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Abstract
Aiming to move from conventional
throughput-centric paradigms to intelligent,

context-aware systems able of perception and
autonomous decision-making, sixth-generation
(6G) wireless networks is seeking. Driven by
recent developments in deep learning and edge
artificial intelligence, computer vision (CV) proves
to be a key enabler for such perceptive 6G systems.
This paper offers a thorough overview bringing
together the scattered terrain of CV-enabled 6G
technologies. It benchmarks current models
against major 6G performance criteria, evaluates
architectural paradigms including federated and
split learning, and presents a disciplined taxonomy
of use cases. This study also notes the possibility
of incorporating new technologies with CV to
make it more effective, such as fluid antenna
system (FAS) and fluid antenna multiple access
(FAMA). The study shows that CV integration
improves fundamental 6G capabilities like
beamforming, mobility prediction, localisation,
semantic communication, and immersive control.
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It also reveals limits in real-time inference under
URLLC constraints, data scarcity, and energy
economy, though. This work presents a unified
basis for advancing CV-native 6G networks by
spotting open challenges and suggesting a roadmap
including generative perception, collaborative
intelligence, and green vision computing.

Keywords: computer vision, 6G wireless networks, FAS,
edge intelligence, semantic communication, vision-aided
6G applications.

1 Introduction

Sixth-generation (6G) wireless networks represent
a paradigm change from simple high-throughput
connectivity towards highly integrated, intelligent, and
perceptive systems. Unlike 5G, which concentrated
on improvements in latency, data rates, and
spectral efficiency, 6G aims to embed cognition,
context-awareness, and semantic understanding
into the network itself. The convergence of artificial
intelligence (AI) [1-3], edge computing, and
multi-modal sensing drives this metamorphosis
mostly. Among the several fields covered under
artificial intelligence, computer vision (CV) has
become a particularly effective enabler of 6G
capabilities. = CV is expected to be central in
realising self-adaptive, autonomous, and goal-driven
communication environments since it can extract rich
spatial and semantic information from the physical
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world [4, 5].

Not only is it advantageous but also required to
include CV into 6G networks. Wireless signals become
quite sensitive to environmental conditions including
blockage and fast fading as communication moves
into the terahertz and millimeter-wave domains [37].
Under such conditions, vision sensors installed at
base stations, drones, or edge nodes can continuously
monitor the physical scene and allow predictive
and context-aware changes to beamforming, resource
allocation, and handoff decisions [11, 16, 18]. CV helps
predict user movement, obstacles, and task states in
real time in ultra-reliable low-latency communication
(URLLC) scenarios, such remote surgery or industrial
automation, so enabling networks to take proactive
rather than merely reacting to channel variations
[19, 20].

Still another crucial incentive is the growing emphasis
on edge intelligence. As connected devices including
wearables, drones, and cars become more plentiful,
centralised inference becomes both useless and
harmful in terms of privacy. Emerging techniques
including Federated Learning (FL) and Split
Learning (SL) present interesting solutions by letting
model training and inference occur near the data
source without distributing sensitive visual content.
This distributed approach is particularly useful
in sectors including healthcare, smart cities, and
critical infrastructure where latency and privacy are
paramount [12].

Moreover, exact visual perception is essential for
6G’s goal to support completely immersive services
including the metaverse and digital twins [21]. CV
serves as the sensory layer in many applications that
helps to match physical objects with their virtual
equivalents. Essential for immersive and interactive
experiences, real-time vision feedback allows precise
avatar behaviour, gesture recognition, and scene
reconstruction. Together with Al-powered digital
twins, CV can also support remote monitoring of
industrial systems, cyber-physical coordination, and
predictive maintenance [4, 22].

Fluid Antenna Systems (FAS) are reconfigurable
antenna structures often fluidic, dielectric, or
conductive that dynamically adjust their shape or
position to optimize radio-frequency characteristics,
enabling enhanced signal diversity and interference
mitigation. Fluid Antenna Multiple Access (FAMA)
builds on this by allowing users to reposition their
antennas to maximize signal-to-interference ratio
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(SIR), reducing the need for complex signal processing
or channel state information, which is especially
valuable in dense 6G environments. The main goal
of 6G is to combine sensing and communication
where FAS can help with that by making integrated
sensing and communication (ISAC) possible. This
will make it possible for vision-based applications like
self-driving cars, smart surveillance, and immersive
AR/VR experiences to know what’s going on in
the environment and where things are in real time
[13-15].

