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Abstract

In recent years, vehicular ad hoc networks (VANETS)
have faced growing security concerns, particularly
from Denial of Service (DoS) and Distributed
Denial of Service (DDoS) attacks. These attacks
flood the network with malicious traffic, disrupting
services and compromising resource availability.
While various techniques have been proposed
to address these threats, this study presents
an optimized framework leveraging advanced
deep-learning models for improved detection
accuracy. The proposed Intrusion Detection System
(IDS) employs Convolutional Neural Networks
(CNN), Long Short-Term Memory (LSTM),
and Deep Belief Networks (DBN) alongside
robust feature selection techniques, Random
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Projection (RP) and Principal Component Analysis
(PCA). This framework extracts and analyzes
significant features using a publicly available
application-layer DoS attack dataset, achieving
higher detection accuracy than traditional methods.
Experimental results indicate that combining CNN,
LSTM networks, and DBN with feature selection
techniques like Random Projection (RP) and PCA
results in improved classification performance,
achieving an accuracy of 0.994, surpassing the
state-of-the-art machine learning models. This
novel approach enhances the reliability and safety
of vehicle communications by providing efficient,
real-time threat detection. The findings contribute
significantly to VANET security, laying a robust
foundation for future advancements in connected
vehicle protection.

Keywords: vehicular networks security, denial of service
(DoS) detection, deep learning intrusion detection, feature
optimization techniques, connected vehicle protection.

1 Introduction

Vehicular Ad Hoc Networks (VANETS) are considered
the next generation of ITS since they make it possible
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Figure 1. Smart City Infrastructure for Internet of Vehicles (IoV).

for the vehicles to communicate with each other,
that is, vehicle to vehicle (V2V) and with different
structures, for instance, vehicle to Infrastructure
(V2I). This technology increases road safety, traffic
manageability, and real-time information transfer [1].
A recent projection indicated that global internet
users would be 5.3 billion by 2023, while networked
devices per capita rose from 2.4 in 2018 to 3.6
in 2023, implying that modern life is increasingly
characterized by devices such as connected vehicles
[2, 3]. Using sophisticated wireless communication
technologies, VANETs provide auxiliary services,
including traffic information, weather conditions, and
real-time entertainment, besides using Roadside Units
(RSUs) for communication [4]. The communication
architecture of a VANET is illustrated in the following
Figure 1. The goal is to demonstrate how the
cars communicate through V2V and V2I. The figure
shows that RSUs are set to act as intermediaries
in data exchange between vehicles and the network
infrastructure. In addition, these RSUs communicate
over the Internet with the Transport Authority (TA),
also known as the other IoV entity. This architecture
facilitates real-time data exchange, traffic surveillance,
and reliable communication crucial for enhancing road
security and traffic flow.

However, with the recent widespread use of VANETs,
they have become prone to advanced cyber threats
such as DoS and DDoS attacks. These attacks
overwhelm the network with considerably invasive
traffic that plugs its facilities and causes service
interruption [5]. DOS attacks, including the HULK
and Slowloris types, affect network services by
consuming server resources or exploiting connection
management mechanisms, respectively. = These
vulnerabilities undermine the network’s ability to
provide the rightful users’ services [6, 7].

Various approaches have been implemented to address
these threats. Traditional Syntactic Intrusion Detection
Systems (IDS) compare events to a database of attack
signatures, and the newly realized Anomaly IDS
identifies events that deviate from the expected norm
[8, 9]. The use of fuzzy logic [10], clustering [11],
and hybrid systems [12] have been used in efforts
to improve the detection ability of systems further.
However, these approaches are computationally
expensive, capable of scaling down, and less precise
against advanced attacks [13, 14].

The basic illustrations of DoS and DDoS attacks
on VANET are depicted in the following figure, as
shown in Figure 2. In this diagram, an attacker
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Figure 2. DoS and DDoS attack in VANET.

launches an attack by sending tainted HTTP requests
through the compromised vehicles to the target server.
These auto-generated malicious vehicles flood the
network with HTTP request rates denoted by the red
arrows. In contrast, vehicles upload normal HTTP
requests, as denoted by the green arrows. The targeted
server cannot distinguish between crafted and normal
requests; this causes a resource overload issue and
affects the services. This figure shows the effects of
such attacks on vehicular communication networks
and emphasizes the detection of such attacks.

The current and future use of Machine Learning
(ML) and Deep Learning (DL) methods have proven
effective in managing such issues. Recent literature
shows that using random forests and support vector
machines can help analyze the network’s traffic data
and flag irregularities [15, 16]. Based on this, DL
models provide superior functionality compared to
traditional machine learning techniques because the
former can learn high-level features directly from big
data without requiring developers to hand code those
features [17], which proves beneficial in intrusion
detection.

This research presents an improved scenario
integrating deep learning models such as CNNs,
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LSTMs, and DBN s to identify DoS and DDoS attacks
in VANETs. To further improve detection accuracy
and efficiency, the framework integrates two robust
feature selection techniques: Random Projection
(RP) and Principal Component Analysis (PCA). As
in the case of the RP, the method proved successful
in bringing dimensionality down while at the same
time minimizing data loss; PCA, on the other hand,
is efficient in its identification of features that can be
suppressed to improve the performance of the model
[18, 19].

