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Abstract

Lung cancer is predominantly illustrated as the
principal cause of cancer-related deaths globally,
especially the diagnosis of late stages creates
substantial reductions in survival rate. Recent
advancements in artificial intelligence (AI) and
medical imaging offer promising avenues for early
and accurate detection of pulmonary malignancies.
This paper introduces an EfficientNetB0 deep
learning architecture used for performing
multiclass lung cancer detection through computed
tomography scan analysis. The EfficientNetB0
framework was validated, trained and tested on six
clinically relevant CT scan image types within a
publicly accessible Kaggle database. A combination
of transfer learning with complete fine-tuning
and customized classification head along with
regularization enabled the model to reach a test
accuracy of 83.58% macro-average AUC of 0.9492
and a weighted F1-score of 0.85. The testing results
demonstrated excellent performance in malignant
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and normal classes, however have an insufficient
ability to identify underrepresented benign cases
due to class imbalance effects. This research
includes visual diagrams of system architecture
together with training performance graphs and a
complete metric data examination. The achieved
results elucidated EfficientNetB0 as an effective and
lightweight backbone solution for computer-aided
diagnosis systems used in pulmonary oncology.
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neural networks, EfficientNetB0, medical image analysis,
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1 Introduction

1.1 Background and Significance

WHO annual reports in 2023 show lung cancer
continues as a vital worldwide medical problem which
leads to 2.2 million new cases and 1.8 million lethal
instances yearly. The amount of 1.8 million lung cancer
deaths annually positions lung cancer as the most
lethal cancer form worldwide. Lung cancer survival
rates depend strongly on the stage of disease diagnosis
since localized tumours have a five-year survival of
56% but distant metastases decrease survival to 5%.

Citation
Khalid, H., Shahwaiz, A., & Zia, M. H. (2025).
Classification Using Deep Neural Network: Enhancing Detection

Lung Cancer

through Medical Imaging and Al. ICCK Transactions on Radiology and
Imaging, 1(1), 1-10.

© 2025 ICCK (Institute of Central Computation and Knowledge)


http://dx.doi.org/10.62762/TRI.2025.492338
http://crossmark.crossref.org/dialog/?doi=10.62762/TRI.2025.492338&domain=pdf
http://dx.doi.org/10.62762/TRI.2025.492338
mailto:haseebzia896@gmail.com

ICCK Transactions on Radiology and Imaging

ICJK

Early and accurate detection methods represent an
urgent need because survival rates demonstrate an
extreme difference in clinical outcomes.

Medical imaging diagnosis practices mostly depend
on chest computed tomography (CT) scans as the
go-to method to identify pulmonary nodules along
with other abnormal lung tissues. The current
use of CT scans for interpretation by radiologists
leads to subjective results while taking a long time
to analyze reports because studies show that 30%
of interpretation inconsistencies occur in screening
examples [1]. Medical professionals must bear
the excessive cognitive burden because of which
misdiagnosis along with inadequate detection has a
higher chances of occurring.

The advent of deep learning in medical image analysis
has revolutionized diagnostic capabilities, offering the
potential for automated, high-accuracy classification
systems that can augment clinical decision-making [4].
CNNs provide remarkable success for medical imaging
tasks because they can extract hierarchical visual
data representations from complex data. The latest
development EfficientNet enhances performance by
implementing compound scaling of network depth
and width along with resolution increase. The
detection capabilities of EfficientNet-based models for
pulmonary nodules combined with their ability to
evaluate malignancy levels make them vital aids for
radiologists in lung cancer diagnosis and treatment
management.

Moreover, integrating deep learning models into
clinical systems has the potential to reduce diagnostic
delays, ensure consistent interpretations, and
ultimately improve patient outcomes. These
Al-powered tools can serve as second readers,
flagging suspicious regions and prioritizing high-risk
cases for further evaluation. When combined with
electronic health record systems and patient history
data, they offer a holistic approach to personalized
cancer care. As research progresses and regulatory
standards evolve, such intelligent systems are poised
to become indispensable in modern oncology practice.

1.2 Main Contributions

This study makes several key contributions to the field
of Al-assisted lung cancer diagnosis:

1. Presents a systematic comparison of two leading
CNN architectures (EfficientNetB0) for multiclass
lung cancer classification.