A pillar of 6G, semantic communication is another
area where CV is absolutely essential. Conventional
networks mostly aim to precisely transmit raw data.
Semantic networks, on the other hand, seek to send
just pertinent, meaningful information. Here, by
extracting high-level semantic cues such as intent,
posture, and gestures from visual data, CV becomes
rather important. After then, these cues can be more
effectively encoded and transmitted, so drastically
lowering bandwidth requirements and improving
interpretability [10]. New research has shown that
machine learning (ML) is the most important part
of 6G’s foundations. This includes not only signal
processing and edge optimisation, but also smart and
privacy-aware architectures [40]. This convergence
makes for a great environment for CV to be a top-tier
way to do things in the larger ML-driven network
ecosystem.

Table 1 shows a combined review of current
high-impact survey papers on CV, artificial intelligence,
and 6G communication. Although many works have
examined specific elements such beamforming [7],
mobility management [8, 51], GPS localisation [6],
or federated learning [12, 12], they remain siloed
in scope. Most current studies either completely
ignore CV or fail to fully contextualise its potential
in tandem with other 6G enablers including digital
twins [4], semantic communication, integrated sensing
and communication (ISAC). Just a few address
cross-technology convergence or dataset availability.
By contrast, this survey presents a consistent and
all-encompassing treatment of the CV-6G nexus.
Incorporating system-level concerns including privacy,
URLLC compliance, and digital twin-driven feedback,
it spans many fields: beamforming, handover
prediction, semantic processing, and edge Al [4, 10,
12]. This all-encompassing strategy not only fills in
open research gaps but also specifies a fresh path for
including perception-driven intelligence into the 6G
wireless fabric. We present a thorough taxonomy of
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Table 1. Comparative summary of recent survey papers.

Paper CV for Beamforming CV for Handoff FL/Edge-Al Digital Twin ISAC/URLLC Semantic Comm Dataset Review FAS/FAMA
[7] v v X X v X v X
(8] v v X X v X X X
[6] X X X X X X v X
[9] X X X X v X X X
[10] X X v v v v X X
[11] X X X v v X X X
[44] X X v v v X v X
[12] X X v X X X X X
[13] X X X X X X X v
Our Work v v v v v v v v

the main uses of CV in 6G environments and underline
their importance in improving several tiers of the
communication stack in the next part.

The present research scene is scattered even with
these interesting prospects. Several works separately
address vision-based beamforming, mobility
prediction, localisation, and traffic classification
[2, 16, 17]. Some surveys address enabling
technologies for 6G such as digital twins, semantic
layers, and privacy-preserving artificial intelligence
but treat CV either superficially or as a secondary tool
[1, 4, 12]. Therefore, a thorough survey combining
these developments and provides a disciplined,
forward-looking perspective of CV as a first-class
citizen in 6G architectures is absolutely needed.

This work provides the first complete-stack survey
aimed at the integration of CV in 6G networks, so
meeting that demand. It harmonises studies across
architectural designs, learning paradigms, deployment
techniques, and application levels. More precisely, the
paper makes five main contributions:

o It suggests a fresh taxonomy based on important
6G capabilities including beam prediction,
handover, localisation, traffic classification, and
immersive communication that groups CV use
cases.

It offers a system-level picture of CV’s interactions
with other 6G enablers including semantic
networking, digital twins, federated learning, and
ISAC.

It evaluates and benchmarks accessible
datasets, so stressing the shortcomings in
present data resources and the possibilities for
simulation-based generation with digital twins.

We highlighted CV models used in real-time
communication environments trade-offs between
latency, accuracy, bandwidth, and energy
economy.

e This work puts FAS/FAMA-CV integrated system
in the spotlight, where it explores the possibility
and insights of merging them.

e We point up open research challenges and
presents vision-based RIS control, generative
perception, cross-device CV coordination, and
sustainable vision computing as new directions.

