ICJK

ICCK Transactions on Mobile and Wireless Intelligence
http:/dx.doi.org/10.62762/TMWI1.2025.370327

RESEARCH ARTICLE

Check for
updates

A 2-Step Nearest Neighbor Approach to TSP for Mobile
Data Collection Route Optimization in IoT

Abul Kalam Azad®!?"

1 Department of Computer Science, The University of Alabama, Tuscaloosa 35401, United States
2Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University,

Noakhali 3814, Bangladesh

Abstract

The Traveling Salesman Problem (TSP) is a
well-known NP-hard problem that aims to find
the optimal tour among cities, visiting each
exactly once and returning to the origin. Over the
years, many researchers have proposed various
approaches to find near-optimal solutions for
TSP. This paper proposed a variant of the nearest
neighbor algorithm termed the 2-step nearest
neighbor algorithm. Unlike the original nearest
neighbor approach, this algorithm considers two
nearest nodes as potential next nodes. For each
of those nearest nodes, the two nearest nodes
have been considered. The sub-tour with the
minimum cost among the resulting four has
added to the final tour. This process continues
until all nodes are covered. The performance
of the proposed algorithm compared with that
of existing brute-force, nearest-neighbor, and
genetic algorithms. The proposed algorithm’s
utility extends from classical TSP instances to route
planning for mobile data collectors in Internet
of things (IoT) environments. In such scenarios,

Submitted: 22 June 2025
Accepted: 03 July 2025
Published: 21 July 2025

Vol. 1, No. 1, 2025.
4.10.62762/TMW1I.2025.370327

*Corresponding author:
Abul Kalam Azad
aazadl@crimson.ua.edu

a mobile collector visits distributed IoT sensor
nodes to gather data and return to its base station,
minimizing total travel costs and making the
problem analogous to TSP. Result analysis shows
that in most scenarios, the proposed approach
yields a shorter distance tour than the existing
nearest neighbor approach, though with slightly
increased computational time. The approach could
also be adapted based on the number of nodes,
the optimal solution requirement, and available
computational resources. The code is available at
https:/github.com/azad-nstu/CS570-Proj-1-Traveling-Sale
sman-Problem-TSP.

Keywords: traveling salesman problem, optimization,
brute force, nearest neighbor, genetic algorithm, internet of
things.

1 Introduction

The TSP problem aims to find the optimal path among
a set of cities, allowing a salesman to travel between
them with minimum cost and return to the initial
city [1]. So the solution lies in finding the shortest path
to visit every city exactly once and coming back to the
original city. Here, the cost could be money, distance,
fuel consumption, time, or any other parameter, even
though distance is often considered a cost. The
problem is also called finding the minimum distance
Hamiltonian cycle [2].

Citation

Azad, A. K. (2025). A 2-Step Nearest Neighbor Approach to TSP for
Mobile Data Collection Route Optimization in loT. ICCK Transactions
on Mobile and Wireless Intelligence, 1(1), 1-10.

© 2025 ICCK (Institute of Central Computation and Knowledge)

http://dx.doi.org/10.62762/TMWI.2025.370327
http://crossmark.crossref.org/dialog/?doi=10.62762/TMWI.2025.370327&domain=pdf
https://orcid.org/0000-0003-1988-5606
http://dx.doi.org/10.62762/TMWI.2025.370327
mailto:aazad1@crimson.ua.edu
https://github.com/azad-nstu/CS570-Proj-1-Traveling-Salesman-Problem-TSP
https://github.com/azad-nstu/CS570-Proj-1-Traveling-Salesman-Problem-TSP

ICCK Transactions on Mobile and Wireless Intelligence

ICJK

20
10 15
25 30
Qo
35

Figure 1. A sample graph with 4 nodes/cities.

Figure 1 illustrates four interconnected nodes, which
could represent various entities like cities, sensor
nodes, or IoI' devices. Finding a TSP solution using
a brute force approach would be easy as it has only 4
nodes and there will be 4! = 24 combinations of tours.
Here, if Node-A is considered as the starting node,
visiting all other nodes B, C, and D, and coming back
to Node A with minimum cost will solve this problem.
The optimal solution for the problem is Node-A —
Node-B — Node-D — Node-C — Node-A or, Node-A
— Node-C' — Node-D — Node-B — Node-A with cost
10 + 25 4+ 30 + 15 = 80 is the minimum cost solution.

In TSP, to visit n number of nodes, for a complete
graph (having a connection between each node), there
will be n! possible tours to cover all the nodes. So the
complexity of the problem grows exponentially rather
than polynomials. This problem is NP-hard because
no optimal algorithms can find the exact solution (the
smallest cost route) within a reasonable amount of
time for a large TSP with many nodes.

