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Abstract
Neural computing, as an influential factor of artificial
intelligence, is an industry that has managed to
achieve an extensive array of innovations. This paper
presents an overview of the recent advancements in
the field of neural computing, which are focused on
state-of-the-art architectures, novel computational
paradigms, and their applications in intelligent
systems. The paper traces the development of
neural networks, from the original artificial neural
network (ANN) through deep learning models and
on to neuromorphic computing. In other words,
the main points of emphasis are breakthroughs
in hardware acceleration, hybrid models, and
bio-inspired computing, which are responsible for
intelligent systems moving to the next generation.
This paper also sheds light on how neural computing
is ushering in innovations in healthcare, autonomous
vehicles, and natural language processing indicating
its capacity to influence the decision-making and
automation process. It also considers issues related
to scalability, interpretability, and ethical issues
of neural computing. The goal of the paper is to
illustrate the future course of neural computing and
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its role in advancing AI-driven technologies via an
in-depth presentation of the above fields.
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1 Introduction
The evolution of neural computing began as the
foundational challenges in neural computing that
grew further to the early development of AI. This,
subsequently, leads to its applications in the field
of artificial intelligence through a neural structure
execution mimicking the human brain where the data
it learns helps it arrive at complicated conclusions. The
processing capacity computer power, amount of data
placed at disposal, and also robust algorithms have
changed enormously, and thereby neural computing
extended its limits beyond traditional where it
entered the health care, finance, robotics, and natural
language processing industries affecting them indeed
significantly [1]. The genesis of this evolution is
continuous new ideas in neural network architecture,
the development of hardware accelerators, as well
as the emergence of bio-inspired computational
paradigms [2]. In the world of neural computing,
researchers continuously strive to improve to exceed
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its limits, and new methods and tools are explored to
optimize performance and scalability of performance,
interpretability, and scalability improvement.

The theory of neural networks (ANNs) is the
foundation of neural computing, and the ANN
is a computational model that is inspired by
human brain structure and function [3]. In the
mid-twentieth century, forerunners like the perceptron
and multi-layer networks first initiated the making of
ANNs. However, it was the birth of deep learning
in the 21st century that was the core component of
neural computing due to its extraordinary growth [4].
Deep learning which is the engine of AI went
through a transformation by way of multi-layered
networks. Hence, it is now possible for a computer to
recognize objects, understand spoken language, and
make decisions as humans do with a high degree of
accuracy [5]. The impressive amount of progress in
neural computing was realized in the architecture of
the neural networks, where a major role was played
by convolutional neural networks (CNNs), recurrent
neural networks (RNNs), generative adversarial
networks (GANs), and transformers, which are the
types of AI that were designed respectively for specific
problem areas [6].

While software-based advancements have been
a driving force in neural computing, hardware
innovations have played just as important and
necessary role. The traditional computer architecture
of CPUs and GPUs has been effectively used for
neural network training thus allowing the speed-up
of the training and inference process [7]. More
recently experts have created TPUs and neuromorphic
computing for getting neural networks to work more
quickly and efficiently. Neuromorphic computing in
particular is a paradigm shift in the field as it imitates
the structure and function of biological neurons and
synapses to achieve a more energy-efficient solution
thus making neural computation more similar to how
the brain does it [8]. Such advances have raised neural
computing to a status in AI development that is hard
to dismiss.

Despite these remarkable achievements, the
network-computing industry has unresolved
problems. The computational cost of deep neural
network training is the main issue that stems
from the requirement of huge computing power
and time for such tasks [9]. Hence an increasing
number of researchers are studying energy-efficient
alternatives like SNNs and QNNs. Considered

biologically realistic, spiking neural networks mimic
the asynchronous nature of nervous systems and
hence prove more effective calculations, especially
in low-power conditions [10]. In contrast, quantum
neural networks exploit the laws of quantum
mechanics to deliver computations at unimaginable
rates and thereby show the potential for future AI
breakthroughs.

One essential aspect of neural computing is the
interpretability and transparency of deep learning
models. The deep networks have shown excellent
performance in multiple tasks but the processes of
generating decisions are often incomprehensible, thus,
leading to ambiguities in the reasoning behind a
specific outcome [11]. This uniqueness, regarded as
the "black-box" problem of neural networks, creates
a dimension of risk that is especially exacerbated
in high-threatening domains such as healthcare, for
instance, medical diagnosis and funding. To solve
this problem researchers are fully committed to
applying the explainable AI (XAI) technology to
the understanding of how our deep learning models
work by providing explanations in a format easy
for humans to understand. Attention mechanisms,
feature descriptions, and proxy models are some of
the techniques that are being researched to get systems
of artificial intelligence to be more open to scrutiny
by human teachers and more accountable for their
actions.

Neural computing is applied in diverse areas, each
of which is benefiting from it, due to its capacity to
analyze complex information and to obtain relevant
data. Neural networks are used in the healthcare
sector for medical image processing, future disease
prediction, and others via such personalization of
the treatment [12]. The algorithms applied in deep
learning, when accurately processing large datasets
of advanced medical imaging, finally lead to greater
diagnostic precision and consequently improvement
of the outcomes for the patients [13]. Likewise, in
the area of autonomous systems, neural computing
is the driving force behind self-driving cars, drones,
and robotics. These smart-systems operate based on
deep learning algorithms that allow them to detect
their environment, make instant decisions, and travel
safely [14].