This work is arranged restingly as follows. Section 2
presents the fundamental theoretical underpinnings
and main enablers enabling CV integration in
6G networks: semantic communication, integrated
sensing and communication (ISAC), digital twins, and
edge learning paradigms. Section 3 systematically
arranges CV-aided applications based on their function
in 6G systems, so offering a complete taxonomy.
Section 4 investigates the architectural frameworks
needed to enable scalable and privacy-preserving CV
deployments spanning the edge—cloud continuum.
While Section 5 details future research directions
including generative vision, RIS-assisted control,
and quantum CV, for the addressed open research
challenges including real-time inference, privacy risks,
and explainability constraints. At last, Section 6
summarises the main findings of the survey together
with a road map for including perception-driven
intelligence into next-generation wireless systems.

2 State of art

By including perception, cognition, and automation
into the very fabric of the network, the expected
sixth-generation (6G) wireless systems seek to
radically rethink communication.  Rising from
the constraints of 5G, 6G is expected to enable
ultra-massive  connectivity, near-zero latency,
sub-centimeter localisation, and semantic-level
information exchange, so supporting use cases
including the metaverse, holographic communication,
autonomous vehicles, and remote brain-computer
interfacing [4, 10, 38, 39, 41].

Concurrent with this change in classical image analysis
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to deep learning-powered perception systems capable
of real-time scene understanding, spatial awareness,
and predictive modelling is CV. Fusion of CV with
wireless communication technologies has become a
transforming paradigm as 6G networks aim to become
perceptive and native-Al infrastructues.

2.1 Development of CV towards Network

Intelligence

Originally limited to surveillance and automation,
CV has lately become popular in wireless systems by
means of deep convolutional neural networks (CNNS),
Vision Transformers (ViTs), and attention-based
encoders for tasks including beam selection, blockage
prediction, and mobility management [7, 23, 24].
These systems augment physical layer decisions using
camera data and visual semantics, so generating
new ideas including vision-aided beamforming
and vision-guided proactive handoff in THz
communication environments [8, 26].

Further potential to overcome GNSS restrictions in
dense urban or indoor deployments is shown by
pixel-level localisation methods using visual odometry
and GPS fusion [6]. Furthermore opening the
door for CV to be crucial in traffic steering and
anomaly detection is real-time packet classification
using image-based CNN encoders [28].

2.2 Essential Technologies Making Vision-Driven
6G Networks Possible

Recent work underline the fundamental contribution
of deep learning architectures in enabling CV for 6G,
especially through distributed intelligence frameworks
such FL, split learning (SL), and edge inference [12,
43]. These paradigms enable cooperative, distributed
training and inference across edge devices, UAVs, and
vision sensors so addressing bandwidth, privacy, and
latency bottlenecks.

Vision integration is also under investigation in concert
with technologies including reconfigurable intelligent
surfaces (RIS), high-altitude platform systems
(HAPS), and integrated sensing and communication
(ISAC [4, 19, 45, 61]. For THz bands, for example,
CV systems can increase blockage awareness by
combining spatial visuals with environmental
dynamics, so improving beam selection accuracy.

2.3 Digital Twins and Semantic Communication

Acting as real-time digital copies of physical
environments, digital twin systems have become
fundamental in 6G network architecture. Continuous

22

environmental context from CV feeds these twins
supporting adaptive control, localisation, and
beamforming updates [17]. Using immersive CV
interfaces, metarobotics and cognitive digital twins
(cogDTs) enable remote operation and instruction in
manufacturing and smart industry settings [11, 48].

Semantic communication models, meantime, aim
to send just "meaningful” information derived from
multimodal sources. Here CV is rather important since
it helps extract, compress, and transmit high-impact
visual features rather than raw data [10].