Although the mathematics related to TSP was
developed in the 1980s, the origin of TSP is not clear.
It was first studied by Karl Menger in the 1930’s. In
1954, a research team solved the TSP problem for
49 cities. Finally, in 2004, another research team
solved the problem for 24,978 cities. During this
period, various research teams successfully solved
TSP instances for problems involving a range of cities,
specifically between 49 and 24,978 3].

There are many existing sub-optimal solutions for
TSP [4, 5]. The nearest neighbor algorithm is one of the
simple but effective approaches that follow the greedy
approach concept to find a sub-optimal TSP solution.
From the current node, the nearest neighbor considers
only one nearest neighbor to add in the final tour that
may miss a more effective sub-tour. So, this paper aims
to explore 4 sub-tours with lengths of two edges each

and then select the best sub-tour to add to the final
tour. To minimize the probability of missing better
sub-tours, the algorithm systematically explores four
sub-tours. It does this by first selecting the two nodes
closest to the current node. Subsequently, for each
of these two selected nodes, it identifies two further
nearest nodes, thereby constructing the four sub-tours.

TSP has numerous applications across various fields,
including engineering, business, and medicine. Some
of the TSP applications are in computer wiring, vehicle
routing, drilling of printed circuit boards, overhauling
gas turbine engines, X-ray crystallography, the
order-picking problem in warehouses, mask plotting
in PCB production, Genome Sequencing, Starlight
Interferometer Program, Scan Chain Optimization,
DNA Universal Strings, Power Cables, etc. [6-8].

Beyond its application in classical combinatorial
optimization problems, route planning algorithms
like TSP have direct relevance in mobile and wireless
systems [9, 10], especially in scenarios involving
mobile data collectors in wireless sensor networks
(WSN) [11] or IoT [12] environments. In such settings,
a mobile data collector (such as a drone, vehicle, or
robot) traverses distributed Iol sensor nodes to gather
data and then returns to a central base station. Efficient
path planning in this context helps reduce total travel
distance, energy consumption, and data collection
latency. This problem is naturally modeled as a
Traveling Salesperson Problem (TSP) variant, as the
collector must visit each node exactly once and return
to the starting point. This study proposes a 2-step
nearest neighbor algorithm that can be effectively
applied for such applications, providing a flexible
and efficient route optimization approach in IoI-based
mobile data collection systems [13]. Other potential
applications for the proposed algorithm include
autonomous vehicle patrol route planning [14], school
bus routing problems [15], unmanned aerial vehicle
(UAV) inspection missions [16], and agricultural
drone crop monitoring [17].

The remainder of the paper is organized as Section
2 will outline three algorithms that will be used
to compare the performance with the proposed
algorithm. Section 3 covers a detailed discussion
of the proposed 2-step nearest neighbor algorithm.
A detailed description of the experiment and result
analysis is presented in Section 4 before concluding
the paper with some future directions in Section 5.

ICJK

ICCK Transactions on Mobile and Wireless Intelligence

2 Algorithms for TSP

To solve the TSP problem, many algorithms proposed
over the last few years. Some of the popular TSP
algorithms include the brute force/naive approach,
nearest neighbor [3], branch and bound [18], dynamic
programming [19], genetic algorithm [20], and
simulated annealing [21]. Different algorithms
address this problem in different ways: some seek
the exact solution, others use heuristics for an
approximate solution, and some optimize the solution.
In this study, the performance of the proposed
approach is compared with that of existing brute-force,
nearest-neighbor, and genetic algorithms. So, a brief
overview of these algorithms is presented below:

2.1 Brute Force Approach

The brute force approach [22] is also called the
naive approach to solving TSP that offers an exact
solution. However, this approach is highly inefficient
and impractical within a reasonable time for a medium
to large number of nodes. The brute force approach
finds the shortest Hamiltonian cycle by trying every
possible tour. It generates all potential tours, calculates
the distance for each, and then selects the tour with the
lowest distance as the best solution for the Traveling
Salesperson Problem. So, for n nodes (cities), the
total combination will be n!. For example, consider
the complete graph with 4 nodes shown in Figure 2.
There are a total of 4! (24) possible combinations of
tours. Among these, a minimum distance of 15 can
be achieved by a couple of tours, such as ABCDA.
Consequently, the algorithm’s complexity is O(n!),
which is very high and impractical with many nodes.

