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Abstract
Greenhouse gas Methane (CH4) has 86 times
more impact on global warming than carbon
dioxide (CO2). The emission of methane gas
into the atmosphere is increasing due to the
reliance on fossil-based resources in post-industrial
energy consumption, along with the rise in food
demand and the generation of organic waste that
accompanies a growing human population. CH4

acts as a vital pollutant in the air. The problem
addressed in this study was to accurately estimate
CH4 emissions from functional urban areas. This
study aims to predict CH4 emissions using Time
Series (TS) and Machine Learning (ML) models
such as Autoregressive Integrated Moving Average
(ARIMA), Seasonal ARIMA (SARIMA), Long
Short-Term Memory (LSTM), Random Forest
Regressor (RFR), and CatBoost Regressor (CABR),
etc. The SARIMA model has the best combination
of values (1,0,0) (1,1,0). The methane emission
data was collected from the World Bank’s Group
from 2019 to 2022. Among all models, the SARIMA
model predicted CH4 emissions more accurately
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than the other models. The results obtained in the
study indicate that SARIMA outperforms other
techniques. The SARIMA model performed the
most accurate results in terms of R-squared score
(R2) = 94%; Root Mean Squared Error (RMSE) =
2.8129; Mean Squared Error (MSE) = 7.9126; Mean
Absolute Error (MAE) = 1.8391, etc. This type of
prediction enables the government to reduce CH4

emissions at the global level.

Keywords: machine learning, methane emission, random
forest regressor, prediction.

1 Introduction
Although the presence of methane in the atmosphere
is short-lived, it is a highly potent greenhouse
gas (GHG), with a global warming potential 28
times higher than carbon dioxide over a 100-year
period. Its emissions have far-reaching consequences,
impacting the environment, human health, and the
economy [1, 2]. Prolonged exposure to methane
and other air pollutants increases the risk of
certain cancers. Economically, methane emissions
can lead to significant losses in productivity and
hinder economic growth due to their detrimental
effects on human health and the environment [3].
Furthermore, research has shown that methane
emissions can compromise infrastructure integrity,
damage pipelines and buildings, and resulting in costly
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repairs and maintenance [4]. Nigeria on one hand,
ranked first in Africa and among the top 10 countries
for gas flaring globally in 2020, with approximately 7
billion cubic meters of gas wasted [5, 6]. However,
according to the World Bank’s Global Gas Flaring
Tracker Report, Nigeria has made significant progress
in reducing gas flaring, achieving a 70% reduction
to 7 billion cubic meters (bcm) in 2020 compared
to previous years. Methane emission is significantly
higher in the oil and gas producing countries. The
majority of these emissions (73%) came from gas
production, processing, and distribution, while 27%
came from oil production in Nigeria. In 2010, Nigeria’s
oil and gas sector emitted an estimated 439.8 kilotonnes
of methane. The projections indicate a significant
increase in methane emissions at 481.2 kilotonnes by
2030 (9% increase) and 598.5 kilotons by 2050 (36%
increase) [7]. On the other hand, China ranks first
in Methane emission, and is responsible for nearly
one-fifth of global methane emissions [8]. Historically,
methane wasn’t a major focus in China’s climate
policies until the early 2010s. However, in recent
years, China has prioritized reducing anthropogenic
methane emissions, incorporating it into both domestic
policies and international commitments [9].

Various methods exist for measuring methane
emissions, including ground-based, aircraft, and
satellite-based monitoring [10]. Meanwhile,
researchers are increasingly leveraging machine
learning techniques to estimate methane
emissions, offering new opportunities for accurate
measurement and analysis [11]. The work by [12]
leveraged the deep learning-based approach like
convolutional neural network to quantify methane
emission for field application. Although, the objectives
set out by the authors were achieved. However, the
approach is limited to unstructured data set (images
and texts) in its application. The work by [4] leveraged
a deep learning approach, specifically convolutional
neural networks (CNNs), to estimate gas emissions.
While their model showed promising performance,
further refinement is needed to achieve more
accurate results. In the work of [13] there is a clear
and concise comparison of models, with promising
results for air quality forecasting. The study compares
three distinct models Long Short-Term Memory
(LSTM) recurrent neural network, Fully-Connected
Neural Network (FC-NN), and Autoregressive
Integrated Moving Average (ARIMA), providing
a comprehensive evaluation, indicating that LSTM
outperforms the other two methods. However, the

