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Abstract
The Tuned Liquid Damper (TLD) method offers
a practical and cost-effective solution for seismic
design. Accurate modeling of the TLD system’s
dynamic behavior is crucial for optimizing its
performance. In this study, the nonlinear dynamics
of the TLD system are characterized using the
Housner model, with parameters estimated via a
nonlinear state estimation approach. To address
challenges associated with model discretization
and unknown noise processes, we introduce a
Robust Extended Kalman Filter (REKF) that
incrementally incorporates uncertainties to more
accurately capture system dynamics. The proposed
method is evaluated through real-time hybrid
simulation, employing seismic input signals from
the El Centro and Hachinohe ground motions.
Comparative analyses indicate that the robust
algorithm achieves superior parameter estimation
relative to conventional methods, with estimated
parameters closely aligning with reference values
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and resulting in minimal relative error. This work
underscores the efficacy of robust algorithms in
TLD vibration response analysis and presents a
promising approach for dynamic modeling and
seismic performance optimization.

Keywords: nonlinear state estimation, robust kalman filter,
TLD.

1 Introduction
Indoor activities constitute a significant portion of
modern life, with studies indicating that individuals
spend up to 90 percent of their time indoors. Remote
work and digital entertainment have amplified this
trend, making building safety more important for life
and property protection. Building safety is influenced
by a myriad of factors—including the rationality of
structural design, construction quality, service life,
and external environmental changes. Among these,
earthquakes are of particular concern; as sudden and
unpredictable natural disasters, they pose a severe
threat to structural integrity, with an estimated 50,000
detectable seismic events occurring globally each year,
some of which are highly destructive. Consequently,
enhancing the seismic resilience of building structures
has emerged as a critical research focus.

In recent years, researchers have pursued multiple
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strategies to improve seismic capacity, such as
optimizing building design, incorporating advanced
seismic materials and damping devices, and refining
structural analysis methods. These approaches
improve stability, but traditional design struggles
with strong loads, large vibrations, and prolonged
effects, which increase costs. To mitigate these
challenges, alternative strategies—including base
isolation, energy-dissipating damping devices, and
active structural control—have been proposed. The
Tuned Liquid Damper (TLD), a passive mechanical
device typically installed on building roofs, has gained
considerable attention for its ability to attenuate
structural oscillations by modulating the movement
of liquid. Its ease of installation and potential
for temporary implementation make it especially
attractive for retrofitting existing structures.

Housner’s [1] seminal work on a nonlinear TLD
model—derived from analyzing the dynamic
response of elevated water tanks to seismic ground
motions—laid the groundwork for subsequent
numerical models that solve the governing equations
of liquid motion [2]. As a result, TLDs have
been widely adopted in flexible, low-damping
structures such as high-rise buildings, towers, and
suspension bridges [3, 4]. However, accurately
modeling TLD dynamics remains challenging due
to the complex nature of building structures. The
parameters governing TLD behavior are often
difficult to determine and may vary with the building
configuration, necessitating continuous adjustment;
existing parameter estimation methods frequently
struggle to capture these time-varying dynamics with
precision [5, 6].

Parameter estimation for the TLD model can
be formulated as a nonlinear state estimation
problem [7]. Conventional nonlinear estimation
methods, such as the Extended Kalman Filter (EKF),
rely heavily on model accuracy and require careful
design of noise variance—an aspect that is often
hindered by limited prior knowledge. Furthermore,
the discretization needed for experimental data
collection introduces discrepancies between the
discrete model and the actual continuous dynamics.
To address these issues, risk-sensitive filtering
techniques have been developed. Unlike traditional
methods that employ a standard quadratic loss
function, risk-sensitive approaches use an exponential
quadratic loss function that imposes a steeper penalty
on larger errors, with the severity modulated by a
risk-sensitive parameter [8]. An enhanced variant