2.2 Nearest Neighbor

Nearest neighbor [3] is the most simple and
straightforward heuristic solution for a traveling
salesman problem that tries to find a satisfactory result
other than the optimal solution like brute force. For
medium to large numbers of nodes (vertex), nearest
neighbor algorithms can compute a decent path within
a reasonable time. It follows a greedy approach that
always considers the nearest neighbor. Then, move to
that neighbor and find its nearest neighbor. Continue
the process until all the nodes (cities) visit. Finally,
comes back to the starting node and computes the
distance.

For example, in Figure 2, if ‘A’ is the starting node, the
nearest node of A is “‘B’. Now from ‘B’, the nearest
node (except A and B) is C. From C, the nearest node
(Except A, B, and C) is D. Now all the nodes have

Starting City- A~ Starting City-B Starting City-C Starting City- D
ABCDA BACDB CABDC DABCD
ABDCA BADCB CADBC DACBD
ACBDA BCADB CBADC DBACD
ACDBA BCDAB CBDAC DBCAD
ADBCA BDACB CDABC DCABD
ADCBA BDCAB CDBAC DCBAD

o~ 1 L~
Ay \ B |
g _/
5 9
4
rd \, [/"‘]:‘)"\.:I

/7
N\
o
/
N\

Figure 2. A complete graph with 4 nodes (cities).

visited. So, D to A returns back to the starting node
‘A’. So, the shortest nearest neighbor tour is:ABCDA
(here, same as brute force but will not be the same
always), and the distance is: 1 + 4 + 2 4+ 8 = 15. The
nearest neighbor time complexity for n is O(n?).

2.3 Genetic Algorithm

Genetic algorithms leverage the principle of natural
evolution for optimization and intelligent searching.
This approach eliminates the need to check all possible
solutions, enabling them to find a good result within a
reasonable amount of time. It starts with initializing a
population of individuals (potential solution, tour in
TSP) where each individual is called a chromosome
that consists of a sequence of genes (cities in TSP) [20,
23].

In Figure 2, if the population size is 3 (in practice,
the population size is high like 50, 100, 200, etc), the
initial population could hold chromosome ABCDA,
BCADB, and DABCD usually generated randomly.
Then, calculate the fitness (tour distance) of each
individual and select individuals from this current
population to consider as parents for the next
generation. The selection process usually considers the
fitness score. After that new individuals are created
for the next generation by combining the genes of
the selected parents. This step is called crossover
or recombination. It also introduces mutation by
randomly changing the genes of individuals to
maintain genetic diversity and to avoid getting trapped
in local minima. After that, it organizes new
populations for the next generation by combining new

ICCK Transactions on Mobile and Wireless Intelligence

ICJK

offspring individuals and current individuals. The
process continues for a certain number of generations
or until reaching a termination condition. Finally, from
the last generation, the best individual (a tour that
has the best fitness value/ lowest distance) has been
selected as the solution for TSP. The time complexity
of the genetic algorithm is O(n?).

3 Proposed 2-step nearest neighbor algorithm

The proposed 2-step nearest neighbor algorithm is
a variation of the nearest neighbor algorithm. In
the nearest neighbor algorithm, a node considers its
nearest node as the next node in the minimum distance
tour construction. Then, from this selected nearest
node, consider the nearest neighbors (that were not
selected before). In this process, although if a node
selects its nearest node as the next node in the shortest
tour, the next nearest node from the selected node
might cost high compared to the selection of another
node and from that node, there may be the shortest
edge so that total cost for the two edge might be less.
For example, in Figure 3, if A is the starting node,
using the nearest neighbor, it will select B as the next
nearest neighbor and will add it to the tour. Then,
from B, it will select its nearest neighbor node £ from
its neighbor nodes C, D, and E (Excluding A4, as it’s
already in the tour). The distance from A - B — E
is 1 +7 = 8. Now if starting node A would select C
as the next node and from C, F as the next node, the
distance from A — C — Fis: 24+ 1= 3.

o

[§=]
(=)
(=]

0,

Figure 3. A complete graph with 5 nodes.

To address this issue, this study proposes a 2-step
nearest neighbor algorithm. It’s called a 2-step nearest
neighbor because the selection decision to add nodes
in the tour is taken after considering two levels of
neighbors. Here, a node initially considers its two
nearest neighbors that didn’t select before, and then for
each nearest neighbor, find two more nearest neighbors
(again from those that didn't select before) that result

4

in 4 probable selected sub-tours with two edges each.
Out of these for sub-tour, the algorithms select the
lowest distance sub-tour and append it for the lowest
distance tour construction. After that, the last node
of the appended sub-tour finds its two nearest nodes
that didn’t append before. Then again for each two
nearest nodes, find two more nearest nodes, and out
of 4 sub-tours, select and append the lowest distance
sub-tour. Continue the process until all nodes in the
graph are selected in the tour. Finally, append the
edge from the last selected nodes to the source node
for coming back to the source node and completing
the Hamiltonian cycle. The tour and distance using the
nearest neighbor for the graph is: ABECDBA, and
1+7+1+6+8=23.