reasoning behind LSTM’s superior performance could
be explored further and hyperparameter tunning is
a major concern for each of the cases. The study’s
findings can inform the development of cost-effective
predictive emissions monitoring systems. While
the study compares model performance, further
analysis of the models’ interpretability could enhance
understanding. Again, the study might benefit from a
more detailed discussion on hyperparameter tuning
and its impact on model performance.

Literature [14] compare machine learning models to
estimate wetland methane emissions, offering a robust
and data-driven approach. The use of a multi-model
ensemble approach helps reduce uncertainties and
improves the reliability of estimates. The research
takes into account a number of factors, such as
climate type, wetland types, soil characteristics, air
temperature, and precipitation. While themulti-model
ensemble (MME) approach reduces uncertainties,
further research could explore additional methods
to minimize errors. More detailed validation of
the models against independent datasets would
strengthen the study’s findings. In [15] the work
combined machine learning, satellite data, climate
data, and production data to predict ground-level
methane concentrations. It compares the performance
of different machine learning models, identifying
the Extreme Gradient Boost model as the most
accurate. While the Extreme Gradient Boost
model performs well, its complexity might limit
interpretability. A study by [16] employed machine
learning (ML) models to estimate methane emissions
from 97,435 Chinese reservoirs, categorized by storage
capacity. The comprehensive assessment estimated
total emissions at approximately 5,414 Gg, with
reservoirs larger than 0.01 km3 accounting for around
90% of emissions due to high diffusive flux rates and
extensive surface areas. Thermal stratification and
organic matter accumulation contributed to elevated
methane diffusion in these reservoirs. However, the
models’ complexity may limit interpretability, and
the findings might be specific to Chinese reservoirs,
potentially limiting their applicability to other regions.
The following are the primary contributions of this
study:

• The aim of this study was to predict CH4 emission
of Functional Urban Area (FUA) using satellite
data, machine learning regression and time series
(TS) models. The study focuses on time series
forecasting from 2019 to 2022.
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Table 1. Research gap of related work.
S.No Ref. Dataset used/ Data

source (Name)
Region Focus
(City / Country)

Methods Used for
Analysis (AI / ML
etc.)

Research Results (e.g.,
accuracy)

Identified Research Gap Future Scope

1 [17] Methane and hydrogen
blends

United Kingdom Ensemble learning
algorithm

3.453e+04 STD More hyperparameters to
tune introduces complexity in
the selection process

It can be integrated with
automated machine learning
to automate the process
of building and selecting
ensemble models.

2 [18] United Kingdom Multi-Layer Perceptron MSE occurs at λ = 0.001.
RMSE values LV 5

May get stuck in local minima: Ensemble methods

3 [19] AER CH4 methane
concentration of real
time data from air
monitoring station

Alberta LSTM- ANN RMSE = 0.1268 MAPE =
2.4134%

Difficulty in interpretation
of the relationships between
variables.

Incorporate data from satellite
imagery, sensor networks to
improve model accuracy and
generalizability.

4 [20] Intergovernmental
Panel on Climate
Change with
satellite-based
measurements from
Sentinel-5P

Countries listed
in Annex I of
United Nations

Trend analysis R2 value for both the testing
(R2 = 0.973), and the training
(R2 = 0.981)

complexity in fine-tuning the
model to identify optimal
process conditions for
Hydrogen Sulphide Methane
Reformation (HSMR)

Optimize the ANN surrogate
model by exploiting
evolutionary algorithms.