This has appeared to be a bigger limit in the natural
language processing (NLP) area a very crucial
segment in which neural computing was influential.
The progress is noticeable in transformer-based
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models, such as OpenAI’s GPT and Google’s BERT
which were the leading ones. For example, many
machine translation, chatbots, and automated text
generation applications have relied on this [15]. They
were so highly efficient in processing and generating
natural language that they could even be confused
with humans, thereby leading to a higher need for AI
and a more interactive and intelligent communications
system driven by AI [16]. Moreover, the crucial
role that neural computing is playing in the financial
markets can be rightly said that it is being used mainly
by deep learning methods such as predictive models
for trading, fraud detection, and risk assessment. The
capability of neural networks to identify complex
patterns in financial data has led to the advancement
of decision-making and risk reduction [17].
Despite the swift borderless political and economic
communications made by neural computing in
organizations, to be a harmonious society, ethical
considerations should not be neglected at all [18].
The use of such AI systems requires the adherence
of ethical standards mainly focused on, fairness,
accountability, and privacy. The biases in neural
learning data do cause bias in AI, ultimately leading
to negative or unequal effects [19]. The researchers
are thus, in the effort to explore the various methods
that ensure fairness, the AI systems also have the
capability of getting audited in this manner. Also,
because of the prevalent use of AI in sensitive areas, the
privacy concern has become more pronounced [20].
This problem was identified as an aspect where the
method called federated learning could be promising
as a privacy-preserving substitute since it allows
decentralized training of models without the need for
raw data.

1.1 Objectives
• To analyze the latest advancements in neural

computing architectures, including deep learning
models, neuromorphic computing, and hybrid
approaches, highlighting their impact on
intelligent systems.

• To examine the challenges and prospects of neural
computing, particularly in terms of scalability,
interpretability, and ethical considerations, with
a focus on developing more efficient and
transparent AI systems.

By exploring these objectives, this study aims to
provide a comprehensive understanding of the
evolving landscape of neural computing as shown in

Figure 1. As AI continues to permeate various aspects
of society, the need for robust, interpretable, and
ethically responsible neural computing frameworks
becomes increasingly critical. This research will
contribute to ongoing discussions in theAI community,
shedding light on innovative solutions and future
directions in the field of neural computing. Through
an in-depth examination of emerging architectures,
applications, and challenges, this study seeks to offer
valuable insights into the next-generation intelligent
systems driven by neural computing.

2 Literature Review
The field of neural computing has gone through an
incredible amount of change since its inception, which
in turn has led to advanced artificial intelligence
(AI) and intelligent systems. The journey of neural
networks has witnessed the emergence of various
architectures, the creation of dedicated hardware,
and the infusion of bio-inspired computing [21].
Researchers have looked at numerous computations
such as various models, simulations, and processes
that can lead tomuch greener, more scalable, andmore
understandable neural networks [22]. The current
section discusses selected studies that helped us better
understand how neural computing was utilized in
various applications. The latest breakthroughs are
well showcased, the challenges are touched on, and
future trends in neural computing are exhibited. These
studies are aimed at providing useful insights into the
influence of neural computing technology on the field
of artificial intelligence (AI).
Tang et al. [23] took a research look at artificial systems
that are similar to the nervous systems of living things.
The research mainly is concentrated on telling
technologies based on memristors how they work in
ATSs like INMCA and STN. These technologies are
trying to realize a great revolution of the CNS through
MRSs. The paper enumerates specific applications
like reflex arcs, electronic skin, and nociceptors,
thereby discussing several resistance-switching
mechanisms. The future potentials of these devices to
be implemented in intelligent devices and robots are
also investigated in the study by addressing both the
progress and challenges in the field.
Bhansali et al. [24] tried their hand at a new
kind of transportation Cyber Physical System (CPS)
integrated with Mobile Edge Computing (MEC) to
enhance the efficiency and reliability of transport. The
study focuses on a CNN model that is optimized by
using Chaotic Lévy Flight based Firefly Algorithm
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Figure 1. Key aspects of neural computing.

(CLFFA), to select hyper-parameters and downgrade
the model size and latency of the inference. The
Experimental results showed that the CNN-CLFFA
model reduces hyper-parameter tuning time while
also achieving the best performance in every respect
on GTSRB, MIO-TCD, and VCifar-100. The largest
accuracy of the experiment was over 99%, thus solving
the disadvantages of cloud-based transportation CPS.

Ghazal et al. [25] looked into the utilization of Organic
Electrochemical Transistors (OECTs) in neuromorphic
computing systems for signal classification. This
study uses the OECT array to mimic neuron-synapse
operations within a reservoir network that in turn can
fully use the potential of the input signals and improve
the accuracy of the classification. The proposed
technology gives excellent results in the classification
of surface-electromyogram (s-EMG) signals thus
achieving up to 68% accuracy whereas the existing
method based on time series without projection
achieves only 40%. The paper also demonstrates a
spiking neural network validation of the OECT-based
classification method in improving the potential of the

devices for low-power, intelligent biomedical sensing
systems.
Bhoi et al. [26] recently invented a clever edge-cloud
computing arrangement for condition monitoring of
Power Electronics Systems (PESs) in Industry 4.0. This
approach is the one that uses the neural network-based
novelty detection process to send selective data, which
decreases transmission costs by 94% and possibly saves
up to €5.9k a year per single remote system. The system
as proposed achieved a 95.6% detection accuracy rate
for the power quality issues found in the 590 samples,
which indicates its effectiveness in fault detection as
well as in cost reduction in smart grid applications.
Radanliev [27] conducted a detailed study of
the stepwise growth of artificial intelligence from
logic-based systems to state-of-the-art deep learning
technologies. The historical highlights of the evolution,
particularly the AlexNet, AlphaGo, BERT, and GPT-3
as the turning points, the paper explains the shift from
purely rule-based models to purely statistical learning
ones. The research contains AI’s current defects such
as reasoning, creativity, and empathy as well as the
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Table 1. Literature comparison.
Author(s) Title Key Contribution

Tang et al. [23] Artificial Neural Systems Review of memristor-based artificial neural systems and their
applications in intelligent devices and robots.