Now for Figure 3, using the proposed algorithm,
source node A initializes distance = 0, will consider
two nearest neighbors, B and C, and for each B
(distance — 1) and C' (distance — 2), it will consider
two more nearest nodes that not considered yet. So for
B, the next two nearest nodes are F (distance —7) and
D (distance—8). For C, the next two nearest nodes are
E (distance — 1) and D (distance — 3). So, there will
be four sub-tours ABE (distance — 1+ 7 =38), ABD
(distance — 1+ 8 =9), ACE (distance — 2+ 1 = 3),
ACD (distance — 2 + 3 = 5). Out of these four
sub-tours, the algorithm will select the lowest distance
sub-tour AC'E with distance 3 and will append CE
with the starting node A and update the sub-tour from
A to ACE. It will also update the distance from 0 to
3. In the next iteration, E will become the starting
node. The algorithm will then identify its two nearest
neighbors. For each of these neighbors, it will consider
two further nearest nodes to form new sub-tours. The
sub-tour with the lowest distance will then be selected
and appended to the existing tour. It will add the
distance of the selected sub-tours with the existing
distance to calculate the updated distance. The process
continues until all nodes are included in the sub-tour.
Finally, the starting node is added to the last node in
the sub-tour, and its corresponding distance is also
added in. Since only two nodes remain after ACE in
this graph, the algorithm will add the next two nearest
nodes in ascending order of their distance: first D
(with a distance of 6), and then B (with a distance
of 8). Now, the sub-tour will be CAEDB, and the
updated distance is 3 + 6 + 8 = 17. Finally, it will add
edge BA to go back to the starting node and the final
tour will be ACEDBA and final distance 17 + 1 = 18.
For Figure 3, the proposed 2-step nearest neighbor
algorithm could be further described utilizing Figure 4,

ICJK ICCK Transactions on Mobile and Wireless Intelligence

which shows the selected sub-tours (ACE . . .) with the distances among different nodes is presented in
their distance. Figure 5, and Figure 6. Also, a graph for 100 nodes is
@ presented in Figure 7. With increasing the number

l 2

A A
) ©
7 8 6 1

1

& ® © 0

6

®

Figure 4. Sub-tour selection process of proposed 2-step
nearest neighbor algorithm.

Figure 5. A graph with 5 nodes.

4 Experiment and result analysis

4.1 System Configuration

Brand: HP. Processor: 11th Gen Intel(R) Core
i5-1135G7, 2.40GHz, 2419 Mhz, 4 Core(s), 8 Logical
Processor(s). RAM: 16 GB.

Programming language: Python version 3.9.13

4.2 Experiment

For the experiment, I have considered 11 graphs with
different node numbers: 5 nodes, 10 nodes, 13 nodes,
15 nodes, 25 nodes, 50 nodes, 100 nodes, 250 nodes,
500 nodes, 750 nodes, and 1000 nodes. Figure 6. A graph with 10 nodes.

For the experiment, the following steps were
performed:

e Step 1: Read the given lower triangular matrix file.
e Step 2: Convert it to a complete adjacency matrix.
e Step 3: Draw the complete graph.

e Step 4: Apply four algorithms using the complete
graph.

e Step 5: Draw the graph with the algorithms’
generated minimum tour.

e Step 6: Store the result of each algorithm for a
different number of nodes. Figure 7. A graph with 100 nodes.

e Step 7: Perform result analysis based on distance

L of nodes, visualization becomes challenging to see
and execution time.

the distances among different nodes. In the next step
Step 1 reads the lower triangular matrix from the input (step 4), 4 different algorithms (Brute force, Nearest
graph file. Then, step 2 makes the complete adjacency neighbor, Genetic algorithm, Proposed 2-step nearest
matrix. After that, in step 3, the complete graph is neighbor) are implemented. The overall complexity of
drawn. A sample graph for 5 nodes and 10 nodes with the proposed algorithm is also O(n?).

ICCK Transactions on Mobile and Wireless Intelligence

ICJK

Cost: 269101

Path: [0, 1, 2, 3, 4, 0]

Figure 8. Proposed 2-step NN algorithms generated
minimum tour graph for 5 nodes with start node=0.