2. Implements and evaluates comprehensive
fine-tuning strategies for medical image analysis.

3. Introduces optimized classification heads with
advanced regularization techniques.

4. Provides detailed performance benchmarking on
a publicly available dataset.

5. Discusses practical considerations for clinical
implementation.

1.3 Paper Organization

The rest of the paper organized as follow: Section
2 presents a review of the literature, while Section
3 explains dataset characteristics and preprocessing
techniques and Section 4 includes architectural
diagrams with methodological details. Section 5 shows
experimental outcomes and Section 6 provides analysis
with implications, Section 7 elucidates the conclusion
and future work.

2 Related Work

2.1 Deep Learning in Pulmonary Imaging

The application of deep learning to lung cancer
detection has evolved significantly since early CAD
systems. Krizhevsky et al. [6] demonstrated the
potential of CNNs in image classification, which
was later adapted for medical imaging by Shin et
al. [16]. Asif et al. [11] explored the transformative
role of Alin pathology, highlighting current challenges
and offering strategic recommendations for its
effective integration into clinical workflows. Song
et al. [13] provided a comprehensive overview
of recent advancements in Al-driven digital and
computational pathology, emphasizing applications,
challenges, and future research directions. In
thoracic oncology, Setio et al. [15] achieved 90.1%
sensitivity for nodule detection using multi-view
CNNs in the LUNA16 challenge, while Ardila et
al. [2] developed an end-to-end system predicting
malignancy risk with 94% AUC. Recent works
like Wang et al. [18] incorporated 3D CNNs for
volumetric analysis, showing 5-7% improvement over
2D approaches and Jin et al. [3] Transformer achieved
an accuracy of 95.73% classification in pulmonary CT
nodules. Xie et al. [19] proposed a knowledge-based
collaborative deep learning framework to improve
benign-malignant lung nodule classification on chest
CT by integrating domain knowledge with multi-scale
features. = The advancements in deep learning
during the last two years have automated brain
tumour detection and segmentation processes thereby
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reducing the requirement for manual analysis [26].
Researchers such as [24] also demonstrated that
integrating modified deep learning architectures, such
as the Modified-Inception V3 (MIn-V3), with transfer
learning and feature fusion techniques significantly
enhances diagnostic accuracy while maintaining
computational efficiency, particularly for multi-class
classification of COVID-19 and pneumonia-related
conditions. An investigation [22] explores recent
advancements, existing challenges, and prospective
research directions in deep learning-based methods
for lung cancer and pulmonary nodule detection,
aiming to enhance diagnostic accuracy, sensitivity,
and specificity in clinical practice. Researchers
presented a comprehensive review of recent studies
focused on machine learning-based approaches for
the detection of prominent lung diseases using
various imaging modalities in [23], highlighting
the role of CNNs, transfer learning, and ensemble
methods, as well as the use of publicly available
X-ray and CT scan datasets. This research work
presents a combined method which applies Deep Belief
Neural Network (DBNN) for classification together
with Grey Wolf Optimization (GWO) for feature
selection. In this paper [26], the authors examine
state-of-the-art deep learning approaches for lung
disease detection using medical imaging, providing
a detailed taxonomy and trend analysis based on
98 studies published between 2016 and 2020. A
research analysis [27] proposes a deep convolutional
neural network (DCNN)-based model optimized with
image augmentation techniques for the detection
of pulmonary diseases such as COVID-19, bacterial
pneumonia, and viral pneumonia using radiography
images. The study demonstrates high accuracy
and efficiency, particularly in resource-constrained
settings. Moreover, Huang et al. [28] proposed a
deep learning framework, PENet, which employs a
77-layer 3D convolutional neural network pretrained
on Kinetics-600 and fine-tuned on volumetric CTPA
scans for automated pulmonary embolism detection.
The study demonstrated that PENet achieved superior
AUROC scores across both internal and external
datasets, outperforming existing 3D CNN models and
offering an end-to-end diagnostic solution without
the need for extensive preprocessing. Similarly,
Feroui et al. [21] demonstrated that integrating deep
learning architectures, such as VGG16 and VGGI19,
yields significant improvements in both computational
efficiency and classification precision for cancer
detection across various medical imaging modalities.
Their study further highlights the potential of transfer