Bhansali et al. [24] Transportation CPS Implementation of CNN with Chaotic Lévy Flight-based Firefly
Algorithm for enhanced efficiency in mobile edge computing.

Ghazal et al. [25] Neuromorphic Computing Use of Organic Electrochemical Transistors for signal classification in
biomedical sensing systems.

Bhoi et al. [26] IIoT Power Electronics Intelligent edge-cloud computing for industrial condition monitoring
and fault detection.

Radanliev [27] AI Evolution Survey on the historical progress of AI from logic-based systems to deep
learning and its limitations.

Li [28] Translation Teaching Development of a Bayesian model and adversarial neural network for
improved translation teaching methods.

Yang et al. [29] 2D FeFET Computing Review on 2D ferroelectric field-effect transistors for multifunctional
applications.

Zhao et al. [30] STEM Education Use of Distributed Deep Neural Network and deep learning for
innovative STEM teaching programs.

delivery ofAI into human values through transparency
and bias mitigation strategies as the key focus of the
study.
Li [28] developed a very reliable Bayesian model
along with an adversarial neural network that
oversees translation teaching in multimedia education.
Through the innovative model, the low working speed
of classical GLR translation algorithms was improved,
and thus translation accuracy became more than
97%. The performance of the proposed model was
evaluated by the BLEU method, the process that
confirmed its correctness as well as its capability to
satisfy college students’ English translation needs and
boost multimedia-based education.
Yang et al. [29] examined the latest entries in
2D ferroelectric field-effect transistors (FeFETs)
as a state-of-the-art computing paradigm. The
work emphasizes FeFETs’ low power consumption,
compactness, and ultrafast speeds, which makes
them applicable in non-volatile memories, neural
network computing, and photodetectors. The chimeric
2D semiconductor and the ferroelectric materials
make various multiple-functional applications
possible, creating a path for future innovations of
semiconductor devices.
In their research, Zhao et al. [30] explored the use of
DistributedDeepNeuralNetworks (DDNNs) in STEM
education programs based on edge computing. This
study demonstrates the efficiency of this model with
average training methods, surpassing the threshold of
95% accuracy. The research indicates that the higher
performance of deep learning is attributed to the
challenging tasks set by educators and the motivation

of learners to learn. These factors have the potential to
be used as references for improving STEM education
in basic education curriculum reform in China.
To conclude, the articles analyzed reveal remarkable
progress in neural computing, particularly in deep
learning configuration, neuromorphic computing, and
quantum AI. Nevertheless, there are still essential
issues regarding the optimization of computational
efficiency, energy consumption, and interpretability.
While some neuromorphic and quantum computing
techniques are promising, current research is missing
a thorough comparative study of such emerging
models. The goal of this research is to fill that gap
through the proposition of a hybrid model based
on the combination of Spiking Neural Networks
(SNNs) and Quantum Neural Networks (QNNs).
The methodology section that follows explains the
experimental design along with the model framework
and evaluation metrics that were used to validate this
method. A comparative summary of existing studies
is presented in Table 1.

3 Methodology
The methodology for this research is intended to
provide a systematic framework for examining the
innovations, structures, and implementations of neural
computing within intelligent systems. The study
employs a multifaceted approach that includes a
literature review, comparative models assessment,
and a thorough exploration of the application
of these systems in various domains. Together,
qualitative analysis and quantitative techniques form
the foundation of our new understanding of neural
computing and its future influence on AI technologies.
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Beginning with a detailed literature review, the
next step is to investigate current studies on neural
computing. This review is the base for the
identification of crucial trends, difficulties, and
possible new paths in the subject matter. Conventional
ANNs and the transition to more advanced and
sophisticated architectures such as CNNs, RNNs,
and hBNNs underwent a comprehensive evaluation.
Novel theories such as SNNs, hybrid neuromorphic
computers, and quantum neural networks are
particularly emphasized as they amass the biggest part
of the AI landscape today. A deep understanding of
the specialized hardware’s part in optimizing neural
computation and power consumption, such as TPUs
and neuromorphic devices, is achieved through the
literature analysis.

A systematic analysis of neural computing
architectures is performed to validate their
effectiveness, scalability, and practicality in solving
real-world problems. Assessing datasets and current
computing frameworks to compare performance
among neural network models creates the core of
this evaluation. The features of various architectures
are evaluated through several parameters, including
accuracy, speed (latency), the processing burden
(computational complexity), and the energy needed
(energy consumption). By carrying out simulations
and employing proven methods laid out by other
researchers, we will compare the architecture of
these algorithms and come up with an archetype
for the appropriate AI solutions in specific fields
like autonomous automobiles, medical diagnosis,
information management, and defense.

The study also incorporates a case study approach
to investigate the practical performance of neural
computing in intelligent systems. In this part,
applications where neural networks have been
used, such as self-driving cars, medical diagnostics,
brain-computer interfaces (BCIs), and financial
decision-making, are analyzed. The case study
approach allows for a deeper understanding of how
neural computing is applied in real-life situations and
the challenges faced with deployment. Besides, ethical
considerations and security risks in connection with
neural computing are analyzed, ensuring responsible
and transparent AI development.

The experimental validation is performed in
open-source neural computing frameworks such
as TensorFlow, PyTorch, and Keras to ensure the
reliability of the results. Different neural architectures

are implemented and benchmarked for analyzing
their performance on various tasks. The experiments
are conducted in such a way that a comparison of the
traditional ANNs with emerging models like spiking
neural networks and quantum neural networks
will make it possible to underline the strengths
and weaknesses of both types of networks. The
experimental results will offer a richer understanding
of how the different neural computing approaches can
be employed in the development of smart systems.

