapur entropy of order o and
type 3. The proposed entropy estimators are used
to optimize feature parameters, and the theoretical
properties are established through Theorems 6.1-6.4
and Properties 6.1-6.3. The main findings are
summarized as follows:

e Non-asymptotic behavior: The non-asymptotic
nature of the proposed entropy estimators is
established in Theorem 6.1, demonstrating that

Therefore,

consistent entropy estimates are obtained before
the global optimum is reached in the desired
solution space.

e Global optimality: Theorem 6.2 proves that the
cost function attains a global minimum, making
the proposed entropy estimators applicable to the
training of supervised learning models with equal
sample representations.

e Zero-gradient global minima: In Theorem 6.3,
the global minimum of the entropy estimator is
shown to occur at zero gradients. This property is
essential for achieving the global optimum in the
weight space during adaptive learning.

e Asymptotic noise rejection: Theorem 6.4
establishes the asymptotic noise rejection
capability of the proposed entropy estimators
under entropy-based adaptation criteria, thereby
demonstrating their effectiveness in statistical
noise suppression for adaptive systems.

8 Conclusion

Kernel density estimation has been employed to
construct entropy estimates directly from observed
data points using kernel functions, providing an
effective representation of the underlying data
distribution. Each data point contributes to the
density estimate through kernel-based weighting,
resulting in a smooth and robust probability density
approximation.

In this work, kernel density estimators based on the
Parzen—Rosenblatt window have been developed for
Tsallis entropy of order o and Kapur entropy of order
a and type (. Theoretical analysis demonstrates that
the proposed estimators possess desirable properties
such as global optimality, rotation and scale invariance,
and asymptotic noise rejection. These properties
make the proposed entropy estimators well suited for
training adaptive systems and entropy-based learning
frameworks.
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