The effectiveness of the proposed framework is tested
using a real dataset, including application-layer DoS
attacks. The experimental results presented in
this paper show that integrating CNN, LSTM, and
DBN with RP and PCA brings about a remarkable
enhancement in accuracy and time compared to
other machine-learning models. This research works
in VANET security. It presents a scalable, robust
solution and is capable of providing real-time solutions
against DoS and DDoS attacks for trusty and secure
communication between vehicles.

This study presents important contributions to
advancing VANET security since it compares and
extends solutions for detecting and handling DoS
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and DDoS attacks through a refined deep-learning
approach. Mitigating DoS and DDoS attacks in
VANETSs is crucial due to their potential to disrupt
critical services in real-world scenarios. For instance, a
coordinated DoS attack on vehicle-to-infrastructure
(V2I) systems could paralyze traffic management
systems, leading to severe congestion or accidents.
Similarly, targeting V2V communication during
emergencies could delay critical safety alerts,
endangering lives. In smart cities, such attacks on
autonomous vehicle fleets could compromise public
transportation reliability, causing significant economic
and societal impacts. The proposed framework’s
ability to detect such attacks in real-time enhances
the resilience and security of VANETS, ensuring safer
and more efficient vehicular communication in these
scenarios.

Various IDS have been proposed for VANETs in
recent years, but they face significant limitations.
Traditional signature-based methods struggle to detect
new and evolving attacks, relying on predefined
attack patterns. Meanwhile, anomaly-based systems
often suffer from high computational costs and
a higher rate of false positives, making them
inefficient for real-time applications. Furthermore,
state-of-the-art machine learning and deep learning
models are often plagued by scalability issues when
dealing with high-dimensional data in VANETS, as
they require substantial computational resources
and are not well-suited for the dynamic nature
of vehicular environments. This study addresses
these gaps by proposing a novel hybrid intrusion
detection framework that integrates advanced deep
learning models, including Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM)
networks, and Deep Belief Networks (DBN), with
robust feature selection techniques such as Random
Projection (RP) and Principal Component Analysis
(PCA). By combining these methods, we significantly
improve detection accuracy, reduce computational
overhead, and enable real-time, scalable detection,
thus overcoming the limitations of previous methods
and ensuring enhanced security for VANETs. The key
contributions of this study are outlined below:

e This study introduces an optimized deep
learning-based IDS combining CNN, LSTM, and
Deep Belief Networks (DBN) with robust feature
selection techniques, Random Projection (RP),
and PCA. This framework enhances the detection
accuracy and efficiency of DoS and DDoS attacks
in VANETs.

e <UNK> Integrating deep learning models
and advanced feature selection methods
significantly improves classification performance,
achieving higher accuracy than state-of-the-art
machine learning approaches. The framework
demonstrates superior real-time threat detection
with reduced computational complexity, making
it suitable for practical VANET applications.

e The study extensively validates the proposed
framework using a publicly available
application-layer DoS attack dataset. It presents
a detailed comparison with existing methods,
highlighting the approach’s effectiveness in
ensuring the reliability and safety of vehicular
communication systems.

The study consists of five major sections. Section 2:
Related Work assesses existing literature on intrusion
detection in VANETS, and discusses the limitations
of existing approaches. Section 3: The research
methodology section Discusses the CNN, the LSTM,
and the DBN model used in the proposed framework;
it also provides information on the Feature selection
methods, such as Recursive partitioning and the
principal component analysis. Section 4: Results
and discussion describe how the experiment was
conducted, the comparison of the proposed framework
to previous work using metrics such as accuracy
and precision, and the interpretations of the results
section explore other difficulties, including dataset
dependency and computational cost, and venue for
future studies. Section 5: Concisely, this research’s
key findings are discussed, and it is concluded that
the VANET security benefits from the proposed
model, which incorporates advanced deep learning
and feature selection mechanisms.

2 Related Work

This section presents a review of the existing
literature concerning the IDS in VANETs, and the
weaknesses that inspired the creation of the proposed
framework. In [20], the authors considered the
capability of IDS for malicious activity detection
in VANETs, focusing on the algorithms. Thus,
while their study offered an abundant review, no
corresponding applications or uses could be directly
implemented into a setting. Like this [21] developed
a mutual authentication scheme for VANETs that
employ forward secrecy for impersonation and
forgery detection.  Although presenting strong
psychological protection courses, the technique had
not been compared with other approaches and had
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Figure 3. Secure data transmission and threat detection Using Deep Learning Models.

not undergone extensive empirical assessment in
functional studies.

Comprehensive research in [22] classified IDS
into signature-based, anomaly-based, and hybrid
techniques. While in the case of signature-based
IDS, false positives can be low and are very good at
detecting known attack types, the anomaly-based IDS
is more suitable for unknown attack types since it
identifies deviation from normal operation patterns.
However, no attention was paid to the machine
learning approaches and their optimizations that can
be applied to deep learning methods. The study in
[23] showed that there are a lot of limitations with
existing IDS, especially with signature-based IDS,
which depends on a large attack signature database,
and updating the same can be a difficult task of
the day. Although the concept of Anomaly-based
IDS is rather flexible, this approach costs a lot of
computational capacity. This conflict of utilization
within efficiency-consciousness is still an open
problem. Another related research [24] used the MLP
and RF for detecting DDoS attacks at the application
layer. Even though RF reached an accuracy of 99.9%,
the study had limitations in data set dependence and
no particular feature selection, so it remains not easily
scalable or optimized.