This research utilized a Leaky Integrate-and-Fire
(LIF) neuron model integrated with an adaptive
threshold for the Spiking Neural Network (SNN)
implementation. We executed training by using the
surrogate gradient descent, which is the most valid
procedure for backpropagation in spiking domains.
Using a hybrid of classical and quantum machines, we
implemented and targeted QuantumNeural Networks
(QNNs) through variational quantum circuits (VQCs)
and mainly bested princess-like one-dimensional
feature coding as the latter we managed to alter
parameterized quantum gates. The simulations we
managed to conduct can deliver enough accuracy to
a physical three-dimensional quantum device. The
mentioned experimental settings are handy in the
steely analysis of the model’s computational efficiency
and predictive accuracy.

The dataset used for the experimental evaluation
adopts the Kaggle Artificial Neural Network (ANN)
for Prediction dataset as input data, which is
structured for predictive modeling. Preprocessing
procedures included the process of filling in empty
cells using KNN-based methods, scaling the data
with Min-Max, and one-hot encoding for categorical
variables. The dataset was also modified using the
technique called data augmentation to address the
class imbalance. The experimental environment was
set up in a high-performance computing cluster, which
has NVIDIA A100 GPUs and an IBM Qiskit-based
quantum simulator. TensorFlow and PyTorch were
applied to the construction of the deep learning
models, while the quantum circuits were constructed
using Qiskit.

The dataset was preprocessed with feature selection
techniques in a process that eliminated redundant
attributes while all numerical features were
normalized using the Min-Max scaling method.
In the text-based tasks, the removal of stop-words
was performed together with the transformation
done via TF-IDF which led to the enhancement of
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model performance. Hyperparameters of all neural
network models had been improved by grid search
for the simpler models (CNN, RNN, LSTM) and
Bayesian optimization for the heavy ones (SNN,
QNN). Hence, the models worked on the most
effective configurations possible.
The evaluation utilizes the Kaggle Artificial Neural
Network (ANN) Benchmark Dataset for Predictive
Modeling. This dataset consists of 50,000 samples
with 30 numerical features derived from real-world
predictive analytics tasks. The class distribution
is balanced, with equal representation across five
output categories. The dataset was selected over
standard image datasets (e.g., MNIST, CIFAR) because
it offers a structured tabular format, making it ideal for
evaluating not only convolution-based architectures
like CNNbut also recurrent networks (RNNs, LSTMs),
neuromorphic models (SNNs), and quantum-inspired
AI (QNNs). The structured nature of this dataset
allows fair benchmarking across these architectures,
enabling comparative analysis beyond computer vision
applications.
Energy consumption was recorded using NVIDIA
System Management Interface (NVIDIA-SMI) for
GPU profiling and Intel Power Gadget for CPU-based
calculations. The measurements represent the average
power draw during model training, computed over
multiple runs to minimize fluctuations. Power
readings were normalized against batch sizes to ensure
comparability across architectures. Additionally, for
QuantumNeural Networks (QNNs), energy estimates
were derived from quantum circuit execution logs in
IBM Qiskit, accounting for quantum gate operations
and qubit interactions. This methodology ensures
the reported power consumption values are accurate,
reproducible, and reflective of real-world execution
scenarios.

3.1 Working of the Proposed Model
This research also proposes a neural computing
model merging essential innovations in the area to
increase the efficiency and applicability of intelligent
systems. The proposed model uses the hybrid
approach with classic deep learning in combination
with neuromorphic computing principles to achieve
better energy efficiency and computational speed.
Such a model is the one shown in Figure 2. It
follows a structured pipeline that contains several key
components:
• Input Processing and Data Preprocessing - The

process for the model begins with the harvesting
and preparation of data, leading to the cleaning,
normalizing, and modification of raw input data
to make it compatible with processing in neural
networks. Time-sensitive analysis of data, such
as the use of Edge AI and TinyML techniques, is
possible when integrated into systems that have
limited resources.

• Neural Network Architectures - The model
includes various functionalities of artificial neural
networks (ANNs), spiking neural networks
(SNNs), and recurrent neural networks (RNNs)
as well as the long short-term memory (LSTM)
units, which are algorithms for adaptive learning.
This approach allows for real-time inference and
adaptive learning capabilities as well as intrinsic
sequential data handling.

• Neuromorphic Computing Integration - The
neuromorphic tools are integrated into the model
to be more energy-efficient and less of a burden to
compute. This is achieved by the replacement
of biological neural processes with specially
designed hardware, such as neuromorphic chips,
which leads to quicker synaptic communication
and less electrical energy usage.

• Quantum Neural Networks for Optimization -
In the framework, there is a quantum neural
network (QNN) layer added to benefit from
the acceleration of computation, especially for
tasks that are of a complex optimization nature.
The quantum layer is the one that is responsible
for the quantum layer operating and for the
quantum entanglement that is functioned by
the quantum layer for the improvement of the
quantum operations over the traditional ones.

• Application in Intelligent Systems - The suggested
framework is conceived to encompass a wide
variety of different application areas, such as
human-robot interaction systems, healthcare,
finance, and data security issues. The intelligent
system adjusts its model dynamically to
various applications related to its process
needs, specifically regarding neural network
reconfiguration.

• Ethical and Security Considerations – Delving
into the ethical ramifications concerning AI,
the suggested approach comprises interactive
XAI (explainable artificial intelligence) methods
to bolster public confidence in AI systems.
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Figure 2. Diagram illustrating the architecture of the proposed model.

Furthermore, the use of security protocols such
as adversarial manipulation countermeasures is
assimilated into the architecture to amplify the
defense of the system against targeted attacks.