of this framework—the robust Kalman filter and its
extensions [9]—models uncertainty incrementally
at each time step by designing the state estimator
based on the worst-case model drawn from a fuzzy
set defined within the Kullback-Leibler (KL) topology
relative to the nominal model. Although several
robust EKF variants have been proposed [10], none
have fully integrated this paradigm into the EKF
framework.
The proposed Robust Extended Kalman Filter exhibits
broad applicability beyond TLDs, particularly in
vibration control systems that face nonlinear dynamics,
model uncertainties, or non-Gaussian noise. In
high-rise buildings subjected to wind or seismic loads,
REKF could improve real-time estimation of TMD
parameters, compensating for structural degradation
or sudden load variations. And REKF’s adaptive noise
covariance adjustment would improve fault-tolerant
control of flexible spacecraft or aircraft wings, where
sensor noise and high-frequency vibrations often
degrade traditional EKF performance. Then for
monitoring of bridge or offshore platforms under
environmental disturbances, the robustness of REKF to
nonstationary noise could refine the damage detection
accuracy by isolating true structural resonances from
spurious signals.
This paper makes several key contributions: it
investigates nonlinear estimation techniques for the
TLD system’s nonlinear model, develops a suitable
vibration response analysis framework, and proposes
a robust Extended Kalman Filter (EKF) as a novel
solution for enhancing the seismic design of building
structures. To validate the effectiveness of the
proposed method, the study employs two canonical
earthquake signals—the El Centro and Hachinohe
waves—and benchmarks the robust EKF against the
conventional EKF. The results indicate that the robust
EKF yields parameter estimates that closely align with
reference values, thereby achieving minimal relative
estimation errors.

2 Related Works
Shortly after the introduction of the Wiener [11] and
Kalman filters, it became evident that these techniques
are vulnerable to modeling errors, whichmaymanifest
as spurious signals or disturbances in the system
dynamics. Over the past 35 years, numerous methods
have been proposed to construct filters that are robust
against such uncertainties.
Kassam, Poor, and their collaborators—drawing on
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Huber’s robust statistical framework—introduced
an optimal filter selection method formulated as
a minimization problem [12]. In this approach,
the set of potential system models is characterized
by a neighborhood around the nominal model.
One “participant” selects the most unfavorable
model within this neighborhood, while the other
designs the optimal filter for this worst-case scenario.
Although conceptually straightforward, implementing
minimization-based filtering is challenging because it
requires specifying both the allowable neighborhood
and the loss function to be minimized. Early successes
in this vein involved designing Wiener filters for
neighborhoods defined by contaminated models or
restricted power spectral bands; however, these efforts
eventually plateaued, spurring further research into
robust filtering from alternative perspectives.
In the 1980s, a distinct class of robust filters was
developed based on the minimization of risk-sensitive
and H∞ performance criteria. These methods aim
to mitigate large errors—even those that are unlikely
under the nominal model. For instance, risk-sensitive
filters replace the standard quadratic loss function of
least-squares filtering with an exponential quadratic
function that severely penalizes large deviations.
Nonetheless, neither H∞ nor risk-sensitive
filters explicitly account for errors in the model
dynamics [13]. Recognizing the importance of
these dynamic errors, researchers in the early 2000s
revisited the concept of least-squares filtering, now
incorporating modeling errors as disturbances in the
state-space dynamics.
Building on efforts initiated by Hansen, Sargent,
and others, risk-sensitive filtering was reinterpreted
from the perspective of minimizing the worst-case
limit. In this reformulation, modeling uncertainty is
quantified by specifying a tolerance for the relative
entropy between the actual system and the nominal
model. A fixed tolerance level, reflecting the modeler’s
confidence in the nominal model, defines a “model
sphere” to which the minimization approach of
Kassam and Poor can be applied [14].
The robust filtering formulation based on relative
entropy constraints offers several attractive features.
Relative entropy serves as a natural measure of model
mismatch and is frequently employed in statistical
techniques such as Expectation-Maximization
iterations. Moreover, foundational studies by
Chentsov and Amari have shown that the statistical
model manifold possesses non-Riemannian