Cost: 1628604

Path: [0,1,2,3,4,5,6,7,8,9,0]

Figure 9. Proposed 2-step NN algorithms generated
minimum tour graph for 10 nodes with start node=0.

Figure 10. Proposed 2-step NN algorithms generated
minimum tour graph for 100 nodes with start node=0.

Then, in step 5, draw and store the same graph using
the edges of the tour. This time, the edges were drawn
as directed to understand the direction of visit from
the starting node to all other nodes and coming back
to the starting node. Figures 8, 9, and 10 represent
the minimum distance tour returned by the proposed
2-step nearest neighbor algorithms for the completed
graph with 5 nodes, 10 nodes, and 100 nodes, and that
were presented in Figures 5, 6, and 7.

In step 6, after running the algorithms for different
graphs with different numbers of nodes, the output

[=] output.oe E3

Brute Force Solution for 5 nodes:
Solution with Random Start Node 0 and after 1 tries:

Cost: 207341
path: [0, 1, 3, 4, 2, 0]
Execution Time: 0 Hours, 0 Minutes, 0 Seconds, and 1 Milliseconds

Nearest Neighbor Solution for 5 nodes:
Solution with Random Start_Node 0 and after 1 tries:

cost: 269101
Path: [0, 1, 2, 3, 4, 0]
Execution Time: 0 Hours, O Minutes, 0 Seconds, and 1 Milliseconds

Genetic Rlgorithm Solution for 5 nodes:
Solution with Random Start_Node 0 and after 1 tries:

cost: 207341
Path: [0, 1, 3, 4, 2, 0]
Execution Time: 0 Hours, 0 Minutes, 0 Seconds, and 39 Milliseconds

Proposed 2-Step Nearest Neighbor Solution for 5 nodes:
Solution with Random Start Node 0 and after 1 tries:

Cost: 269101
Path: [0, 1, 2, 3, 4, 0]
Execution Time: 0 Hours, 0 Minutes, 0 Seconds, and 1 Milliseconds

Figure 11. Stored results in the output.txt file.

distance (minimum distance), path (minimum tour),
and Execution time are stored in an output file named
‘output.txt’.

Here, in the test, start node = 0 was assumed, although
the code could select the start node randomly. A
sample format of the output result is stored in the
output.txt file shown in Figure 11. Finally, in step 7,
result analysis in terms of minimum distance/cost, and
execution time was performed for four algorithms with
different numbers of nodes.

4.3 Result Analysis

Table 1 shows the generated minimum distance,
and execution time by four algorithms for different
numbers of nodes. Out of the four algorithms, brute
force was run using up to 13 nodes because of its
high computational complexity of O(n!), which will
take a very long time to finish. The other three
algorithms were executed for all 11 selected graphs.
For the genetic algorithm, the population size and
number of generations were set to 200 for graphs up
to 100 nodes, and for graph size from 100 to 1000
nodes, the population size and number of generations
were set to 500. For the mutation, 2 random nodes
in the individuals were selected and swapped to
introduce the diversity. Also, before selecting the new
individuals, the probability (function of fitness and
temperature) of the new individual was calculated and
compared with a threshold.

To compare the performance of different algorithms

ICJK

ICCK Transactions on Mobile and Wireless Intelligence

Table 1. Brute force, NN, Genetic algorithm, and proposed 2-step NN generated distance and consumed time for different
number of nodes.

Number of Brute Force Brute Force NN NN Genetic Algorithm Genetic Proposed- 2-Step Proposed
Nodes Distance Time Distance Time Distance Algorithm Time ~ NN Distance ~ 2-Step NN Time
5 207341 1ms 269101 1ms 207341 39 ms 269101 1ms
10 647105 259 ms 1628604 2 ms 647105 50 ms 1628604 2 ms
13 628904 7Min, 42s,and 921 ms 1801463 2ms 661905 61 ms 1823748 2 ms
15 Didn’t analyze Didn’t analyze 1820321 2ms 628203 62 ms 1820321 3 ms
25 Didn’t analyze Didn’t analyze 950756 3ms 1134269 62 ms 862827 3 ms
50 Didn't analyze Didn’t analyze 1371802 3 ms 6812631 69 ms 1139795 3 ms
100 Didn’t analyze Didn't analyze 3179955 5ms 24086044 109 ms 3088761 6 ms
250 Didn’t analyze Didn't analyze 2609719 13 ms 58526357 469 ms 1944536 20 ms
500 Didn’t analyze Didn't analyze 1999082 46 ms 142035502 1s,and 113 ms 1703980 73 ms
750 Didn’t analyze Didn’t analyze 2824495 96 ms 262161280 1s, and 634 ms 2387702 157 ms
1000 Didn't analyze Didn’t analyze 1780054 169 ms 389579130 2's, and 320 ms 4126961 283 ms