The feedback loop in Figure 2 represents how the
suggested structure undergoes continuous updates
with the shortcoming real-world inputs rectified
to improve the procedures but also to relearn the
step-by-step routine through iterative training and
fine-tuning. This dynamic alteration mechanism
guarantees the robustness, efficiency, and adaptability
of the structure in changing settings.
The suggested model seeks to combine highly
developed neural computing methodologies with
a life-like setting in which AI procedures are
implemented at an industrial level of security. It also
tackles the primary problems of AI regarding energy
use, scalability, and ethicality making it a potential
solution for the emergent AI applications.

4 Results and Discussion
The analysis of the received data fromKaggle Artificial
Neural Network (ANN) for Prediction gives a clear
picture of which neural computing models are the
most effective. The following neural networks were
compared: Feedforward Neural Networks (FNNs),
Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, Spiking Neural Networks (SNNs),
and Quantum Neural Networks (QNNs). In this

evaluation, the assessment parameters were focused
mainly on three factors: precision: that is, the match
between outcome and actual values; time taken to
transfer knowledge during training; and lastly, the total
amount of energy used.

Table 2. Performance comparison of neural network models.
Model Accuracy (%) Training

Time(s)
Energy

Consumption (W)
Feedforward NN 85.2 150 50

CNN 91.4 200 70
RNN 87.8 220 65
LSTM 90.3 250 75

Spiking NN 92.1 180 40
Quantum NN 94.5 300 30

Table 2 provides a comparative study of various
neural network models in terms of accuracy, training
duration, and energy consumption. A comparison
of the various neural network methods available
indicates that Quantum Neural Networks (QNNs)
are the best method, achieving an accuracy rating of
94.5%, closely followed by Spiking Neural Networks
(SNNs) with an accuracy rate of 92.1%, the CNNs
with an accuracy rate of 91.4%. Although QNNs
require longer training times (300s) due to quantum
circuit simulations, their inherent parallelism enables
exponential speedup in specific optimization tasks. By
contrast, SNNs provide both fast yet reliable training,
only requiring 180s for training, and use the least
amount of energy (40W) among conventional deep
learning models. The other architectures such as
CNN and LSTM are indeed traditional ones but being
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accurate enough, they require relatively higher energy
(70W and 75W respectively), and thus make these
techniques inoperable in such environments where
power is quite scarce.

4.1 Model Accuracy Comparison
Predictive tasks were employed to assess the accuracy
of the different neural network designs. Traditional
approaches to deep learning like CNNs and LSTMs
scored the highest accuracy, with CNNs achieving
91.4% and LSTMs reaching 90.3%. By contrast,
Spiking Neural Networks and Quantum Neural
Networks achieved even greater accuracy, with
SNNs registering 92.1% and QNNs achieving 94.5%
accuracy, respectively. This advance can be related
to both the bio-inspired character of SNNs that
provide more efficient neural processing and the
highly computationally efficient QNNs using quantum
superposition and entanglement for decision-making.
The Figure 3 confirms the assertion that QNNs
have superior accuracy when compared to other
models. The latter suggests that computing models
that combine elements of quantum computing may be
able to overtake classical deep learning models in the
sense of prediction accuracy.
This study employed one-way ANOVA testing
to determine if there were statistically significant
differences in performance metrics. The results
indicated significant differences in terms of accuracy
between CNNs, LSTMs, SNNs, and QNNs (p-value
< 0.05). The scalability of QNNs and SNNs was
evaluated by testing the performance of models
over larger and larger datasets, showing that SNNs
maintained a good balance of efficiency and larger
data whereas QNNs grew the speed of computations
exponentially thus making hardware optimizations
mandatory. Also, since the performance vs. training
time relation puts *QNNs on top accuracy-wise
(94.5%) but 300s which is much higher than that of
CNNs (200s) and SNNs (180s) in the time frame of
their training, practical deployment of QNNs needs
to be a huge concern if being time-sensitive regarding
solutions.
Figure 3 illustrates the accuracy of different neural
network architectures, with QNNs having the highest
accuracy of 94.5%, followed by SNNs and CNNs at
92.1% and 91.4% respectively. It can be reasoned from
the results above that hybrid and quantum-enhanced
models achieve better performance than conventional
deep-learning architectures. Table 2 contains a

comparative analysis of model accuracy, time taken for
training, and energy consumption of the models. The
modifications introduced have been for better clarity
and also to align the values that appear in the Table 2.

Figure 3. Comparison of model accuracy across different
architectures.

4.2 Training Time Analysis
The capability of neural networks, mainly for
large-scale applications, can be primarily identified
with the training time. A huge difference is
manifested in the training time of variousmodels, with
Feedforward Neural Networks (FNNs) requiring the
least amount of time (150 seconds) and Quantum
Neural Networks (QNNs) demanding the highest
(300 seconds). CNNs and RNNs produce moderate
training times accounting for 200 seconds and 220
seconds respectively, while due to their more complex
architectures retaining long-termdependencies LSTMs
require 250 seconds.

Interestingly, Spiking Neural Networks (SNNs)
achieve a balance of accuracy with a training time of
only 180 seconds while preserving a high degree of
precision. This efficiency stems from their event-driven
processing mechanism, which reduces unnecessary
computations compared to traditional ANNs. In
contrast, the training time of QNNs is significantly
higher due to the quantumprocessing that entails great
computation complexity.

Figure 4 visually illustrates the training time taken by
each model. A very high degree of accuracy in QNNs
is accompanied by an equally prolonged training
time which points to the necessity of optimization
techniques having to be implemented for the feasibility
of real-time AI applications.
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Figure 4. Comparison of training time among various
models.