Figure 3 shows a VANET-based model for secure
transmission of data and threat identification. The
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flow starts with the data collected in the cars being
sent through booth Roadside Units (RSUs) This data
is then processed and analyzed in the cloud where a
deep learning algorithm assigns users a green or red
label. The framework is the combination of VANET
components with newly developed deep learning
techniques to make vehicular communication more
secure and robust.

The study in [25] focused on the use of statistical
methods paired with machine mining techniques such
as KNN, Bayesian Naive Bayes, and Logistic Regression
for DDoS detection in Software-Defined Networking
(SDN). The results identified the promising features of
KNN while also revealing resource requirements and a
range of issues regarding implementation that prevent
the spread of the method. Likewise, [26] employed
multi-feature approaches and multiple classifiers for
the detection of malicious traffic, and gained noticeable
performance. However, its applicability to various
types of datasets and its use in a real environment
needed further investigation.

In [27], supervised learning with recursive feature
addition was used to improve the intricacy of
intrusion detection. Although this approach provided
enhanced classification accuracy it did not address
class imbalance and did not consider various attack
cases which restricted its application. Deep learning
methods were proposed for anomaly-based IDS in



ICJK

ICCK Transactions on Sensing, Communication, and Control

VANETs in the work reported in [28]. However, one
disadvantage of using such models such as the Deep
Belief Networks (DBN) that it adds to the operational
complexity.

Authors in [29] proposed a bit nevertheless highly
secure authentication protocol for VANETs with an
emphasis on protection against unauthorized nodes.
While it provided a comparison of the detection
techniques, it did not assess the efficiency of its
methods in a real environment. Similarly, [30] also
developed an intrusion detection framework based
on various machine learning algorithms employing
ensemble techniques that proposed considerable
accuracy gains. However, the computational cost
of model stacking imposed a constraint on it to the
extent that it could not be implemented on larger
datasets. The summary of the related work in the
field of IDS for VANET is discussed in Table 1, along
with the details of datasets, ML/DL methods used,
objectives, and drawbacks in each of the studies. It
shows the limitations of existing approaches, including
scalability, computational complexity, dependence on
the used dataset, and low optimization of feature
selection. These limitations highlight the need for
a better architecture that would embed enhanced
Deep learning models and feature selection methods
that could enhance the recognition of DoS and DDoS
attacks in a real-time VANET environment.

In the study of [31], the authors proposed a
CNN-based approach for traffic anomaly detection,
thereby presenting the network’s capability to learn
spatial information patterns.  As analyzed in
[32], LSTM models provided good performance for
predicting time dependencies of sequential data,
for example, the network logs. Although both
methods were promising they were not complemented
by feature selection methods which could increase
accuracy and decrease complexity. Finally, [33] has
presented a deep learning model that is a combination
of CNN and DBN to detect intrusion. While
this approach yielded good accuracy, it punctuated
the model with complications and training times
inconducive to real-time periods.

As evidenced by the existing studies, IDS has achieved
vast improvements in the security of VANETs; however,
issues of dataset dependency, high computational
complexity, and system scalability remain challenges.
These gaps turn the spotlight on the importance of
fine-tuned IDS framework using deep learning models
such as CNN, LSTM, and DBN on feature selection

techniques, namely RP and PCA, for better detection
accuracy and prompt information detection in VANET
networks. Feature selection techniques like random
projection structure and dimensionality reduction
techniques are important in intrusion detection. Thus,
efficiency was increased within the framework of the
proposed study when RP was used in connection with
deep learning classifiers. This was achieved when a
feature extraction algorithm such as PCA was adopted
in IDS, where noise was minimized and classification
improved.

Existing intrusion detection techniques for
VANETs have significant limitations. Traditional
signature-based IDS can only detect known attacks,
making them unsuitable for dynamic environments,
while anomaly-based systems face challenges with
high computational costs, false positives, and poor
scalability. Recent machine learning (ML) and deep
learning (DL) models often fail to efficiently handle
high-dimensional data or incorporate proper feature
selection, limiting their real-time applicability. This
study addresses these issues by proposing a hybrid
deep learning framework that combines CNN, LSTM,
and DBN with Random Projection (RP) and PCA for
efficient feature selection. Our approach improves
detection accuracy, reduces computational overhead,
and ensures real-time scalability, offering a more
effective solution for detecting DoS and DDoS attacks
compared to traditional IDS and existing DL methods.

3 Methodology

In this section, the framework designed in the context
of the present research study, to identify DoS and
DDoS attacks in VANETSs, has been described in
detail. The framework works as follows: vehicles
send information to Roadside Units (RSUs) which
are data relayers. The RSUs transmit the gathered
data to a cloud server and the data is then enlightened
by a combined deep-learning program to distinguish
between good and dangerous users. These results
are transmitted back to the vehicles to facilitate
real-time threat detection together with accurate attack
categorization within the VANET context. Specific
features of the research include an overview of
the approaches to the formation of the dataset, an
analysis of the preprocessing of LIDAR data, and a
comprehensive description of the classifiers based on
deep learning used in the work. Also, the measures
employed in evaluating the model’s efficiency are
presented. To enhance externally provided cues
to facilitate further research, the study adheres to
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Table 1. Summary of Related Work and their Limitation

Ref Dataset ML/DL Aim/Target Limitation
Technique

[20] KDD Cup 99 SVM method Preventing mutation of Inadequate vehicle
and NSL-KDD well-classified events in VANETs. communication and massive

data integration for SVM
training.

[21] Application-layer MLP and RF Identifying DDoS attacks with Lacked practical implementation
DDoS dataset high accuracy. and comparative validation in

real-world scenarios.