2.4 Benchmarking, Datasets, and Limitations

Right now, not many datasets fit for CV applications
specifically for 6G exist.  Initial contributions
including ViWi, VOMTC, and Pixel GPS reflect handoff
prediction, CV-aided beam management, and GPS
denoising [6, 27]. Still, a main void remains general
lack of large, realistic, and diverse datasets for
tasks including RIS control, HAPS coordination,
and real-time CV inference under latency/energy
constraints [4]. Low generalising of CV models
across geographic and environmental settings, lack
of explainability, and high energy costs for real-time
vision inference especially in FL/edge settings add
more challenges [11, 12, 52].

3 CV-Aided Use Cases in 6G

A major enabler for reaching really intelligent,
context-aware, and perceptive 6G wireless networks is
CV. The natural ability of CV systems to extract rich
semantic information from visual data complements
conventional signal-based metrics, so enabling
wireless networks to actively adapt to their
environment.  Several pioneering research have
shown how vision can be included into wireless
communication pipelines to solve restrictions in
beamforming, mobility management, localisation,
even network security.

Especially in millimeter-wave (mmWave) and
terahertz (THz) bands where the sensitivity to
line-of-sight (LoS) blockage presents major challenges,
CV in 6G has one of the most fascinating applications
in vision-aided beamforming and blockage prediction.
From RGB or RGB-D images, vision-based systems can
deduce environmental geometry and object positions
that can then be used to predict ideal beam directions
prior to signal degradation beginning. Thanks in
great respect to the VOMTC and VOBEM datasets,
deep learning models including CNNs and vision
transformers that map real-time images to beam
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indices with great accuracy have been trained [8].
Applied in ultra-reliable low-latency communication
(URLLC), these models unveil sub-10 millisecond
latency and accuracy exceeding 95%. This proactive
adaptation increases connectivity and helps to avoid
handover delays in highly urban projects.

Likewise, the addition of CV modules has seen notable
developments in proactive mobility and handover
management.  Conventional handover systems
respond to changes in signal strength; but, with
CV, networks can predict user or vehicle trajectories,
classify dynamic objects (e.g., pedestrians, vehicles),
and project the need for cell reselection. Vision-based
mobility management systems where convolutional
recurrent neural networks (e.g., ConvGRU) process
sequential frames to forecast link blockages or mobility
events have been presented in studies including [29-
31]. By over 40% reduction in latency, preemptive
handoff decisions help to improve service continuity
in non-line-of-sight (NLoS) environments. Particularly
in scenarios with great user mobility such vehicle
networks and UAV-assisted communications, visual
context from street scenes, vehicle orientation, and
obstacle prediction supports dynamic radio link
reassignment [32].

Another vital field where CV provides significant
improvements is localisation and positioning.
Significant mistakes in urban canyons or dense
environments  plague traditional = GPS-based
systems. CV can thus be combined with THz
beam characteristics including angle-of-arrival (AoA)
and delay spread to improve localisation estimates
and so help to mitigate this. By combining RGB
images with wireless beam feedback, using a neural
architecture that lowered localisation error below 0.5
meters, pixel-level GPS localisation was accomplished
in [6]. Furthermore, beam-based fingerprinting can
be used to augment visual simultaneous localisation
and mapping (SLAM), so allowing sub-meter indoor
positioning critical for industrial automation and
AR/VR applications in the 6G era.

Traffic classification and network security depend
on CV even beyond enhancements in the physical
layer. Translating packet-level data into image-like
matrices allows convolutional neural networks to be
highly accurately used to detect anomalies, intrusions,
and denial-of- service (DoS) attacks. Low false
positive rates indicate how CV-inspired models can
be trained on packet visualisations to get classification
accuracy almost close to 99%. These models are

particularly useful when standard signature-based
intrusion detection fails in encrypted or obfuscated
traffic conditions. Moreover, the computational
simplicity of modern CV models guarantees low
latency when applied at edge servers or base stations,
so preserving real-time threat reducing characteristics
[42].