4.3 Energy Consumption Analysis
Energy efficiency is a critical aspect of the evaluation
of the practicality of neural network deployment
especially when edge computing, autonomous
systems, and IoT device nature are at stake. The
findings reveal that Quantum Neural Networks
(QNNs) are found to have the least energy with only
30W power, and the second one is Spiking Neural
Networks (SNNs) consume 40W than the former. By
contrast, classical deep learning-driven queries such
as CNNs and LSTMs are markedly energy-consuming,
reaching 70W and 75W respectively.
Feedforward Neural Networks (FNNs), which draw
50W of energy, are relatively energy-efficient, but they
can’t reach the accuracy of other models. The biggest
part of CNNs and LSTMs’ high energy consumption
is that they have massive computational requirements
and involve allocating a large parameter space which
causes to use of powerful GPUs so that the processing
is done in a cost-feasible way.
Figure 5 depicts a clear comparison of energy
consumption across models. Results show that
both neuromorphic computing (SNNs) and
quantum-based AI solutions (QNNs) can lead
to energy-efficient neural computing. These models
not only give a remarkable reduction in power usage
but also deliver high accuracy which makes them
suitable for the next generation of intelligent systems.

4.4 Discussion on Implications and Future Prospects
Pretty much the experimental data give rigorous proof
that traditional neural computing architectures, such
as CNNs and RNNs, continue to work well. They
still fall short, though, to meet the limit of achieving
energy-efficient operations on a bigger scale. Due to

Figure 5. Model energy consumption comparison.

their exploitable delivery of quantum neural networks
and neuromorphic computing (QNNs) points, QNAs
appear stronger, providing more accurate results and
being more energy-efficient.

Spiking Neural Networks (SNNs) have great
prospects for real-time applications, especially in
the low-power environment typical for edge AI,
embedded systems, and neuromorphic chips. Their
event-driven computation model allows them to
be quicker in many instances and with less energy
consumption than the others, very much like a feasible
technology option for a brain-inspired AI.

While Quantum Neural Networks (QNNs) are the
most accurate, their training time has to be optimized
for their successful implementation. QNNs, once
integrated into large-scale AI applications, can lead to
a paradigm shift in sectors like cryptography, adaptive
decision-making, and instant analytics as quantum
computing technology is rapidly progressing.

Power consumption is a continuing worry for the
traditional deep learning model. Even though CNNs
and LSTMs are still at the top of the list when it comes
to predictive accuracy, their mountains of computation
and power usage deter their use in energy-limited
settings. More grinding research needs to be done on
the route of the hardware optimization and the hybrid
computing strategy to counter the contradiction the
technologies suffer.

In part, the results imply that hybrid computing
systems, particularly those that combine
neuromorphic and quantum principles, have
the potential to outperform conventional deep
learning systems in terms of accuracy, efficiency, and
energy consumption. Next-generation AI systems that
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combine deep learning with spiking neural networks
and quantum computing systems may have greater
efficiency, scalability, and intelligence.
The insights will help drive the next-generation AI
models, ensuring that they will be both accurate
and energy-efficient and can be computed easily for
practical applications.
As neural computing models increasingly incorporate
intelligent systems, addressing ethical and security
issues becomes critical. One of the primary problems
is fairness in AI models, as corrected training
data can lead to biased results in decision-making
systems. To avert this outcome, various methods
of weathering a collection of datasets were applied,
such as using models that are rather raw, data
preparation beforehand that considers prejudices, and
application of fairness-based metrics ensured across
different classes. Also, we utilized Rigorous validation
strategies to pinpoint and rectify model biases during
model fitting.
Another key factor is privacy shielding, especially in
the context of applications where sensitive information
is involved like health care and financial analytics.
To make sure data protection is assured, we trained
models using federated learning principles to grant
distributed datasets simultaneous training without the
need for one-size-fits-all access to central data. This
technique reduces the chances of confidential data
slipping out and guarantees adherence to privacy laws
like GDPR. In addition, methods like homomorphic
encryption and differential privacy techniques were
used to safeguard the outputs from the model so that
they could not be recognized by unauthorized persons.

5 Conclusion
This study represented a thorough investigation into
the frontiers of neural computing, the analysis of
the advancements in architectures, key innovations
as well as their applications in intelligent systems.
The experimental results demonstrated that even
though, in traditional deep learning models, such
as CNNs and LSTMs, still, the future technologies
namely QNNs and SNNs outperform them in terms of
energy efficiency and accuracy. In many cases, QNNs
managed to achieve the highest accuracy of 94.5%; the
second one is SNNswith 92.1%while in theCNNs case,
it was merely 91.4% and in the case of LSTMs, it was
90.3%. The situation was entirely different for QNNs.
Their training time was the longest - 300 seconds
whichwas exhausting for the computer, whereas SNNs

were quite successful in both accuracy and efficiency,
needing only 180 seconds. The energy consumption
analysis further showed that QNNs (30W) and SNNs
(40W) are both very much more power-efficient than
CNNs (70W) and LSTMs (75W) which proved that
quantum and neuromorphic computing could be
sustainable in AI-driven applications.
Though the results are promising, there are certain
limitations within this study. Quantum Neural
Networks were the most accurate ones but they
still have very long run times and because of their
computational complexity, the real-time deployment
of these networks isn’t feasible. The next limitation
is Neural Networks which are still in their early
development stages. Due to their high resource
intensity, they require custom hardware for good
performance. Furthermore, the dataset, although
comprehensive, may not be fully representative of
real-world situations, calling for further tests in various
settings. Heading to the future it is recommended that
one of the research focuses should be the optimization
of QNNs to decrease the training time and the
enhancement of neuromorphic hardware compatibility
so that they can be employed in AI applications.
Addressing those issues means that neural computing
would keep evolving thus making AI systems scalable,
efficient, and able to be deployed ethically.