[22] IoTID20  and GBM, RE ETC  Ensemble-learning-based The computational cost of
UNSW-NB15 malicious traffic detection. stacked models limits scalability

and real-time applicability.

[23] DDOS KNN, SVM, RF  Protecting Iol devices inbanking Accuracy improvements were
open-source from DoS attacks. needed and lacked optimized
dataset feature selection techniques.

[24] NSL-KDD Regression, Effective detection of DDoS Additional hardware/software
dataset Naive  Bayes, attacks in SDN environments. requirements increase

SVM, KNN complexity and implementation
cost.

[25] CICIDS2017 RF, SVM, MLP, ML-based model for detecting Feature extraction and
CNN DDoS attacks at the application preprocessing techniques

layer. were not explicitly detailed.

[26] NS3 simulation Decision Tree Hybrid data-driven model for Can only detect known attacks;
and NSL-KDD (DT), SVM, malicious traffic detection. lacks adaptability to novel
dataset KNN intrusion patterns.

[27] CICIDS2017 RF and Enhancing detection accuracy Ignored class imbalances
recursive through feature selection. and focused only on binary
feature addition classification scenarios.

[28] Custom VANET DBN, CNN Anomaly-based intrusion High computational complexity

security dataset detection system for VANETs. and lack of real-world
deployment.

[29] ISCX 2012 Multi-feature Efficient detection of DoS and Applicability to diverse datasets
techniques with DDoS attacks across local and real-world scalability was
ML networks. not fully explored.

[30] Custom VANET ML ensemble Security-critical authentication Lacked in-depth real-world
authentication techniques system for VANET:. evaluation of proposed methods.
dataset

[31] UNSW-NB15 RP with ML Reducing dimensionality for Only RP was considered;
classifiers efficient intrusion detection. combined feature selection

techniques were not explored.

[33] CICIDS2017 CNN Learning spatial patterns for Lack of integration with
anomaly detection in VANETs. feature selection techniques

for improved efficiency.

[34] CICIDS2017 LSTM Capturing temporal Focused only on time-series data;
dependencies in sequential lacked adaptability to mixed
network traffic. traffic patterns.

[35] ISCX 2012 Hybrid Improved accuracy for intrusion High complexity and training

CNN-DBN detection in VANETs. time limited its applicability for
model real-time intrusion detection.

142



ICJK

ICCK Transactions on Sensing, Communication, and Control

Dataset

|
I
Feature t :
Selectioy | | Model
PCA .
| |
: | Tram@g_ /
[ e e e e e Y e e =N
| |
| |
| |
' '
o I I
| I I I
| f_T\‘—W/_S/Q | | :
| Tam Set
L 700 l——+1| LSTM |
I |
Splitting of Bl : I
Dataset I | | |
/ | = | | DBN |
| Test Set I I I
| e 1 |
|
| |
) J

Evaluation

|

|

: { Trained ;
: Model

|

|

Figure 4. Proposed Deep Learning Framework.

predetermined procedures based on four principles:
clarity, accuracy, completeness, and reproducibility.

The framework incorporates deep learning techniques
like CNN, LSTM, and DBN and feature selection
methods like Random Projection (RP) and PCA. For
this work, a publicly available application-layer DoS
attack dataset is obtained and undergoes further
feature extraction that boosts the detection rate. The
experiments were performed on an Intel Core i5 8th
generation laptop that came with 16 GB RAM and 1TB
SSD and preloaded with Windows 11. Specifically,
the successful deep learning paradigms in Python
were deployed using the TensorFlow and Scikit-learn
libraries within a Jupyter Notebook framework. The

proposed framework is designed to classify and predict
DoS and DDoS attacks better to provide a better
solution for intrusion detection at VANETs. Finally,
after training the deep learning model, the framework
produces decision-making inputs for real-time system
control for secure and reliable communication within
the vehicular network. For clarity, all the steps
are incorporated in the presented methodology and
illustrated in the flowchart in Figure 4.

3.1 Dataset

We selected the Application-Layer DoS Attack Dataset,
containing the analysis of the application layer DoS
and DDoS attacks originating from Kaggle. This
dataset includes 78 attributes and 809,361 records,
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categorized into three classes: benign traffic, which is
actual network traffic, DoS Slowloris attack, and DDoS
Hulk attack. This research aims to categorize and
investigate the features of the aforementioned attack
types to design effective countermeasures to protect
VANETs against these menacing threats.

3.2 Data Preparation and Feature Selection for Deep
Learning-Based Intrusion Detection

Data management in deep learning is mainly the
process by which the key features that would enable
the efficient working of a particular model are selected
from the data set. One of the more important steps
is selecting optimal features, which contributes to
enhanced general effectiveness and reliability of the
deep learning models and attacks [34, 36]. The
application-layer DoS attack dataset has been chosen
in this study, and the data preprocessing steps featured
extraction using RP and PCA. The dataset was then
partitioned into a training data set comprising 70
percent and a testing data set of 30 percent. The
selection of the features was performed to improve the
learning process, making the deep learning models
achieve the greatest level of accuracy. After that, deep
learning classifiers, such as CNN, LSTM, and DBN,
were used again to train and test the framework. One
of the key preprocessing challenges in this study was
handling class imbalances in the dataset, as most
traffic data comprised benign instances, with fewer
samples representing DoS and DDoS attacks. To
address this, we applied oversampling techniques,
such as SMOTE (Synthetic Minority Oversampling
Technique), to balance the dataset without introducing
noise. Additionally, outliers in network traffic data
were detected and handled using interquartile range
(IQR)-based filtering to minimize their impact on
model performance. These preprocessing steps
ensured the models were trained on a balanced
and clean dataset, improving detection accuracy and
generalizability. By documenting these steps, we aim
to enhance the reproducibility of this study for future
researchers.