Comparison of different algorithms for Distance Vs Number of Cities

== Brute Force H0579130

NN
= Genetic Alg
= Proposed 2-Step NN

226280

w050

sa526357

2086084

as2es

Distance/Cost
g,

26961

1790980 0cs 761
2820

260071
bor.702

boues3s 199008

Le0nsy L8B4 w0 a0 2o00

L6250 L2608 o3 080 B

1
1136269 130,795

50,75
2821

r2a.20

w9100

500 750 1000
Nlimber of Cities °

Figure 12. Comparison of different algorithms generated shortest distance for different graph sizes.

Comparison of different algorithms for Execution Time Vs Number of Cities

mm Brute Force
NN

W Genetic Alg

mmm Proposed 2-Step NN

520
e
s
50
157 10
10 -
® ® o i
5
B}
5
s 6
3 3 3 3 3
2
o o o o o o o o
15 25 50 100 250 500 750 1000

Number of Cities

w2

104

2

Execution Time (ms)

10%

Figure 13. Comparison of different algorithms consumed execution time for different graph sizes.

in terms of generated minimum distance for different graph sizes, Figure 12 was drawn using the distance

ICCK Transactions on Mobile and Wireless Intelligence

ICJK

data from Table 1. Here, distances were represented in
a logarithmic scale for better visualization. Figure 12
shows that for small graphs, the genetic algorithm
performed well as brute force, but with increasing
the graph size, the performance degrades rapidly.
We can also see that for small graph sizes (5 to
15 nodes), the performance of the proposed 2-step
NN algorithm is almost the same as the original
nearest neighbor algorithm. But with increasing the
number of nodes from 25-750, the proposed 2-step NN
performed well compared to the nearest neighbors
and in most cases, the genetic algorithm as well. It
happens due to the idea described in Figure 3 in
Section 3. However, genetic algorithm performance
could improve with optimized parameters, which were
not fully explored here [24]. The performance of
proposed 2-step algorithms degrades with further
increasing the number of nodes like 1000. However,
a better performance could also be achieved with
a large graph size if the algorithm explores more
number of nearest neighbors and in more depth (than
2 in this experiment) so that it could consider many
potential sub-tours (here, it was 4) before selecting the
lowest distance sub-tour. With increasing the number
of neighbors and sub-tour lengths, the algorithm
will become closer to brute force. So, the proposed
algorithm could adapt between brute force and nearest
neighbors depending on the requirement and available
resources.

Then, to compare the execution time of different
algorithms for different numbers of nodes, execution
times from Table 1 were taken (all converted to
millisecond (ms) units) and drawn in Figure 13.
Again, execution time was represented in logarithmic
scale for better visualization. It also illustrates the
exact execution time (in ms) of each algorithm for
different graph sizes. From Figure 13, we can see that
the brute force execution time increases very rapidly
with increasing the number of nodes from 5 to 13.
In [5], stated that if a system can evaluate a path in 1
nanosecond, it will take 10 million years to evaluate all
the possible paths in a graph having only 25 nodes. It
discouraged testing the algorithm for the graph with
more nodes. Overall, the execution time of the genetic
algorithm is higher than the nearest neighbor and the
proposed 2-step nearest neighbor algorithm. Between,
the nearest neighbor and the proposed algorithm, the
proposed algorithm consumes a little more time than
the nearest neighbor because it considers 4 sub-tours
before taking 1. For all algorithms, the execution time
increased with increasing the number of nodes in the

graph.

Overall, for most graphs (especially with nodes
up to 750), the proposed 2-step nearest neighbor
algorithm achieves a lower distance tour than the
nearest neighbor with the expense of a little more
execution time.

5 Conclusion and future work

In conclusion, this paper introduces a 2-step nearest
neighbor algorithm, a variant of the traditional nearest
neighbor approach. It aims to find a more optimal
solution by exploring four sub-tours, each comprising
two edges, before making a selection. The two nearest
neighbors from the current node and two more nearest
neighbors for each of them contribute to the four
sub-tour generation process. Performance analysis
proves its effectiveness for finding low-cost tours
than existing nearest neighbors for graphs with low
to medium numbers of nodes (5 to 750). For a
high number of nodes, like 1000, the performance
dropped because 4 sub-tours might not be sufficient
considering many potential sub-tours. The issue could
be resolved by exploring more sub-tours with high
lengths (more than two), and that would be studied
as future work. However, for the execution time, the
proposed algorithm needs a little more computational
time than the existing nearest neighbor.