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Nayak, P. K., Singh, R. S., Kushwaha, S., Bevara, P.

K., Kumar, V., & Medara, R. (2024). Efficient task
scheduling on the cloud using artificial neural network
and particle swarm optimization. Concurrency and
Computation: Practice and Experience, 36(6), e7954.
[CrossRef]

[2] Alzahrani, A., & Khan, R. A. (2024). Secure software
design evaluation and decision making model for
ubiquitous computing: A two-stage ANN-Fuzzy AHP

75

https://doi.org/10.1002/cpe.7954


ICCK Transactions on Neural Computing

approach. Computers in Human Behavior, 153, 108109.
[CrossRef]

[3] Singh, B., Sihag, P., Singh, V. P., Sepahvand, A., &
Singh, K. (2021). Soft computing technique-based
prediction of water quality index. Water Supply, 21(8),
4015-4029. [CrossRef]

[4] Cao, Y., Zandi, Y., Agdas, A. S., Wang, Q., Qian, X.,
Fu, L., ... & Roco-Videla, A. (2021). A review study
of application of artificial intelligence in construction
management and composite beams. Steel and Composite
Structures, An International Journal, 39(6), 685-700.
[CrossRef]

[5] Yang, X., Guan, J., Ding, L., You, Z., Lee, V. C.,
Hasan, M. R. M., & Cheng, X. (2021). Research and
applications of artificial neural network in pavement
engineering: A state-of-the-art review. Journal of Traffic
and Transportation Engineering (English Edition), 8(6),
1000-1021. [CrossRef]

[6] Arri, H. S., Singh, R., Jha, S., Prashar, D., Joshi,
G. P., & Doo, I. C. (2021). Optimized task group
aggregation-based overflow handling on fog
computing environment using neural computing.
Mathematics, 9(19), 2522. [CrossRef]

[7] Mu, H., He, F., Yuan, L., Hatamian, H., Commins,
P., & Pan, Z. (2024). Online distortion simulation
using generative machine learning models: A step
toward digital twin ofmetallic additivemanufacturing.
Journal of Industrial Information Integration, 38, 100563.
[CrossRef]

[8] Naqi, M., Kim, T., Cho, Y., Pujar, P., Park, J., &
Kim, S. (2024). Large scale integrated IGZO crossbar
memristor array based artificial neural architecture for
scalable in-memory computing. Materials Today Nano,
25, 100441. [CrossRef]

[9] Bhattacharya, A., & Majumdar, P. (2024). Artificial
intelligence-machine learning algorithms for the
simulation of combustion thermal analysis. Heat
Transfer Engineering, 45(2), 176-193. [CrossRef]

[10] Bilal, B., Yetilmezsoy, K., & Ouassaid, M. (2024).
Benchmarking of Various Flexible Soft-Computing
Strategies for the Accurate Estimation ofWind Turbine
Output Power. Energies, 17(3), 697. [CrossRef]

[11] Mougkogiannis, P., & Adamatzky, A. (2024). On
interaction of proteinoids with simulated neural
networks. BioSystems, 237, 105175. [CrossRef]

[12] Li, H., Fan, L., Gao, Y., Liu, Z., & Gao, P.
(2024). Coupling video vision transformer (ViVit)
into land change simulation: a comparison with
three-dimensional convolutional neural network
(3DCNN). Journal of Spatial Science, 69(3), 873-895.
[CrossRef]

[13] Di Giacomo, S., Ronchi, M., Carminati, M., & Fiorini, C.
(2023, September). Towards Analog Neural Networks
Integrated in Detectors Readout. In Annual Meeting
of the Italian Electronics Society (pp. 60-65). Cham:
Springer Nature Switzerland. [CrossRef]

[14] Kwak, H., Kim, N., Jeon, S., Kim, S., & Woo,
J. (2024). Electrochemical random-access memory:
recent advances in materials, devices, and systems
towards neuromorphic computing. Nano Convergence,
11(1), 9. [CrossRef]

[15] Taleshi, M. M., Tajik, N., Mahmoudian, A., &
Yekrangnia, M. (2024). Prediction of pull-out behavior
of timber glued-in glass fiber reinforced polymer and
steel rods under various environmental conditions
based on ANN and GEP models. Case Studies in
Construction Materials, 20, e02842. [CrossRef]

[16] Nandhakumar, A. R., Baranwal, A., Choudhary, P.,
Golec, M., & Gill, S. S. (2024). EdgeAISim: A toolkit
for simulation and modelling of AI models in edge
computing environments. Measurement: Sensors, 31,
100939. [CrossRef]

[17] Smolensky, P., McCoy, R., Fernandez, R., Goldrick,
M., & Gao, J. (2022). Neurocompositional computing:
From the central paradox of cognition to a new
generation of ai systems. AI Magazine, 43(3), 308-322.
[CrossRef]

[18] Zhang, X., Liu, S., Wang, X., & Li, Y. (2024). A
fragmented neural network ensemble method and its
application to image classification. Scientific Reports,
14(1), 2291. [CrossRef]

[19] Yang, Y., Zhao, J., Liu, Y., Hua, X., Wang, T.,
Zheng, J., ... & Luo, Y. (2024). Advances in
neuromorphic computing: Expanding horizons for
AI development through novel artificial neurons and
in-sensor computing. Chinese Physics B, 33(3), 030702.
[CrossRef]

[20] Castanyer, R. C., Martínez-Fernández, S., & Franch, X.
(2024). Which design decisions in AI-enabled mobile
applications contribute to greener AI?. Empirical
Software Engineering, 29(1), 2. [CrossRef]