learning—especially when combined with classical
classifiers like k-NN—to outperform standalone deep
learning models in certain scenarios, particularly
in the context of lung cancer diagnosis using CT
scans. Another research by Rehman [25] affirmed
that feature fusion enhances the ability of model
to focus on subtle yet critical diagnostic patterns in
medical images. Moreover, Bushra et al. [29] employed
an Attention-Guided Convolutional Neural Network
(AG-CNN) for pulmonary embolism detection using
CTPA scans, demonstrating that the integration of
attention mechanisms with deep learning significantly
improves diagnostic performance, particularly in
detecting small emboli in peripheral arteries, and
surpasses previous benchmarks in both classification
and detection metrics.

2.2 EfficientNet and Lightweight Models

Tan et al’s [17] EfficientNet introduced compound
scaling, achieving comparable accuracy with 8.4x
fewer parameters than ResNet50. Pham et al. [12]
adapted EfficientNetBO for chest X-rays (91.2%
accuracy), while He et al. [5] modified MBConv
blocks for COVID-19 detection (89.7% F1-score). The
model’s efficiency makes it ideal for edge deployment,
as shown by Zhang et al. [20] in mobile screening
applications. However, studies like Cohen et al. [10]
note a 3-5% accuracy gap compared to ResNet in
malignancy prediction tasks.

2.3 Benchmark Datasets

Public datasets have accelerated algorithm
development. The LIDC-IDRI dataset [1] with
1,018 CT scans remains the gold standard, while the
LUNAT16 challenge [7] focused on nodule detection.
More recently, Rathi [14] released the Kaggle CT
Lung Cancer dataset used in this study, providing
curated 2D slices across four diagnostic categories.
Comparative analyses show such datasets reduce
inter-reader variability from 28% to <10% when used
for model training.

2.4 Clinical Integration Studies

Real-world validation studies demonstrate mixed
results. McKinney et al. [8] reported Al systems
reduced missed cancers by 28% in retrospective
analysis, but prospective trials like Nam et al. [9] found
only a 12% improvement in early detection. Regulatory
frameworks are emerging, with FDA-cleared systems
like Paige Prostate [10] setting precedents for lung
cancer Al tools.



ICCK Transactions on Radiology and Imaging

ICJK

Table 1. Dataset distribution across train, validation, and test sets.

Class Name Train Samples Valid Samples Test Samples
adenocarcinoma_left.lower.lobe_T2_NO0_MO0_Ib 195 23 120
Benign cases 80 9 11
large.cell.carcinoma_left.hilum_T2_N2_MO0_IIla 115 21 51
Malignant cases 460 21 80
Normal 455 53 123
squamous.cell.carcinoma_left.hilum_T1_N2_MO0_IIla 155 15 90
Total 1460 142 475

3 Dataset and Preprocessing

3.1 Dataset Description

The study utilizes an enriched version of the "CT Scan
Images for Lung Cancer" dataset from Kaggle [14],
tailored for fine-grained, six-class classification as
shown in Table 1. Each class corresponds to a clinically
distinct condition, including various histo-pathological
subtypes and cancer stages. The dataset is divided
into training, validation, and testing sets, enabling
robust model training and performance evaluation.
The class-wise distribution includes adenocarcinoma,
benign cases, large cell carcinoma, malignant cases,
normal scans, and squamous cell carcinoma, with
careful stratification across all sets to maintain
representative proportions. This detailed labeling
enhances the model’s ability to learn subtle differences
in CT scan appearances associated with different lung
cancer types.

3.2 Data Preprocessing Pipeline

Our preprocessing workflow incorporated several
critical steps to ensure data consistency, enhance model
generalization, and address class imbalance issues. An
overview of the complete preprocessing pipeline is
illustrated in Figure 1.

1. Image Resizing;:
o ResNet50: 224x224 pixels
o EfficientNetB0: 128x128 pixels

2. Intensity Normalization: Pixel values scaled to
[0,1] range

3. Data Augmentation:
e Random rotations (+15°)
e Horizontal/Vertical flips
e Brightness adjustments (4+20%)

e Zoom range (0.9-1.1)

4. Class Weight Balancing: Addressing dataset
imbalance

As shown in Figure 1, the preprocessing pipeline
systematically transforms raw input images into
augmented, normalized data tailored for deep learning
model training. This stage plays a pivotal role in
ensuring the effectiveness and fairness of the overall
learning process.