5 [21] TROPOMI and GOSAT
data

China UNMAMO algorithm
with random forest
model

R2 = 0.91 RMSE = 17.16 Intensive computing
requirement

Simple computation
requirement

6 [22] Satellite data Taiwan UNMAMO Accuracy = 97.2% and an R2
score of 0.858

Enhanced accuracy and
efficiency compared to the
traditional method

Despite the fact that it has
large computing burden, the
inherent constraints due to
the algorithm could limit
effective methane monitoring
solutions.

7 [23] Real time data Surat Basin in
Australia,

Multi-channel dynamic
LSTM-ANN

Enhanced accuracy in
forecasting production levels
by analyzing historical data
patterns and trends in coalbed
methane extraction.

8 [24] Surface rates and
pressure data.

China BO-LTSM It relies on a particular
input data with potential
requirement of validation to
generalize the findings.

9 [25] Real time data China Temporal
Convolutional Network
(TCN)

MSE, MAE, RMSE, and R2 No explicit information to
validate claim

Simpler, accurate and less
time consuming approach is
required

• Recent studies use ML only for datasets that are
already available in the same form. But our
study integrates the yearly dataset to make a more
diverse dataset and usedML as well as time series
models for CH4 emission prediction. This makes
our study novel. The SARIMA achieved an R2

score 94

• The dataset is novel and it is not yet analyzed.

To systematically identify the limitations of current
approaches and position our contributions, a
comprehensive research gap analysis of related
work is presented in Table 1. The table compares
recent studies across key dimensions such as dataset,
methodology, region, and identified limitations.

Accurate CH4 emissions estimation remains a
noteworthy challenge due to intricate and dynamic
behavior of CH4 sources in FUA. Some traditional
methods fail to accurately estimate CH4 emissions.
Additionally, the dataset used in this study suffer
from noise, null value, duplicate values, and outliers
which leads to inaccurate estimates of CH4 emissions.
Therefore, to address this problem, we utilized ML
and TS models to improve CH4 emission estimation,

ensuring more reliable predictions.

The current study focuses solely on CH4 emissions
from activities occurring in functioning urban areas.
Our dataset spans the years 2019–2022 (limited time
period), but to improve accuracy, future studies should
include real-time observations and a more diverse
dataset. For our dataset, SARIMA achieved the
best results; hence, to estimate fluctuations in CH4

emissions, future research should investigate ensemble
learning and deep learning approaches.

2 Methodology
This study forecasts global methane emissions by
utilizing various regression and time series methods
of machine learning. To tackle methane emissions
estimates for Functional Urban Areas (FUAs), the
initial phase is business comprehension, involving the
identification of the problem, understanding business
viewpoints and requirements, and strategizing to
achieve objectives. This involves offering details that
link grid cells in theWorld Bank’s global CH4 database
to identifiers for FUAs and national administrative
entities.
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Table 2. Dataset description.
Sr.No. Feature Name Description

1 id5 Grid cell unique ID (It may be pixel or location ID)
2 x Represents the longitude of the observation point
3 y Represents the Latitude of the observation point
4 terr5 The code urban indicator mostly values 1
5 mean_ch4 Mean methane concentration (parts per billion)
6 mean_ch4_anomaly Deviation/Anomaly of average methane levels
7 year Observation year (2019 to 2022)
8 month Observation month (1 to 12)
9 fua_id Functional Urban Area (FUA) identifier
10 max_coverage_fraction Maximum coverage fraction for data
11 eFUA_name Functional Urban Area (FUA) name
12 Cntry_ISO Country code 3-letter, i.e., IND for India
13 Cntry_name Country name (e.g., “India”)
14 FUA_p_2021 Population of Functional Urban Area (FUA) in 2015

2.1 Selection of Machine Learning (ML) and Time
Series (TS) models

ML is a computer technique that allows systems to
recognize patterns in data and classify or predict
outcomes of methane emission. ML is the scientific
study of creating models, algorithms, and learning
strategies that enable computers to learn in a
manner like humans. The TS model ARIMA,
SARIMA (Seasonal ARIMA), LSTM and different
ML algorithms such as Gradient Boosting Regressor
(GBR), Random Forest Regressor (RFR), Decision
Tree Regressor (DTR), AdaBoost Regressor (ADBR),
CatBoost Regressor (CABR), LightGBM Regressor
(LGBMR), and XGBoost Regressor (XGBR) are used
to predict methane emission. The selection of
these diverse models addresses the methodological
limitations identified in Table 1.