Moreover, the proposed approach can be adapted
for route planning in IoT environments that rely on
mobile data collectors. In such systems, where a
collector device sequentially visits multiple distributed
IoT sensor nodes for data gathering and returns to
a base station, the problem naturally aligns with
the TSP formulation. Future work will evaluate the
performance of the proposed algorithm with other
existing TSP solutions. The investigation will also
integrate this algorithm into mobile edge computing
frameworks and IoI-based delay-tolerant wireless
environments to evaluate its practical impact in
real-world IoT mobile data collection applications.

Data Availability Statement

The source code and relevant data supporting the
findings of this study are publicly available at the
following GitHub repository: https:/github.com/azad-ns
tu/CS570-Proj-1-Traveling-Salesman-Problem-TSP.

Funding

This work was supported without any funding.

https://github.com/azad-nstu/CS570-Proj-1-Traveling-Salesman-Problem-TSP
https://github.com/azad-nstu/CS570-Proj-1-Traveling-Salesman-Problem-TSP

ICJK

ICCK Transactions on Mobile and Wireless Intelligence

Contflicts of Interest

The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Dahiya, C., & Sangwan, S. (2018). Literature review
on travelling salesman problem. International Journal

of Research, 5(16), 1152-1155.
[2] Kithn, D., & Osthus, D.

of Combinatorics, 33(5), 750-766. [CrossRef]

[3] Hahsler, M., & Hornik, K. (2008). TSP—infrastructure
for the traveling salesperson problem. Journal of

Statistical Software, 23, 1-21. [CrossRef]

[4] Nemani, R., Cherukuri, N., Rao, G. R. K., Srinivas, P.
V. V.S, Pujari, J. J., & Prasad, C. (2021, November).
Algorithms and optimization techniques for solving
tsp. In 2021 Fifth international conference on I-SMAC
(IoT in social, mobile, analytics and Cloud) (I-SMAC) (pp.

809-814). IEEE. [CrossRef]

[5] Yang, L., Wang, X., He, Z.,, Wang, S., & Lin, J.
(2023, December). Review of traveling salesman
problem solution methods. In International Conference
on Bio-Inspired Computing: Theories and Applications
(pp- 3-16). Springer Nature Singapore. [CrossRef]

[6] Lenstra, J. K., & Kan, A. R. (1975). Some simple
applications of the travelling salesman problem.
Journal of the Operational Research Society, 26(4), 717-733.

[CrossRef]

[7] Matai, R., Singh, S. P., & Mittal, M. L. (2010). Traveling
an overview of applications,
formulations, and solution approaches. Traveling
salesman problem, theory and applications, 1(1), 1-25.

[8] Akshatha, P. S., Vashisht, V.,, & Choudhury, T.

Comparison Of Various Mutation Operators Of
Genetic Algorithm To Resolve Travelling Salesman

salesman problem:

Problem.

[9] Suriya Praba, T., Sethukarasi, T., & Venkatesh, V.
(2020). Krill herd based TSP approach for mobile
sink path optimization in large scale wireless sensor
networks. Journal of Intelligent & Fuzzy Systems, 38(5),

6571-6581. [CrossRef]

[10] Pavlenko, O., Tymoshenko, A., Tymoshenko, O.,
Luntovskyy, A., Pyrih, Y., & Melnyk, 1. (2022,
February). Searching extreme paths based on
travelling salesman’s problem for wireless emerging
networking. In IEEE International Conference on
Advanced Trends in Radioelectronics, Telecommunications
and Computer Engineering (pp. 284-304). Cham:

Springer Nature Switzerland. [CrossRef]

[11] Azad, A. K, Alam, M. S, & Shawkat, S. A.

(2012). A survey on
Hamilton cycles in directed graphs. European Journal

[12]

[15]

[16]

(2019). DCDS-MAC: A Dual-Channel Dual-Slot MAC
Protocol for Delay Sensitive Wireless Sensor Network
Applications. J. Commun., 14(11), 1049-1058.