Furthermore advancing immersive metaverse
environments and 6G-enabled smart factories is
CV. By means of immersive interfaces such as VR
and AR, CV allows real-time visual monitoring and
control of remote robots, so enabling ubiquitous and
itinerant human-robot cooperation (pi-HRC) in the
metarobotics vision proposed by [11, 49]. While CV
decodes gestures, spatial interactions, and user intent,
such systems rely on 6G’s ultra-low-latency and
high-bandwidth capabilities to stream high-density
visuals. Applications abound from remote learning
to industrial automation and tailored healthcare.
CV’s impact increases even more when one includes
digital twins, collective artificial intelligence, and
holographic displays which provide both control and
feedback loops between real-world and virtual objects
[47, 59, 60].

UAV-based CV applications find traction in on-demand
coverage, surveillance, and disaster recovery.
CV-equipped drones can evaluate coverage gaps,
find human presence, and evaluate terrain using
onboard cameras run under either lightweight CNNs
or YOLO variants. Using vision-driven environmental
awareness in [33] drones changed their formation and
ensured strong wireless coverage in real time. These
drones can also interact with reconfigurable intelligent
surfaces (RIS) and high-altitude platform stations
(HAPS), so optimising coverage zones dependent on
visual context and expected obstacles.

Table 2 offers a necessary overview of main CV-aided
usage cases in 6G wireless systems. Every row
focusses on a particular application domain including
the type of visual input used, the applied CV
techniques, the matching 6G function enabled, and
the published performance measurements from
current work. Important disciplines ranging from
beamforming to mobility prediction, localisation,
security, industrial control, and UAV-based sensing are
found here. This ordered review not only shows the
spectrum of CV applications in 6G but also highlights
the increasing need of including perception-driven
intelligence into next wireless systems.

By extending the perceptual limit of 6G networks,
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Table 2. Summary of CV-Aided use cases in 6G.

Use Case Vision Input CV Technique 6G Function Performance
Beamforming & RGB, RGB-D CNN, ViT Beam index Accuracy >95%,
Blockage Prediction video prediction, LoS Latency <10ms
classification
Proactive Mobility & RGB video ConvGRU, Mobility Latency | 40%
Handover sequences ResNet prediction, link
reassignment
Localization & RGB + Beam data Neural Fusion, Sub-meter 0.43m RMSE,
SLAM DNN positioning, 25ms latency
GPS refinement
Traffic Classification Packet images CNN classifier Anomaly/DoS 98.9% accuracy,
& Security detection Low FPR
Industrial Control & Live video YOLOVS, ViT Robot interaction, Realtime
Metaverse streams control in digital actuation,
twins immersive control
UAV-Based Vision Onboard drone Lightweight Disaster mapping, Scene-aware
Sensing camera CNN, YOLO coverage pathing, realtime
extension updates

CV helps them to see, reason, and change with their
surroundings. Whether for beamforming, mobility,
localisation, security, or industrial automation
including CV into communication pipelines marks
a paradigm change from reactive to proactive and
intelligent network operation. As 6G networks
develop more efficient, privacy-conscious, and closely
linked with edge computing, CV models will become
ever more crucial.

4 Architectures for enabling CV in 6G

Combining CV into 6G network designs calls for a
rethink of the traditional wireless communication
stack. Unlike past generations, 6G is made to
be intrinsically Al-native, semantic-aware, and
sensing-integrated, so providing a rich ground for
embedding CV functions straight into communication
pipelines [4, 10]. Examining layered deployments,
computing paradigms, hardware/software integration,
and the interaction with enabling technologies
including semantic communication, federated
learning, and digital twins, this section discusses
the architectural paradigms that enable the smooth
adoption of CV technologies in 6G systems.

4.1 Joint CV-Communication Architectural Layers

In 6G, CV is expected to be buried across several
layers of the communication stack. Vision sensors
including RGB, depth, infrared, and multispectral
cameras continuously record the surroundings
at the perception layer. Lightweight CNNs or
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vision transformers (Vils) applied either on the
device or at edge nodes [1] preprocess these
data. Real-time inference, feature extraction, and
local decision-making fall to the edge intelligence
layer [50]. For applications including proactive
beam steering and mobility management, where
millisecond-level responsiveness is needed [8], this is
absolutely vital. Rather than raw video streams, the
communication layer sends semantically compressed
or feature-level data, so drastically lowering the
bandwidth demand [10]. At last, the cognitive
orchestration layer uses artificial intelligence agents
to coordinate among CV insights, digital twin
simulations, and network optimisation modules.