2.2 Platform and dataset details
Anaconda Navigator was used as a platform for
implementing machine learning and time series
models in this study. The yearly dataset is downloaded
from the World Bank Group (i.e., from 2019 to 2022).
We used the CH4 dataset from the European Space
Agency’s Sentinel-5P (S-5P) (TROPOMI) satellite
platform [28]. The year and month columns indicate
the temporal resolution of the dataset, as the data was
collected monthly based on observations from 2019 to
2022. Columns "x", "y", and "id5" in Table 2 describe
the spatial resolution of CH4 dataset. Each yearly
dataset contains fourteen features. After combining,
the total rows become 1249411. Access to relevant data
is necessary for successful data analysis. The dataset
belongs to 179 countries with 4776 different FUA. The
sample of the methane emission dataset is given in

Table 2. The dataset is downloaded from the URL 1

2.3 Dataset preprocessing
Data Cleaning: In this phase, missing, null, and
duplicated values are removed from the dataset. We
used interpolation to estimate missing data. After
that, separate the numerical and categorical features
of the methane emission dataset. In this dataset, there
are three categorical columns and eleven numerical
columns. Table 3 presents the statistics of categorical
features of CH4 dataset. From the table the unique
value for Cntry_name is ‘179’ and top is ‘China’.

Table 3. Statistical description of categorical variable.
Index eFUA_name Cntry_ISO Cntry_name
count 1249411 1249411 1249411
unique 4776 179 179
top Wenshang CHN China
freq 15442 322394 322394

Data wrangling: In the data wrangling stage, convert
the raw data, i.e., the year and month columns into
structured data/usable format, i.e., the date column.
In this way, fifteen features became. So, after removing
both columns (“year” and “month”), thirteen features
remain in the dataset.
Outlier: Outlier are the abnormal data point, which
are different from normal data [29]. The outlier of all
features is removed using the z-score method. Before
and after outlier mean_ch4 feature shown in Figure 1.
Feature selection: After removing the outlier,
descriptive statistics and important feature of

1https://datacatalog.worldbank.org/search/dataset/0064329/Methane
-emissions-for-functional%20urban-areas.
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Figure 1. Target feature with and without outlier.

dataset was extracted for further analysis. Upon
deep analysis of the dataset, we identified that only
five relevant features will be used for predicting
methane emissions. Others were excluded
from the dataset. The independent variables
“date”, "max_coverage_fraction", "FUA_p_2015",
“mean_ch4_anomaly”, and the dependent variable
’mean_ch4’ were used in this study.
Dataset splitting: After feature selection, the dataset
is split into training and testing using train_test_split
(70:30, train:test) function.
Model selection: The next step is training a suitable
model and evaluate the performance of models
using different error metrics such as R-squared,
Mean Squared Error (MSE), Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Adjusted R2 Score,
Explained Variance Score (EVS), Mean Squared Log
Error (MSLR), Median Absolute Error (MeAE), D2
Absolute Error Score (D2AES), D2 Pinball Score
(D2PS), D2 Tweedie Score (D2TS), Mean Poisson
Deviance (MPD), Mean Gamma Deviance (MGD),
and Mean Tweedie Deviance(MTD). After this, the
results were visualized. These steps of preprocessing
are given in Figure 2.
RFR is an ensemble learning method that combines
many decision trees to increase accuracy, as shown in
Figure 3. It is applied to problems involving regression
and classification. It selects features at random using
the bagging, boosting, and stacking techniques of the
ensemble. This algorithm was tuned using various
parameters [26].
ADBR is an ensemble approach that uses a decision
tree as the foundation model and the boosting
technique. Because weights are given to each
occurrence and greater weights are reassigned to
instances that are mistakenly identified, it is referred
to as adaptive boosting. The number of base models

and the learning rate are parameters used in this
model [27]. Compared to the other models, ADBR
is less likely to overfit, and it may be used with other
models to enhance performance, as shown in Figure 4.
LGBMR is an ML algorithm that is used for solving
supervised learning regression tasks. It builds DT
sequentially. The mathematical formula of LGBMR
is given as:

B = FN (A) =
N∑

n=1

γn hn(A) (1)

where: B: Predicted Final Value, A: Input features,
N: number of DT, γn: Applied learning rate or weight,
hn(A): nth decision tree prediction.
ARIMA and SARIMA are statistical model used
for methane forecasting. ARIMA is represented as
ARIMA (p, d, q), where ’p’ stands for autoregressive
(AR), ‘d’ means integrated (I), and ’q’ refers to the
moving average (MA) component whereas SARIMA
is represented as SARIMA (p, d, q) (P, D, Q )s, where
seasonal components are (P, D, Q ) and ‘s’ is the
seasonal cycle length . The algorithm steps to predict
methane emission using ARIMA and SARIMA are
given below:
1. Load the methane emission dataset
2. Cleaning the dataset
3. Check dataset stationarity using the ADF

(Augmented Dicky Fuller) test.
(a) If the series is stationary, proceed. (Not

Stationary shown in Figure 5)
(b) Otherwise, make the series stationary by

first-order differencing. (After differencing
the stationary series is shown in Figure 5)

4. Generate PACF (Partial autocorrelation function)
and ACP (Autocorrelation function), and find
respective values of p and q. The ACF and PACF
plot is depicted in Figures 6 and 7, respectively.

5. Train the ARIMA and SARIMA models.
6. Predict the methane emission for next years.

LSTM is a recurrent neural network that creates
enhanced neural connections when the input data
are arranged in a sequence. Since HSD is sequential,
LSTM is a perfect deep learning model that leverages
the sequence input. The LSTM model can retain
significant information over extended periods using
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Figure 2. Flow diagram of the implementation of ML models.

Figure 3. Random Forest.

gates. The LSTM model consists of four elements: (a)
The Cell State serves asmemory storage. (b) The forget
gate eliminates irrelevant information. (c) In the cell
state, the input gate decides what new information is
added. The sigmoid function sigma helps control the
information flow within gates. (d) The output gate
decides which portion of the cell state will be utilized
to produce the output, as illustrated in Figure 8.

3 Experimental design
3.1 Model performance evaluation metrics
The performance of ML and TS models were validated
using the evaluation metrics shown in Table 4. These
are R-squared, MSE, MAE, RMSE, MAPE, Adjusted
R-squared Score, EVS, MSLR, D2AES, D2PS, D2TS,
MPD, MGD, and MTD.

Table 4. Error metrics with their respective formula.
Error Metrics
Name

Formula used

MSE 1
m

∑m
j=1(X − Y )2

MAE 1
m

∑m
j=1 |X − Y |

RMSE 1
m

∑m
j=1(X − Y )2

MAPE 100%
m

∑m
j=1

∣∣X−Y
X

∣∣
Adjusted R2 Score 1− (1−R2) · m−1

m−k−1

EVS 1− var(x−y)
var(x)

MSLE 1
m

∑m
j=1 (log(1 +X)− log(1 + Y ))2

D2AES 1−
∑m

j=1 |X−Y |∑m
j=1 |X−Z|

D2PS 1−
∑

L(X,Y )∑
L(X,Z)

D2TS 1− tweedie deviance(x,y)
tweedie deviance(x,z)

R2 1−
∑m

j=1(X−Y )2∑m
j=1(X−Z)2

MPD 1
m

∑m
j=1

[
X log

(
Y
Ȳ

)
− (X − Y )

]
MGD 1

m

∑m
j=1

[
X log

(
Y
Ȳ

)
− X−Y

Y

]
MTD 1

m

∑m
j=1D(X,Y )

where:
X =Actual value, Y = Predicted value, Z =Mean
of actual value
j = jth observation, R2 = Determination coefficient
x = Actual values, y = Predicted values
k = Number of predictors, m = Number of
observations∑
L(X,Y ) = Total pinball loss using model’s
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Figure 4. Setup of ADBR.