Aouedi, O., Vu, T. H, Sacco, A., Nguyen, D.
C., Piamrat, K., Marchetto, G., & Pham, Q. V.
(2024). A survey on intelligent Internet of Things:
Applications, security, privacy, and future directions.
IEEE communications surveys & tutorials, 27(2),
1238-1292. [CrossRef]

Heidari, A., Shishehlou, H., Darbandi, M.,
Navimipour, N. J., & Yalcin, S. (2024). A reliable
method for data aggregation on the industrial internet
of things using a hybrid optimization algorithm and
density correlation degree. Cluster Computing, 27(6),
7521-7539. [CrossRef]

Chen, X. (2012). Fast patrol route planning in dynamic
environments. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 42(4), 894-904.
[CrossRef]

Park, J., & Kim, B. I. (2010). The school bus routing
problem: A review. European Journal of operational
research, 202(2), 311-319. [CrossRef]

Jordan, S., Moore,]., Hovet, S., Box,]., Perry, J.,
Kirsche, K., ... & Tse, Z. T. H. (2018). State-of-the-art
technologies for UAV inspections. IET Radar, Sonar &
Navigation, 12(2), 151-164. [CrossRef]

Hafeez, A., Husain, M. A,, Singh, S. P., Chauhan,
A., Khan, M. T., Kumar, N., ... & Soni, S. K.
(2023). Implementation of drone technology for farm
monitoring & pesticide spraying: A review. Information
processing in Agriculture, 10(2), 192-203. [CrossRef]
Balas, E., & Toth, P. (1983). Branch and bound methods
for the traveling salesman problem.

Simonetti, N. O. (1998). Applications of a dynamic
programming approach to the traveling salesman problem.
Carnegie Mellon University.

Bryant, K. (2000). Genetic algorithms and the
travelling salesman problem.

Aarts, E. H., Korst, J. H., & van Laarhoven, P. J. (1988).
A quantitative analysis of the simulated annealing
algorithm: A case study for the traveling salesman
problem. Journal of Statistical Physics, 50, 187-206.
[CrossRef]

Baidoo, E., & Oppong, S. O. (2016). Solving the TSP
using traditional computing approach. International
Journal of Computer Applications, 152(8).

Sharma, V., Kumar, R., & Tyagi, S. (2020). Optimized
solution of TSP (Travelling Salesman Problem) based
on mendelian inheritance. Recent Advances in Computer
Science and Communications (Formerly: Recent Patents
on Computer Science), 13(5), 909-916. [CrossRef]
Rexhepi, A., Maxhuni, A., & Dika, A. (2013). Analysis
of the impact of parameters values on the Genetic

Algorithm for TSP. International Journal of Computer
Science Issues (IJCSI), 10(1), 158.

https://doi.org/10.1016/j.ejc.2011.09.030
https://doi.org/10.18637/jss.v023.i02
https://doi.org/10.1109/I-SMAC52330.2021.9640907
https://doi.org/10.1007/978-981-97-2275-4_1
https://doi.org/10.1057/jors.1975.151
https://doi.org/10.3233/JIFS-179737
https://doi.org/10.1007/978-3-031-24963-1_16
https://doi.org/10.1109/COMST.2024.3430368
https://doi.org/10.1007/s10586-024-04351-4
https://doi.org/10.1109/TSMCA.2012.2183361
https://doi.org/10.1016/j.ejor.2009.05.017
https://doi.org/10.1049/iet-rsn.2017.0251
https://doi.org/10.1016/j.inpa.2022.02.002
https://doi.org/10.1007/BF01022991
https://doi.org/10.2174/2213275912666190617155828

ICCK Transactions on Mobile and Wireless Intelligence

ICJK

10

Abul Kalam Azad is currently a Ph.D. student
in Computer Science at The University of
Alabama, Tuscaloosa, USA. He earned a
B.Sc. (Engg.) degree from the Department
of Computer Science and Telecommunication
Engineering of Noakhali Science and
Technology University, Bangladesh, in 2010,
and an M.S. (research-based) degree from the

. Institute of Information and Communication

Technology of Bangladesh University of
Engineering and Technology, Bangladesh, in 2016. Before joining
The University of Alabama, he served as an Assistant Professor in
the Department of Computer Science and Telecommunication
Engineering at Noakhali Science and Technology University,
Bangladesh. His research interests include ML, cybersecurity, the
Internet of Things (IoT'), and wireless sensor networks. (Email:
aazadl@crimson.ua.edu)

	Introduction
	Algorithms for TSP
	Brute Force Approach
	Nearest Neighbor
	Genetic Algorithm

	Proposed 2-step nearest neighbor algorithm
	Experiment and result analysis
	System Configuration
	Experiment
	Result Analysis

	Conclusion and future work
	Abul Kalam Azad