Figure 1 shows a layered architecture that catches
the end-to- end integration of CV inside a 6G
network system. At the base, several imaging
modalities including RGB, depth, and thermal
cameras that serve environmental sensing comprise
the perception layer. After capture, the data is sent
to the edge intelligence layer, where lightweight CV
models run real-time inference often improved with
federated or split learning techniques. After that,
semantic representations of these visual insights are
encoded and sent across the communication layer,
so conserving context and so lowering bandwidth.
Feeding into the digital twin layer, which keeps a
synchronised simulation of the physical environment,
the cognitive orchestration layer uses artificial
intelligence agents to interpret semantics and change
network parameters. A basic design for future 6G
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Digital Twin Layer
(Simulation/Control)

Cognitive Orchestration
(AI Agents & SemCom)

Communication Layer
(Semantic Feature Flow)

Edge Intelligence
(FL, SL, Inference)

Perception Layer
(RGB/Depth Cameras)

Figure 1. Multi-layered CV-communication architectural
stack in 6G.

systems, this architectural layering not only supports
real-time CV-driven network adaptation but also
proactive decision-making.

4.2 Integrating Computer Vision with FAS/FAMA
in 6G Networks

Since 6G networks is driving towards an URLLC, the
well use of the spectrum is a major requirement, where
CV and FAS combination can be an incredible solution
for that. FAS is known by its ability to create an
adaptable physical layer wich lets one antenna move
between spatial ports in real time to boost the signal as
discussed in those studies [13-15, 53-58]. Therefore,
we can use CV as helper for a more smooth operating
FAS where it will take the advatage of it to help find
things in the way, it guess where the user will go, or
figure out where they might be, in order to make the
system able to place the antennas ahead of time in the
most probable place where the user will be thus avoid
and stops the link from getting worse. FAMA builds
on FAS to let these dynamic antennas serve more than
one user by taking advantage of interference fading
characteristics [13]. This makes the hardware much
simpler while also increasing the chances of an outage
and the multiplexing gain.

4.3 Edge/Fog-Based Offloading of Vision Tasks

Vision tasks are offloaded to edge or fog nodes to
help end devices overcome their limited resources.
Real-time applications including dynamic handoff

prediction and UAV path correction [4, 25] are made
possible by these nodes hosting models tuned for
latency-sensitive inference. Techniques for model
partitioning such quantization-aware training and
split learning (SL) help distribute computational
loads over the edge-cloud continuum [11, 12]. This
allows a scalable and flexible deployment of CV
systems without endangering user privacy or system
performance [12].

4.4 Distributed CV via Federated and Split
Learning

FL has become a main enabler for 6G [12] vision
systems preserving privacy. Aggregated at edge
servers, CV models trained locally on user or
sensor devices avoid the need to broadcast raw
data. Applications involving sensitive images or
personalised vision models (e.g., smart healthcare,
AR/VR in metarobotics) [11] especially depend on
this. By letting deep models be split across servers and
devices, split learning balances inference latency and
privacy in complementing FL.

Table 3 shows for a comparison of three well-known
learning paradigms centralised, federated, and
split learning for 6G network deployment of CV
models. Every paradigm is ranked covering important
performance criteria including domain fitfulness,
inference latency, data privacy, and training overhead.
Although centralised learning is resource-intensive
and privacy-limited, for applications like packet
classification needing mass data access it is still
appropriate. Perfect for applications in smart cities
and healthcare where sensitive data is abundant,
federated learning keeps data local and improves
privacy. Split learning offers the lowest latency and
best privacy characteristics by distributing model
segments over the edge and cloud; these are important
in environments including UAV navigation or
immersive AR/VR systems. Emphasising the need of
context-aware architecture design in vision-activated
6G systems, this comparison reveals that none of any
technique is always best.