Figure 5. Non-stationary and Stationary Curve.

predictions∑
L(X,Z) = Total pinball loss using mean

D = Each observation’s individual tweedie deviance

4 Results and Discussions
4.1 Comparison of ML models
Here, eight different ML models were used to predict
CH4 emission at global level. Figure 9 shows the
actual values of the first five rows of mean_ch4, as
well as the predicted values with their corresponding
prediction errors. For example, the actual value was

1841.82, but its predicted value is 1837.20, resulting in
a mistake of -4.62. The ’mean_ch4_anomaly’ variable
of the methane emission dataset (ADBR and XGBR)
had the highest impact on mean_ch4 (target variable),
while DTR and LGBR had the lowest impact on the
same variable. The essential variables in almost all
models, such as ’mean_ch4_anomaly’, have a greater
influence on the target variable than other variables
in the methane emission dataset. Figure 10 shows
the prediction of regression and boosting models.
Random Forest Regressor (RFR) performs the best
among these models, followed by CatBoost Regressor
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Table 5. MLModel’s performance.

Error Metrics Model’s Name
LR XGBR LGBR CABR DTR RFR ADBR GBR

MSE 297.6791 142.9567 161.9729 141.8725 229.8335 126.0808 507.0289 190.0142
RMSE 17.2534 11.9564 12.7269 11.9110 15.1603 11.2286 22.5173 13.7846
MAE 12.1566 7.4822 8.0084 7.4597 8.1886 6.6712 19.4860 8.7469
MAPE 0.0065 0.0040 0.0043 0.0040 0.0044 0.0036 0.0103 0.0047
R2 Score 0.6891 0.8497 0.8297 0.8509 0.7584 0.8675 0.4670 0.8003

Adjusted R2 Score 0.6891 0.8497 0.8297 0.8509 0.7584 0.8675 0.4670 0.8003
EVS 0.6871 0.8497 0.8297 0.8509 0.7584 0.8675 0.6809 0.8003
MeAE 8.8334 4.7842 5.2478 4.7523 3.8152 3.8819 19.0092 5.8327
ME 98.3649 348.8019 346.6886 346.2459 270.2844 268.1095 299.9635 314.0386

MSLE 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001
D2AES 0.4881 0.6849 0.6628 0.6859 0.6552 0.7191 0.1795 0.6317
D2PS 0.4881 0.6849 0.6628 0.6859 0.6552 0.7191 0.1795 0.6317
D2TS 0.6839 0.8475 0.8276 0.8490 0.7544 0.8657 0.4636 0.7974
MPD 0.1587 0.0763 0.0865 0.0758 0.1231 0.0674 0.2697 0.1016
MGD 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001
MTD 0.0037 0.0018 0.0020 0.0018 0.0028 0.0016 0.0062 0.0023

Figure 6. ACF Curve.

Figure 7. PACF curve.

(CABR) and XGBoost Regressor (XGBR). Figure 11
shows the actual and predicted values of tree-based
models. Gradient boosting accuracy is higher than that
of different models, such as AdaBoost, decision trees,

Table 6. Forecasted values of TS models.
Model Year Month Forecasted value

ARIMA

2023-01-01 1910.83
2023-02-01 1904.17
2023-03-01 1899.56

. . . . . . . . . . . .
2042-09-01 1905.67
2042-10-01 1905.67
2042-11-01 1905.67

SARIMA

2023-01-01 1910.24
2023-02-01 1905.03
2023-03-01 1900.51

. . . . . . . . . . . .
2042-09-01 1950.82
2042-10-01 1953.95
2042-11-01 1954.12

LSTM

2023-01-31 1914.68
2023-02-28 1915.60
2023-03-30 1917.03

. . . . . . . . . . . .
2042-09-30 1957.71
2042-10-31 1957.71
2042-11-30 1957.71

and random forests.