3.2.1 Random Projection

In the context of deep learning the data dimensionality
heavily influences the model accuracy as well as
the runtime. However, working with datasets
is usually associated with such problems as the
“curse of dimensionality” and increased computational
complexity. To overcome these problems, RP has
been identified as an optimal dimensionality reduction
methodology. RP aims to employ a lower-dimensional
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space that analyzes high-dimensional data while
maintaining important data traits. Although RP is
stochastic, it proved to be robust in retaining pairwise
distances and was computationally efficient; thus,
it can be used for large datasets with outlandish
computational requirements [35, 37].

The process of RP can be mathematically represented
as shown in Equation (1):

U=MxS (1)

where U represents the reduced feature matrix, M
denotes the original high-dimensional feature matrix,
S is a randomly generated projection matrix.

This technique linearly drives the original
high-dimensional feature matrix (/) into a
low-dimensional space through the random projection
matrix (5). The produced matrix shrinks the given
dataset while maintaining all of its significant
properties in the form of (U). Common deep and
machine learning methods that employ RP include
improving hand computations for ones involved with
big data processing. This paper shows how feature
space dimension reduction leads to faster and more
efficient model training when using RP while ensuring
the accuracy of the data.

3.2.2 Principal Component Analysis (PCA)

PCA is a widely wused technique for data
transformation to reduce data to a subset of values
known as principal components. It increases
computational speed by finding directions for
maximum variance or principal components and
removes redundancy. The process involves three key
steps:

(1) Covariance Matrix Calculation: The covariance
matrix C of the dataset X is computed:

c=1xTx (2)
n

where X is the original data matrix and n is the number
of samples.

(2) Eigen Decomposition: The eigenvalues (\) and
eigenvectors (V) of the covariance matrix C are
computed:

CV =\V (3)
(3) Projection to Principal Components: The data is
transformed into a lower-dimensional space using the
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Figure 5. Dimensionality Reduction Process.

selected eigenvectors:

Z=X V (4)

where VEk contains the top k eigenvectors
corresponding to the largest eigenvalues, and Z
is the reduced-dimensional data.

PCA is most appropriate for shrinking big data
structures while keeping important features intact. It
helps enhance deep learning algorithms by reducing
the amount of computational work and allowing the
model to represent features more effectively, which
makes this method a key data preparation tool. Figure
5 shows the dimensionality reduction process of RP
and PCA techniques.

3.3 Optimized Feature Extraction Using RP and PCA

This paper shows how the integration of RP and
PCA is more beneficial than using each of them alone

because they have individual suitable characteristics.

In this study, we selected 50 features by combining
the 35 features extracted using each method. This
approach aimed to strike a satisfactory trade-off
between dimensionality reduction and information
preservation, thereby maintaining and enhancing the
models’ capability and portability. The final choice
of 50 features was made after the evaluation of the
complexity of the dataset, as well as the balance
between the most important meaningful features

that were preserved and computational expenses.

Experimenting, we found that choosing 35 features
from RP and PCA was most effective because further
increase led to overfitting, but fewer features meant
information loss. The compounds of the feature set
guarantee the creation of an accurate and scalable
model for improving the subsequent stages of deep
learning analysis.

3.4 Model Evaluation and Classifiers

Finally, after data preprocessing, different deep
learning models were evaluated using essential
parameters such as accuracy, precision, recall, and F1
scores. All these metrics provide an overall assessment
of the models” performance in distinguishing benign
traffic and three classes of attacks, namely DoS Hulk
and DoS Slowloris. CNN, LSTM, and DBN were
chosen for comparison among deep learning classifiers
for this study. A brief explanation of each classifier is
stated below.

3.4.1 Convolutional Neural Networks (CNN)

CNN falls under deep learning classification and is
excellent at feature extraction from the data space
dimensionality. They use convolutional filters on the
input data and pinpoint local connections that are
fundamental to classification. In this study, CNNs
were applied to analyze the network traffic flow and
identify certain characteristics associated with benign
or malicious traffic [38]. The tiers in the CNN
chain of convolutional layers, pooling layers, and
fully connected layers effectively extract features while
reducing dimensions while still capturing valuable
features. There is a high error rate if an over-complete
dictionary is used, but this makes CNNs more suitable
for the identification of network anomalies.

3.4.2 Long Short-Term Memory (LSTM)

The recurrent neural network (RNN) architecture, in
particular LSTM, is intended to consider temporal
dependencies in the input data by Seq2Seq architecture.
As a type of RNNs, LSTMs incorporate memory
cells with the possibility of opening and closing to
impose when exactly to save or, in contrast, forget
data. This makes LSTMs particularly useful for
analytics of sequential network logs for identification
of abnormal patterns linked to regular DoS and DDoS
attacks [39]. LSTMs help to improve the identification
of time-specific attack patterns based on temporal
characteristics of the data strongly illustrated in DoS
Slowloris attacks.