4.5 Semantic Communications and

Knowledge-Aware CV Pipelines

Semantic communication (SemCom) lets one send
just task-relevant features instead of whole data
frames. High-level semantics (e.g., detected object
class, mobility intent, or scene label) extracted by
CV modules is compiled into compact messages [10].
These signals not only help to maximise channel use
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Table 3. Comparison of learning paradigms for vision in 6G.

Learning Type  Privacy Latency Overhead Use Cases

Centralized Low Moderate High Beamforming, Classification
Federated High Low Medium  Smart cities, HAPS, Healthcare
Split Very High Very Low Low UAVs, AR/VR, Metaverse

but also let Al agents in the orchestrating level make
contextual decisions. Visual data across heterogeneous
networks is interpreted using knowledge graphs
and ontologies so improving interoperability in
multi-agent systems [46].

4.6 Vision Integration
Metarobotic Systems

in Digital Twin and

In 6G digital twins (DTs) are live, synchronised
digital copies of the physical world. Feeding these
DTs real-time environmental perceptions [4] depends
critically on CV. CV pipelines provide the sensory
interface between users and remote environments
in industrial and metarobotic settings, so enabling
teleoperation, remote maintenance, and holographic
collaboration [11]. For semantic rendering and
closed-loop actuation, these pipelines have to be
closely linked with DT models.

Enabling architectures for CV in 6G are defined in
general by deep vertical integration from perception
to orchestration layers, horizontally distributed
intelligence across edge-cloud infrastructues, and
semantic-aware communication pipelines. Together,
these architectural innovations open the path for smart,
strong, low-latency visual intelligence in 6G systems.

5 Challenges and Future Research Directions

By including CV into the fabric of 6G wireless
networks, beamforming, mobility, localisation, and
immersive services acquire hitherto unusual capability.
But this convergence also raises several cross-domain
issues that are mostly unresolved in current literature.

5.1 Technical and Operational Challenges

Real-time perception and inference under ultra-reliable
low-latency communication (URLLC) constraints
presents one of the most urgent problems. While
6G targets sub-millisecond latency and 99.99999%
reliability, current CV models—especially those
based on deep neural networks such Vision
Transformers—need considerable computational
overhead and often fail when implemented on edge
nodes with limited resources [4, 33]. An open
design challenge remains balancing strict latency
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budgets with high-resolution visual input processing
[12,34-36].

Furthermore lacking standard interfaces and
architectural cohesiveness is interoperability
between CV models and multi-modal sensing
modalities including RF, LiDAR, and semantic
communication agents [10]. While coping with
the domain shift caused by various environmental
and device conditions, vision systems in 6G must
smoothly co-function with integrated sensing and
communication (ISAC) layers.

Edge deployment creates a different set of trade-offs.
Vision-activated inference pipelines have to be
maximised for power economy without sacrificing
prediction or detection accuracy. However, present
solutions sometimes depend on cloud offloading,
which compromises privacy guarantees and latency.
Moreover, although promising, the federated and split
learning paradigms suffer from data heterogeneity,
lack of personalising for vision-centric tasks, and
communication bottleneck [12].

Particularly with the increasing CV in consumer and
industrial environments, privacy, explainability, and
trustworthiness are becoming issues. Distributed
CV applications in smart cities, surveillance, and
healthcare run hazards of information leaking, model
inversion, and inadvertent bias [10].  Further
complicating the deployment of CV in mission-critical
situations including drone navigation or industrial
automation is the absence of explainable visual
intelligence.

Lack of comprehensive, labelled datasets particular
to 6G-CV activities is another major bottleneck.
Particularly under extreme mobility or adversarial
interference [23], vision-for-wireless datasets
including VOMTC or ViWi have limited diversity and
resolution. This scarcity prevents generalisation over
use cases, benchmarking, and transfer learning.

5.2 Research Roadmap and Emerging Trends

Several future directions show great promise in
filling in the above mentioned challenges. First,
generative vision models including conditional GANs
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and diffusion models can be used to synthesis realistic
training data for different environments, so supporting
digital twin-based simulations for vision-enabled
network control [35]. For beam prediction, obstacle
recognition, and user localisation, such methods can
empower zero-shot or few-shot learning strategies.