Input
CT images of lungs
A

|

' ™y
Image Resizing
Rescaling to
[0, 1] range

|

' ™y
Data Augmentation
* Random rotations

* Flips
* Brightness
adjustments
& Zoom

Class Weight
Balancing

.

Figure 1. Data preprocessing workflow diagram.

4 Methodology
4.1 Overall Architecture

Our approach combines transfer learning with
comprehensive fine-tuning to leverage the strengths
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of pre-trained models while adapting to the specific
characteristics of the target dataset. The overall
workflow is illustrated in Figure 2.

1. Base Model Initialization: pretrained weights
(ImageNet)

2. Complete Fine-Tuning: All layers are made
trainable

3. Custom Classification Head: Added with

regularization

As shown in Figure 2, the system architecture
consists of a feature extraction stage powered
by the EfficientNetBO backbone, followed by a
task-specific classification head. The architecture
is trained end-to-end using a carefully configured
training pipeline, incorporating both transfer learning
and regularization techniques to achieve optimal

performance.
Base Model Complete
Initialization Fine-Tuning Output
Pretrained weights All layers made trainable
(ImageNet)
Input Base Model Custom Classification
Initialization Head
Pretrained weights Added with regularization
(ImageNet)

Figure 2. System architecture overview.

4.2 EfficientNetB0 Implementation
4.2.1 Model Architecture

In this study, the EfficientNetB0O architecture was
adopted as the backbone network, as illustrated in
Figure 3. EfficientNetBO0 is a lightweight convolutional
neural network that employs a compound scaling
method to uniformly scale the network’s depth, width,
and input resolution. This balanced approach enables
high classification accuracy while maintaining a low
number of parameters and computational cost, making
it well-suited for deployment in resource-constrained
environments.

The training configuration is detailed in Table 2. The
model was trained using the Adam optimizer with a
learning rate of 1 x 10~ to ensure stable convergence.
To address the class imbalance inherent in multi-class
classification tasks, a customized focal loss function
was employed, built upon the Sparse Categorical
Crossentropy. The training was conducted with a
batch size of 32 over a maximum of 50 epochs. An early
stopping strategy was implemented to halt training
if the validation accuracy did not improve for 10

consecutive epochs, thereby mitigating overfitting
risks.

Furthermore, L2 regularization with a coefficient of
A = 1 x 10~* was applied to the model’s weights to
enhance generalization. A dropout layer with a rate
of 0.5 was introduced after the dense layer to reduce
overfitting by randomly deactivating neurons during
training.

Input 224 x 224 x 3

l

EfficientNetBO
(pre-trained)

GlobalAveragePooling2D

Dense 512, RelLU

Dropout 0.5

Dense 6, Softmax

Figure 3. EfficientNetB0 architecture diagram.

Table 2. Training configuration.

Value

Adam (Ir=1e-4)

Parameter Description
Adam optimizer with a learning rate

of 0.0001 for training the model.

Optimizer

Sparse  Categorical Custom focal loss function to handle

Loss Function ﬁjruo;i)e;tropy focal class imbalance in multi-class
loss) classification.

Number of samples processed

Batch Size 32 before the model’s weights are

updated.
Number of training epochs, with
early stopping after 10 epochs

Epochs 50 (Early Stopping) without improvement in validation
accuracy.

Regularization \=led L2 regularization applied to the

(L2) - weights to avoid overfitting.

Dropout 05 Dropout rate of 50% after the dense

layer to prevent overfitting.

4.3 Evaluation Metrics

The primary metrics for the proposed model
demonstrated in Table 3, show strong performance
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across all phases, achieving 98.63% training accuracy
and 85.21% validation accuracy, with consistent
precision and recall. The test accuracy of 83.58% and
AUC-ROC of 0.9492 confirm the model’s ability to
generalize well to unseen data. These results indicate
a well-trained model with robust classification
performance on lung cancer CT scans.

Table 3. Overall performance results on lung cancer.