3.4.3 Deep Belief Networks (DBN))

DBNs are generative deep learning models built
from multiple layers of stochastic, unsupervised
networks including RBMs. Each layer is trained
sequentially, with the layer learning hierarchical
feature representation from the input data [40]. In this
study, DBNs were used to capture relationships within
data features and good network traffic classification
was achieved. DBNs do well when dealing with
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numerous variables as they enhance specialization
and generalization by learning complex distributions
making them handy in identifying many forms of
attack.

3.5 Model Design and Hyperparameter Tuning

We comprehensively document the design, parameters,
and training processes used in our study. For the CNN
model, we utilized filter sizes of 3x3, 5x5, and 7x7, with
32, 64, and 128 filters in respective convolutional layers,
RelU activation functions, and max-pooling layers of
size 2x2. The LSTM model consisted of 128 hidden
units, a learning rate of 0.001, and a sequence length of
100, with dropout set at 0.2 to prevent overfitting. For
the DBN, we implemented three hidden layers with
256, 128, and 64 units, trained using unsupervised
Restricted Boltzmann Machines (RBMs). All models
were optimized using the Adam optimizer with a batch
size of 64 and an early stopping criterion of 10 epochs
without validation improvement. Hyperparameter
tuning was performed using grid search, exploring
learning rates from 0.0001 to 0.01 and batch sizes
of 32, 64, and 128. Data preprocessing included
feature selection techniques, RP and PCA, to reduce
dimensionality while retaining key characteristics. We
employed a 70-30 training-validation split and K-fold
cross-validation to ensure robust evaluation. The
training was conducted in Python using TensorFlow
and Scikit-learn libraries.

3.6 Performance Metrics

The performance of the deep learning classifiers used
in this study was evaluated using four key metrics:
Accuracy, Recall, Precision, and the F1 Score. These
metrics provide a comprehensive understanding of the
models” ability to classify benign traffic, DoS Hulk, and
DoS Slowloris attacks.

3.6.1 Accuracy

Accuracy is a commonly used metric that quantifies the
percentage of correctly classified data points relative
to the total number of data points evaluated. It is a
measure of the overall effectiveness of the classifier in
distinguishing between benign and malicious traffic.
The formula for calculating accuracy is expressed as:

Accuracy = TP+ TN
Y= TP+ IN+FP + FN

(5)

where T'P presents the True Positive, TN presents the
True Negative, I'P presents the False Positive, F'N
presents the False Negative.
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3.6.2 Recall

Recall measures the classifier’s ability to identify all
relevant instances (positive cases) in the dataset while
minimizing false negatives. It evaluates the model’s
capability to capture all pertinent samples, ensuring no
relevant instances are missed. Mathematically, recall
is defined as:

TP

Recall — m

(6)

3.6.3 Precision

Precision evaluates the classifier’s accuracy in
identifying relevant instances while minimizing false
positives. It measures how many identifications were
correct, providing insight into the reliability of the
model’s predictions. The formula for precision is
expressed as:

TP

Precision = m

(7)

3.6.4 F1 Score

The F1 Score evaluates the classifier’s performance by
combining precision and recall into a single metric [?
]. It is particularly useful when there is an uneven
distribution of classes in the dataset. The F1 Score is
calculated using the formula:

Precision x Recall
Precision + Recall

F1 Score = 2 x (8)

These performance metrics collectively assess
the classifiers’ effectiveness, reliability, and
comprehensiveness in detecting and classifying
DoS and DDoS attacks in VANET environments.

4 Experimental Results and Discussion

In this research study, we used deep learning models
to examine the effectiveness of an IDS in identifying
DoS and DDoS attacks on VANETs. We used three
target state-of-the-art deep learning models, namely
CNN, LSTM, and DBN, to differentiate benign and
malicious outcomes. An integrated approach using
RP and PCA was applied to improve the efficiency in
feature selection. We recalled how confusion matrices
and consolidated tables have been used to give an
exhaustive view of the classifiers” predicted results
focused on the proposed deep learning framework.
Using RP and PCA, thus, we carried out an overall
analysis of the performance of the classifiers. The
findings proved the effectiveness and practicality of
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Figure 6. Confusion Matrix of CNN Model.

integrating two feature selection methods in improving
the models’ precision rate. The results of each classifier
are provided separately by an aided confusion matrix,
to identify network abnormality.

4.1 CNN Model with Feature Selection Techniques

The confusion matrix displayed in Figure 6 was
determined while assessing the CNN model’s
performance in recognizing benign traffic, DoS Hulk
attacks, and DoS Slowloris attacks. This confusion
matrix is very useful for presenting an overview of how
accurately the model can classify because it presents
the actual outcome alongside the predicted results.
The diagonal values in the matrix represent correctly
classified instances for each class, highlighting the
accuracy of the CNN model:

e Benign Trafficc The model classifies 158,695
benign instances correctly, with minimal
misclassifications of 350 instances as DoS Hulk
and 249 instances as DoS Slowloris.

e DoS Hulk Traffic: We observe that the model
accurately identifies 131,915 instances of DoS Hulk
attacks, with only minor misclassifications of 280
instances as benign and 197 instances as DoS
Slowloris.

e DoS Slowloris Traffic: For DoS Slowloris attacks,
the model correctly predicts 54,860 instances
while misclassifying 175 as benign and 145 as DoS
Hulk.