Second, especially in settings with high device density
and low latency budgets [4], quantum CV is expected
to open fresh frontiers in encoding, pattern matching,
and low-complexity visual inference. Classical neural
models implemented in RIS-enhanced environments
can be complemented by quantum-assisted visual
feature extraction and classification.

Third, especially in mission-critical sectors including
Industry 4.0 and remote healthcare, the use of
federated digital twins enhanced by real-time visual
feedback can enable proactive network orchestration.
By means of visual data from UAVs, cameras, or
robots, digital twins can be continuously updated,
so enabling context-aware communication parameter
configutation.

Furthermore opening the path for vision-driven
actuation is the emergence of Reconfigurable
Intelligent Surfaces (RIS). RIS panels can dynamically
change phase shifts in response to sensed
environmental changes by coupling object detection
outputs with beam steering logic [10]. This requires
light weight CV agents working under strict timing
restrictions.

Furthermore acquiring popularity are multi-agent CV
systems and swarm intelligence. Collaborative CV
allows agents to share processed vision features for
coordinated sensing, mapping, and trajectory planning
so benefiting imagined 6G networks with dense UAV
constellations or autonomous vehicles.

Sustainability still understudied but yet vital aspect.
Battery-limited edge devices depend critically on green
CV designs—optimized for energy-aware training
and inference. Expected to define the next phase of
edge-compatible CV deployment are innovations in
pruning, quantisation, and sparsity-based modelling
[25].

In the framework of CV integration inside 6G
networks, Table 4 offers a structured synthesis of
the central cross-domain challenges and their related
research directions. Every difficulty, from real-time
inference under URLLC restrictions to the lack of
explainability in CV decisions, is in line with practical
and developing research paths anchored in recent

Table 4. Summary of core challenges and research

directions.
Challenge Research Direction
Real-time CV under Green models and
URLLC on-device inference
optimization

Multi-modal CV-RF-LiDAR fusion

interoperability protocols and standard
APIs

Data scarcity and Synthetic dataset

annotation cost generation via

generative models

Privacy and ethics in Federated learning with

vision Al differential privacy
Explainability of CV Post-hoc and embedded
decisions XAI for CV pipelines
Latency-power-accuracy Adaptive inference
tradeoffs pipelines with
edge/cloud
orchestration

literature. This mapping not only shows the present
technological bottlenecks but also points up interesting
directions including synthetic dataset generation using
generative models, federated learning with privacy
guarantees, and energy-aware CV inference systems.
Consolidating these aspects helps to be a fundamental
reference for next studies and system design in
vision-aided 6G environments.

To sum up, including CV into 6G wireless networks
is both exciting and quite difficult. By means of
multidisciplinary approaches—combining wireless
communication, machine learning, quantum
computing, and ethics—addressing the above
challenges will open the road towards natively
intelligent 6G ecosystems.

6 Conclusion

Viewed through an interdisciplinary perspective, we
investigated how CV goes beyond conventional roles
to become a native enabler of proactive, intelligent,
and perceptually conscious networks. We unified the
varied and siloed body of research across Al, wireless
communication, and edge intelligence by suggesting
a new taxonomy matched with key 6G functions:
beamforming, mobility management, localisation,
semantic transmission, and immersive control.
Although CV greatly increases the adaptability and
responsiveness of communication systems, our study
reveals that its real-time implementation under
URLLC constraints, together with problems of dataset
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scarcity, model explainability, and energy economy,
still remains unresolved. Moreover, the growing
dependence on distributed learning models such
federated and split learning emphasises the necessity
of privacy-preserving yet computationally reasonable
CV pipelines. Looking ahead, we underlined several
new trends including generative dataset synthesis,
vision-assisted RIS control, swarm-based multi-agent
vision, and sustainable edge-based CV inference.
Complementing developments in digital twins,
quantum perception, and metarobotics are these
directions expected to define the next frontier of
vision-native 6G systems. This work provides
not only a reference for researchers but also a
blueprint for designing intelligent 6G systems where
communication and vision converge by aggregating
present progress, spotting important gaps, and
suggesting a disciplined research agenda.
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