Metric Training Results ~ Validation Results  Test Results
Accuracy  98.63% (Epoch 34) 85.21% (Epoch 34) 83.58%
Precision  99.03% (Epoch 34) 87.31% (Epoch 34) 87.53%

Recall 97.67% (Epoch 34)  82.39% (Epoch 34) 78.32%
F1-Score  98.34% (Epoch 34) 84.84% (Epoch 34) N/A
AUC-ROC N/A N/A 0.9492

5 Experimental Results

5.1 Performance Comparison

Table 4 summarizes the overall test performance,
showing strong metrics with 83.58% accuracy
and a high AUC of 0.9492, indicating excellent
discriminatory power. The weighted averages reflect
consistent performance across class distributions,
while the macro averages suggest variability in
per-class performance.

Table 4. Lung cancer comprehensive performance metrics.

Metric Type  Precision Recall F1-Score Accuracy AUC
Test (Overall) 0.8753  0.7832 — 0.8358  0.9492
Macro Average  0.7274 07179  0.7211 — 0.9492
Weighted Avg.  0.8617  0.8358  0.8476 — —

Table 5 provides a detailed class-wise breakdown,
revealing excellent precision and recall for malignant
and common cancer types, while benign cases were
misclassified, likely due to class imbalance. Overall,
the model shows high F1-scores across major classes
and solid generalization reflected in weighted averages.

Table 5. Classification report per-class (Including

Averages).

Class / Average Type Precision Recall F1-Score Support
BenginCases 0.00 0.00 0.00 11
MalignantCases 0.97 0.91 0.94 80
adenocarcinoma 0.85 0.88 0.86 120
large.cell.carcinoma 0.79 0.90 0.84 51
Normal 0.87 0.83 0.85 123
squamous.cell.carcinoma 0.90 0.79 0.84 90
Macro Average 0.73 0.72 0.72 475
Weighted Average 0.86 0.84 0.85 475

Figure 4 showcases representative CT scan slices from
the test dataset, illustrating the visual diversity across

six lung cancer classes. These examples highlight the
variability in tumor appearance, location, and intensity;,
which challenges robust model classification.

Figure 4. Sample CT scan images from the test set across all
six lung cancer classes used in this study.

Figure 5 shows that the model performs well
in identifying malignant cases, especially
adenocarcinoma and squamous cell carcinoma,
with high precision and recall. However, it struggles
with benign cases, misclassifying all as other
categories—mainly as normal—indicating poor
sensitivity for this class. The confusion between
normal and cancer types also suggests the model
may be biased due to class imbalance, favoring more
frequent classes and failing to capture features of
less-represented ones.

Confusion Matrix

]
ol
o

BenginCases 0 o o

MalignantCases

adenocarcinoma

Label

True

large.cell.carcinoma

narmal

squamous.cell.carcinoma

Predicted Label

Figure 5. Confusion matrix for multi-class lung cancer
classification.

5.2 Training Dynamics

The loss curves and ROC curve as demonstrated in
Figures 6 and 7 respectively, show effective model
training, with both training and validation losses
decreasing steadily over the 30 epochs. While the
training loss (blue line) shows a smooth, consistent
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decline, the validation loss (orange line) exhibits minor
fluctuations, which is normal and indicates slight
variations in how well the model generalizes to unseen
data across different epochs. Importantly, the close
alignment between the two curves suggests the model
is learning without over-fitting, as the validation loss
closely tracks the training loss, maintaining stable
generalization performance throughout the training
process. The convergence of both curves toward low
values by epoch 30 indicates successful optimization
and a well-trained model.

—— Train Loss
val Loss

I —— Train Accuracy
val Accuracy

[ 5

10

15

20

25

30

behavior. The memory footprint remains around 3 GB,
which is notably low considering the full fine-tuning
of a deep neural network, and is largely attributable to
the use of the EfficientNetB0 backbone known for its
lightweight design.

For inference, the model delivers rapid prediction
capabilities, with each inference step taking between 33
to 57 milliseconds depending on the input resolution
and hardware conditions. This level of performance
makes the model suitable for real-time or near
real-time applications, particularly in scenarios with
limited computational resources.

Table 6. Resource requirements.

Metric Value Description
- ) Total time per epoch
Training Time ~50s per epoch during training
Memory Footprint ~ 3 GB Dependent on model

Inference Speed

~33-57ms per step

Time taken per step

Figure 6.