The confusion matrix explains the number and
density of the correctly and incorrectly classified
instances using gradient color ranges where deep

CNN Model Accuracy

0.3 —— Training Accuracy
—— Validation Accuracy

12z 3 4 5 6 7T & 9 10 11 12 13 14 15 16 17 18 18 20
Epochs

Figure 7. Learning Curve of CNN Model.

color intensities represent high counts. It is useful
to make nuances regarding the model’s strengths and
weaknesses of the model visible to identify potential
for additional optimization. With this confusion
matrix, we show how the CNN model differentiates
between benign and malicious traffic in VANETs.
These findings suggest that the selected model for
classification yields low error rates, meaning only a
few misclassifications.

4.2 CNN Model Learning Curve

Figure 7 shows the training and validation accuracy
of the CNN model for 20 epochs. The accuracy rises
gradually through the epochs, which shows good
learning. The training and validation curves have been
plotted as functions of iterations and both initially
rise and stabilize towards the final iterations. This
implies a little overfitting, which makes the model well
generalized and proximity between the validation and
training accuracy. The final accuracy report of both the
training and validation methods was nearly 99.12%,
which proves how reliable the model is in identifying
DoS and DDoS attacks.

4.3 LSTM Model with feature selection techniques
RP and PCA

The performance of the LSTM model is shown in terms

of the confusion matrix in Figure 8 in classifying benign

traffic, DoS Hulk, and DoS Slowloris. The diagonal

values represent correctly classified instances:

e Benign Traffic: 157,200 instances are correctly
classified, with 1,200 misclassified as DoS Hulk
and 894 as DoS Slowloris.

e DoS Hulk Traffic: 131,300 instances are accurately
identified, with 800 classified as benign and 292
as DoS Slowloris.
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e DoS Slowloris Traffic: 54,100 instances

are correctly detected, with 600 and 480
instances misclassified as benign and DoS Hulk,
respectively.

The color gradient targeting helps to draw more
attention and focus on density in general, while darker
shades refer to higher values. The results confirm that
most of the instances have been classified accurately
indicating the remarkable efficiency of the LSTM
model in terms of Identifying network anomalies with
high precision. These outcomes support and extend
prior positive findings with the intrusion detection
task.

4.4 LSTM Model Learning Curve

Figure 9 illustrates the training and validation accuracy
of the LSTM model for the number of epochs applied
20 times. Below is a plot of both curves showing
that the learning process is progressive and consistent
throughout training. The training and validation
curves follow one another very well, which suggests
that they did not overfit and they generalize very
well. In the last epoch, the training and validation
accuracy stands at nearly 98.83%; thus, the LSTM
model effectively identifies DoS and DDoS attacks.
These results validate the model’s functioning in
intrusion detection for VANET systems.

4.5 DBN Model with feature selection techniques
RP and PCA

The Confusion Matrix for the DBN model is shown in
Figure 10, where the model has learned to differentiate
between benign traffic and two categories of DoS attack,
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namely DoS Hulk and DoS Slowloris. This matrix
highlights the model’s predictions in comparison to
actual outcomes:

e Benign Trafficc The DBN model correctly
identifies 156,800 benign instances while
misclassifying 1,300 as DoS Hulk and 1,100 as
DoS Slowloris.

e DoS Hulk Traffic: The model accurately classifies
130,800 instances of DoS Hulk attacks, with minor
misclassifications of 900 as benign and 692 as DoS
Slowloris.

e DoS Slowloris Traffic: For DoS Slowloris attacks,
the model successfully predicts 53,800 instances

while misclassifying 700 as benign and 580 as DoS
Hulk.

The heatmap amplifies the classification accuracy and
inaccuracy proportion, where darker shades mean
higher counts. In the classification aspect, the DBN has
shown a very good performance with high accuracy
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18 192 20

for all the classes, which corroborates our findings
on the accurate detection of network anomalies in
VANETSs. This evaluation gives a clear understanding
of the workings of the DBN model, especially in the
context of intrusion detection systems.

4.6 DBN Model Learning Curve

The DBN (Deep Belief Network) model training and
validation accuracy is depicted in Figure 11, where
the graph represents the accuracy for 20 epochs. The
learning curve here expresses the percentage levels
of accuracy, and the model gradually improved from
roughly 40% as the model progressed. The training, as
well as the validation accuracy curves, move in synch,
which suggests that the model does not overfit on
any of the data and has good generalization abilities.
Finally, as we reach the 20th epoch, all the curves
almost flatten around 98.65%, where the ability of
the DBN model is demonstrated in its high accuracy.
These results show that the DBN model, in essence,
offers high accuracy for distinguishing between DoS
and DDoS attacks in VANET and enhances the general
security of the VANET network against intrusion.

Table 2 shows the results of different deep-learning
models that identify benign and malicious traffic in
VANET. It focuses on the accuracy, recall, and F1 for
every classifier and sort of attack in which the RP and
PCA features improve the model’s overall performance.
The summarized performance metrics of CNN, LSTM,
and DBN models have revealed model efficiency in
identifying DoS and DDoS attacks in VANETs, as
illustrated in Figure 12. These results shed light on the
effects of the proposed methodologies and appliance
of feature selection techniques such as RP and PCA
on enhancing the classification power of these Models.
The overall conclusions also re-establish that all three
network traffic detection and classification models
work, with CNN identified to work slightly better than

Performance Metrics for CNN, LSTM, and DBN Models

Metrics

CNN LSTM

Models
= F1lScore = Precision @8 Recall

Figure 12. Performance Metrics of Proposed Model.

both DBN and LSTM.
Table 2. Analysis of the classification of DL models using
RP and PCA features.