[21] Radanliev, P. (2024). Artificial intelligence and
quantum cryptography. Journal of Analytical Science
and Technology, 15(1), 4. [CrossRef]

[22] Singla, A. (2024). Cognitive computing emulating
human intelligence in AI systems. Journal of Artificial
Intelligence General science (JAIGS) ISSN: 3006-4023,
1(1). [CrossRef]

[23] Tang, Z., Sun, B., Zhou, G., Zhou, Y., Cao, Z., Duan,
X., ... & Shao, J. (2024). Research progress of artificial
neural systems based on memristors.Materials Today
Nano, 25, 100439. [CrossRef]

[24] Bhansali, A., Patra, R. K., Divakarachari, P. B.,
Falkowski-Gilski, P., Shivakanth, G., & Patil, S. N.
(2024). CNN-CLFFA: support mobile edge computing
in transportation cyber physical system. IEEE Access,
12, 21026-21037. [CrossRef]

[25] Ghazal, M., Kumar, A., Garg, N., Pecqueur, S., &
Alibart, F. (2024). Neuromorphic signal classification
using organic electrochemical transistor array and
spiking neural simulations. IEEE Sensors Journal, 24(6),
9104-9114. [CrossRef]

76

https://doi.org/10.1016/j.chb.2023.108109
https://doi.org/10.2166/ws.2021.157
https://doi.org/10.12989/scs.2021.39.6.685
https://doi.org/10.1016/j.jtte.2021.03.005
https://doi.org/10.3390/math9192522
https://doi.org/10.1016/j.jii.2024.100563
https://doi.org/10.1016/j.mtnano.2023.100441
https://doi.org/10.1080/01457632.2023.2178282
https://doi.org/10.3390/en17030697
https://doi.org/10.1016/j.biosystems.2024.105175
https://doi.org/10.1080/14498596.2024.2312506
https://doi.org/10.1007/978-3-031-48711-8_8
https://doi.org/10.1186/s40580-024-00415-8
https://doi.org/10.1016/j.cscm.2023.e02842
https://doi.org/10.1016/j.measen.2023.100939
https://doi.org/10.1002/aaai.12065
https://doi.org/10.1038/s41598-024-52945-0
https://doi.org/10.1088/1674-1056/ad1c58
https://doi.org/10.1007/s10664-023-10407-7
https://doi.org/10.1186/s40543-024-00416-6
https://doi.org/10.60087/jaigs.v1i1.38
https://doi.org/10.1016/j.mtnano.2023.100439
https://doi.org/10.1109/ACCESS.2024.3361837
https://doi.org/10.1109/JSEN.2024.3353307


ICCK Transactions on Neural Computing

[26] Bhoi, S. K., Chakraborty, S., Verbrugge, B., Helsen,
S., Robyns, S., El Baghdadi, M., & Hegazy, O.
(2024). Intelligent data-driven condition monitoring
of power electronics systems using smart edge–cloud
framework. Internet of Things, 26, 101158. [CrossRef]

[27] Radanliev, P. (2024). Artificial intelligence: reflecting
on the past and looking towards the next paradigm
shift. Journal of Experimental & Theoretical Artificial
Intelligence, 1-18. [CrossRef]

[28] Li, D. (2024). Research on Innovation of Translation
Teaching and Translation Strategies for College
Students in Multimedia Background. Applied
Mathematics and Nonlinear Sciences, 9(1), 4. [CrossRef]

[29] Yang, F., Ng, H. K., Ju, X., Cai, W., Cao, J., Chi,
D., ... & Wu, J. (2024). Emerging Opportunities for
Ferroelectric Field-Effect Transistors: Integration of
2D Materials. Advanced Functional Materials, 34(21),
2310438. [CrossRef]

[30] Zhao, D., Li, H., Xu, A., & Song, T. (2022).
Psychological Mobilization of Innovative Teaching
Methods for Students’ Basic Educational Curriculum
Reform Under Deep Learning. Frontiers in Psychology,
13, 843493. [CrossRef]

Abdur Rehman holds the position of Associate
Professor at the same institution and also
serves as a Game Developer at GameObject
in Lahore, Pakistan, drawing upon more
than 10 years of enriched experience in
the field of game development. With a
proven academic track record, Abdur Rehman
has contributed significantly to Smart City
technologies, Healthcare, Machine Learning,
Blockchain, Federated learning, and Network

Security. His impactful research, spanning over a decade,
has led to the publication of many research articles in highly
impactful journals with notable impact factors. (Email:
arbhatti@ncbae.edu.pk)

Munir Ahmad (Senior Member, IEEE) is a
distinguished professional with over 16 years
of experience. He holds a Ph.D. in computer
science from the School of Computer Science,
National College of Business Administration
and Economics, and a Master of Computer
Science degree from the Virtual University of
Pakistan. As the Executive Director/CIO at
United International Group, Lahore, Pakistan,
he has excelled in data management and

resource optimization within multinational organizations. Munir
Ahmad is renowned for his extensive research in sentiment
analysis, AI applications in healthcare and animal facial
identification. His expertise lies in data mining, big data, and
artificial intelligence. (Email: munirahmad@korea.ac.kr)

77

https://doi.org/10.1016/j.iot.2024.101158
https://doi.org/10.1080/0952813X.2024.2323042
https://doi.org/10.2478/amns.2023.1.00087
https://doi.org/10.1002/adfm.202310438
https://doi.org/10.3389/fpsyg.2022.843493

	Introduction
	Objectives

	Literature Review
	Methodology
	Working of the Proposed Model

	Results and Discussion
	Model Accuracy Comparison
	Training Time Analysis
	Energy Consumption Analysis
	Discussion on Implications and Future Prospects

	Conclusion
	Abdur Rehman
	Munir Ahmad