Table 5 shows the performance metrics of various
ML models used to predict the global CH4 emissions
from 2019 to 2022. Using actual CH4 emissions data,
we assessed how well these models predicted CH4

emissions in the real world. The predicting accuracy
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Figure 8. PACF curve.

Table 7. Error metrics comparison of TS and top four ML models.

Error Metrics Model’s Name
ARIMA SARIMA LSTM RFR CABR XGBR LGBR

MSE 17.3248 7.9126 379.9713 126.0808 141.8725 142.9567 161.9729
RMSE 4.1623 2.8129 19.4928 11.2286 11.9110 11.9564 12.7269
MAE 3.0002 1.8391 15.0276 6.6712 7.4597 7.4822 8.0084
MAPE 0.0016 0.0010 0.0079 0.0036 0.0040 0.0040 0.0043
R2 Score 0.8704 0.9408 -1.3221 0.8675 0.8509 0.8497 0.8297

Figure 9. Actual v/s Predicted value.

of the RFR model was higher than that of any other
ML models. The RFR predicted methane emissions
with the lowest RMSE (11.2286), MAE (6.6712),
MSE (126.0808), MAPE (0.0036), and MTD (0.0016)
values, and the almostmaximumR2 (0.8675), Adjusted
R2 (0.8675), D2AES (0.7191), D2PS (0.7191), D2TS
(0.8657), and EVS (0.8675) values. Additionally, the
XGBR model demonstrated remarkable performance,
even during the forecasting phase. Similarly, theABDR
model predictedmethane emissionswith the lowest R2

(0.4670), adjusted R2 (0.4670) value, and the highest

Figure 10. Actual v/s Predicted value of LR, XGBR, LGBR,
and CABR.

MSE (507.0289), RMSE (22.5173), and MAE (19.4860)
scores.

4.2 Time series model’s comparison
In this study, three time series models ARIMA,
SARIMA, and LSTMwere used to predict the emission
of CH4 gas at the international level. Figures 12, 13,
and 14 display the observed and forecasted values
of CH4 using SARIMA, ARIMA, and LSTM models,
along with their corresponding confidence levels. The
blue line shows the actual value of Methane emission
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Figure 11. Actual v/s Predicted value of DTR, RFR, ADBR, and GBR.

data, whereas the green and orange lines show the
forecast value of CH4. The shaded region indicates
the confidence level of models, which represents the
uncertainty bounds of theMethane forecast. The lower
and upper values of confidence intervals for mean_ch4
for 2023-01-01 are 1903.22 (lower) and 1917.26 (upper).
Similarly, we can find the value of the confidence
interval for other months and years using ARIMA and
LSTM models. Table 6 shows the forecasted value
of total CH4 emission at global level using ARIMA,
SARIMA, and LSTM models.

Figure 12. SARIMA model forecast and observed value.

Table 7 presents the best-performing models of TS and
ML, along with their respective error metric values.
The SARIMA model shows the highest R2 squared
error (94%), lowest MAPE (0.0010), MAE (1.8391),
RMSE (2.8129), and MSE (7.9126), whereas LSTM
shows the lowest R2 squared (-1.3221) and the highest

Figure 13. ARIMA model forecast value.

Figure 14. LSTM model forecast value.

MSE, RMSE, MAE, and MAPE values.

5 Conclusion
This research aimed to apply ML and DL techniques
to predict methane gas emissions, which have a
more significant impact on global warming than CO2

emissions. In this study, eight machine learning
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methods and three time series techniques were
employed to identify the most effective approach. The
goal was to provide initial insights for researchers
to demonstrate the effectiveness of the ML and ITS
methods, enabling them to apply this model later.
Forecasting CH4 emissions at an initial phase is
essential. Our research indicates that the SARIMA
approach surpasses other models in predicting CH4

emissions resulting from urban activities from 2019 to
2022. The SARIMA model forecasted CH4 emissions
with the smallest RMSE, MAE, MSE, MAPE, andMTD
scores, along with the greatest R2, Adjusted R2, D2AES,
D2PS, D2TS, and EVS statistics. The created model
demonstrates excellent capability in forecasting CH4

emissions when compared to alternative ML model.
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