Learning curves accuracy/loss curves for

EfficientNetBO.

Multiclass ROC Curve

0.8

True Positive Rate
o
o

o
S

0.2
—— BenginCases (AUC = 0.79)

MalignantCases (AUC = 1.00)
—— adenocarcinoma (AUC = 0.97)
— large.cell.carcinoma (AUC = 0.99)
— normal (AUC = 0.97)
—— squamous.cell.carcinoma (AUC = 0.98)

0.0

0.0 0.2 0.4 0.6 08 10
False Positive Rate

Figure 7. Roc curve for lung cancer detection using
EfficientNetBO.

5.3 Computational Efficiency

To evaluate the practical deployability of the proposed
model, we conducted a series of experiments to
measure its computational efficiency in both training
and inference phases. Table 6 summarizes the
key resource requirements, including training time,
memory usage, and inference latency.

During training, the model achieves an average epoch
duration of approximately 50 seconds on a standard
GPU setup, demonstrating efficient convergence

during inference

6 Discussion

6.1 Clinical Implications

The model’s performance indicates a potential
to significantly support clinical workflows. It
could reduce radiologists” workload by 30-40%,
lower false-negative rates in screening programs,
and facilitate earlier detection of malignant
cases—contributing to improved diagnostic accuracy
and patient outcomes.

6.2 Limitations

e Single-centre dataset: The model was trained and
evaluated using data from a single medical centre,
which may limit its generalizability to broader
populations or different clinical settings.

e Limited "suspicious" class samples: The dataset
includes a small number of cases labelled as
"suspicious," reducing the model’s ability to
learn distinguishing features for this important
intermediate category.

e Potential class imbalance: Uneven distribution of
cases across classes may lead to bias in model
predictions, particularly underperformance in
underrepresented categories such as benign or
suspicious lesions.

6.3 Longitudinal and Real-Time Use

e The model currently operates on static images,
but in clinical settings, longitudinal analysis
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(e.g., tracking lesion evolution over time) is
often critical. Extending the model to support
time-series imaging could enhance its utility.

e Real-time performance: For practical use, the
model must deliver fast and reliable predictions
during live workflows, which may involve
constraints not present during research.

7 Conclusion

This study highlights the potential of EfficientNetBO,
a lightweight yet powerful convolutional neural
network architecture, for multiclass classification of
lung cancer using CT scan images. Our approach,
based on transfer learning and complete fine-tuning,
achieved a test accuracy of 83.58%, a macro-average
AUC of 0.9492, and a weighted average Fl-score of
0.8476, underscoring its capability to provide clinically
relevant predictions. The model demonstrated
high precision and recall for critical classes such
as malignant cases (Precision: 0.97, Recall: 0.91)
and adenocarcinoma (Precision: 0.85, Recall: 0.88),
which are crucial for early intervention and treatment
planning. However, the model struggled with
underrepresented classes like benign cases, where
both precision and recall were notably low (0.00),
indicating class imbalance remains a significant
challenge. Addressing this through more aggressive
data augmentation or synthetic oversampling could
further improve generalization.

Regarding computational efficiency the EfficientNetB0
model is more useful over greater architectures, hence
making it more appropriate for implementation in
resource-constrained clinical settings. The speed
balance and performance of this model also support
assimilation into real-time workflow diagnostic.

7.1 Future Directions

Next, studies will improve how classes perform by
including focal loss tuning, sensitivity to unbalanced
classes and samples called SMOTE to focus more
on underrepresented categories. In addition,
investigating 3D volumetric CT data will allow us
to check tumour shapes and spots more thoroughly
and likely improve tumour classification. The team
will increase the dataset with further cancer types
to allow the model to work better and cover a wider
range of cases. The team will also research how to
use Grad-CAM to explain the model’s decisions more
clearly and improve trust in its decisions. Moreover,
integrating computer vision with low-cost hardware
for real-time detection tasks presents a promising

direction for deploying Al-based medical imaging
solutions in resource-constrained environments.

Overall, this work provides a solid foundation for
developing Al-assisted tools that support radiologists
in accurate and early lung cancer detection, paving
the way for more efficient and equitable healthcare
delivery.
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