Classifier Class Precision Recall F1 Score

CNN Benign 1.00 1.00 1.00
DoS Hulk 1.00 0.99 1.00
DoS Slowloris 0.98 1.00 1.00

LSTM Benign 0.98 1.00 0.99
DoS Hulk 1.00 0.98 0.99
DoS Slowloris 0.99 0.99 0.97

DBN Benign 0.98 1.00 1.00
DoS Hulk 1.00 1.00 1.00
DoS Slowloris 1.00 0.99 1.00

As shown in Table 3, the levels of accuracy of different
research models designed for intrusion detection are
presented. Compared to traditional machine learning
methods such as Support Vector Machines (SVM)
and Random Forest (RF), the proposed deep learning
framework demonstrates superior detection accuracy
and scalability performance. Traditional methods
often rely on manual feature engineering and struggle
to process high-dimensional data effectively, leading to
suboptimal results in complex VANET environments.
For instance, while SVM and MLP, RF achieved
accuracy levels of 95.1% and 98.5%, respectively, in
previous studies, the proposed hybrid framework
combining CNN, LSTM, and DBN models with feature
selection techniques (RP and PCA) achieved an
accuracy of 99.4%. Moreover, the ability of deep
learning models to learn hierarchical and temporal
patterns without extensive manual intervention
enables them to adapt better to evolving attack
scenarios, which is a limitation for traditional machine
learning approaches. These results underscore the
advantages of the proposed framework in achieving
higher accuracy, scalability, and real-time applicability
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Table 3. Accuracy Comparison of Existing Studies and Our Proposed Study

Research Model Research Year Accuracy
[20] SVM 2023 0.951
[21] MLP and RF 2021 0.985
[28] DBN, CNN 2024 0.982
[34] Long Short-Term Memory (LSTM) 2024 0.963
Ours CNN, LSTM, DBN With Feature 2024 0.994

Selection (Combined for VANETs)

in VANETs.

We conducted statistical significance tests on the
classification results to strengthen the performance
comparisons ~ with  state-of-the-art = methods.
Specifically, a paired t-test was applied to compare
the accuracy, precision, recall, and Fl-scores of the
proposed framework (CNN, LSTM, and DBN with RP
and PCA) against traditional methods such as SVM
and RF. The results showed statistically significant
improvements (p < 0.05) in detection accuracy
and other metrics, validating the superiority of the
proposed approach. Additionally, we performed
an ANOVA test to assess variations across multiple
models, confirming the consistent performance of
the proposed framework in diverse attack scenarios.
These tests provide robust evidence of the framework’s
effectiveness, further supporting its advantages over
traditional and state-of-the-art techniques.

4.7 Computational Complexity and Deployment
Feasibility

To address scalability in real-world VANETs, we
analyzed the proposed framework’s computational
complexity and deployment feasibility. Integrating
advanced deep learning models (CNN, LSTM, DBN)
and feature selection techniques (RP and PCA) was
optimized to balance detection accuracy with resource
efficiency. During experimentation, the framework
required moderate computational resources, including
an Intel Core i5 processor, 16GB RAM, and 1TB SSD,
demonstrating its feasibility on standard hardware.

For real-world deployment, the framework’s
adaptability to dynamic VANET environments is
ensured by its ability to process high-dimensional
data in real-time while maintaining high detection
accuracy (99.4%). However, practical challenges
such as resource constraints in vehicular devices
and network bandwidth limitations must be
addressed. Potential solutions include using
lightweight model architectures, edge computing
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for decentralized processing, and optimizing the
feature selection process to reduce overhead. These
considerations emphasize the framework’s scalability
and applicability in real-world VANET scenarios.

The proposed framework demonstrates scalability
and adaptability beyond DoS and DDoS detection
in VANETs. Its modular architecture, combining
CNN, LSTM, and DBN models with feature selection
techniques (RP and PCA), can be extended to detect
other vehicular or IoI' communication attacks, such
as spoofing, jamming, and phishing. By leveraging
temporal and spatial patterns in network traffic, the
framework is well-suited to analyze diverse attack
vectors across IoI-based systems, including smart cities
and industrial IoT environments. This adaptability
underscores the potential of the framework to serve
as a universal solution for enhancing the security of
interconnected cyber-physical systems.

5 Conclusion and Future Work

This paper explores the use of CNN, LSTM, and
DBN models in combination with feature selection
techniques, namely Random Projection (RP) and
PCA, to detect DoS and DDoS attacks in VANETSs.
The proposed framework complies with the higher
complexity of deep learning methodologies and
optimal feature selection, leading to an accuracy of
99.4% better than existing models. The work also
outlines the virtues of constant attack identification,
the least interference with the network’s architecture,
and the ability to deal with any application-layer
attacks that may be launched, which makes practical
use of the studied solution possible. This is why future
work will have to test the proposed framework for
various settings, such as the datasets and the attack
settings. Moreover, seeking lightweight architectural
solutions and deploying the system on real-time
vehicular devices with limited resources will also
be considered during implementation. Future work
will extend the framework to address more diverse
attack scenarios, integrate lightweight architectures for
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deployment on resource-constrained vehicular devices,
and incorporate federated learning to enhance privacy
and security.

Beyond VANETs, this approach has significant
potential for broader applications in other
cyber-physical systems (CPS), such as industrial
IoT, smart grids, and healthcare networks, where
real-time threat detection and resource efficiency are
critical. Exploring interdisciplinary collaborations
could further refine the framework to meet the unique
challenges of these domains, ensuring adaptability
and impact across diverse CPS environments.
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