differential geometric structures characterized
by two dual connections associated with relative
entropy and its reverse.
Recent work has further demonstrated that the
minimization problem for Wiener and Kalman filters
under relative entropy constraints can be reformulated
as a risk-sensitive filter [15], thereby providing
a novel interpretation of these filters. A key
difference between earlier research and the present
study is that we impose separate relative entropy
constraints on each time increment of the model
rather than a single constraint over the entire system.
This modification is motivated by the observation
that a single constraint allows the maximizer to
concentrate nearly all of the mismatch budget on the
component most susceptible to uncertainty, potentially
leading to overly pessimistic conclusions. In practice,
modelers distribute their efforts uniformly across time
steps, making a fixed uncertainty tolerance for each
increment more meaningful.
Tuned Liquid Damper (TLD) technology plays a
critical role in reducing building vibrations at a
relatively low cost. A comprehensive understanding
of TLD dynamic behavior is essential for future
design improvements. The dynamic characteristics
of a TLD are modeled using the Housner model,
which describes the relative displacement of the water
(denoted to as d) as follows:

d̈+ 2ξωḋ+ ω2d = −u (1)

where u is the tank’s base acceleration ; ξ is the ratio
of damping and ω is the water’s oscillation frequency.
The goal is to infer themodel parameters bymeasuring
the reaction force applied to the bottom of the tank.

F = −(1− β)mtu+mtβωd+mtβωξḋ (2)

where the total mass of water mt is known. The
parameter ξ is the restraining springs to the total mass
of water in the tank. β is adjustable using a baffle and
assumed to be a known constant .
Therefore, the parameters to be estimated are β and ω,
the latter of which can be viewed as state components.
For the sake of the consequent estimation process and
the existence of the process and measurement noise in
practice, the Housner model can be written as follows:

ẋ =


d̈

ḋ

β̇
ω̇

 =


−u− 2ξωḋ− ω2d

ḋ
0
0

+ v (3)
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y = −(1− β)mtu+mtβωd+mtβωξḋ+ ω (4)

Accordingly, the problem becomes to estimate the state
of the nonlinear state model in (3)-(4). Here, we
assume the process noise vand the measurement noise
ware white Gaussian noises(WGN) with variances
Qand R, respectively. The process variance Qis a
diagonal matrix such that:

Q = diag(σ1, σ2, σ3, σ4) (5)

Note that we choose the first two components of
the diagonal (corresponding to ḋ and d) with high
magnitude to ensure variability over time, while the
other two components (relative to β andω) are selected
with small value so that the estimated parameters
change a little over time. In plain words σ3 and σ4
tune the a priori information about the changing rate
of β and ω in the stochastic hypermodel(15). Then,
the initial state x0 is modeled as a Gaussian random
vector with mean x̂0 and variance V0:

V0 = diag(λ1, λ2, λ3, λ4) (6)

As the data is gathered over a defined sampling
interval, the initial step involves discretizing the
state equations. To achieve this, the fourth-order
Runge-Kutta method is utilized. However, this
procedure may introduce a discrepancy between the
nominal model and the true model. There is inherent
model uncertainty between the real and nominal
models. To address this issue, a robust Kalman filter
estimation method will be used.

3 Methods
However, in practical scenarios, there is often a
mismatch between the nominal model and the actual
model. This mismatch arises mainly due to two factors.
First, model parameters are subject to uncertainties,
such as the true structure of f(·) and the variance of
the noise. Second, the physical model is naturally
described using a continuous-time framework.
Literature shows that traditional Kalman filters
are sensitive to model uncertainty. In Section
2, we introduce a robust filtering approach that
discretizes the TLD model while accounting for
discretization-induced errors, thereby establishing an
improved framework.
Based on this foundation, the robust extended Kalman
filter (REKF) is employed in this study to estimate the
nonlinear model. The subsequent section delineates

the discrete state-space representation of the TLD
system and its integration within the REKF framework.
Specifically, we consider the following discrete-time
state-space model:{

xt+1 = f (xt, ut) +Bvt
yt = h (xt, ut) +Dvt

(7)

where xt ∈ Rn denotes the state process, ut ∈
Rq represents the known input, and vt ∈ Rm is
WGN all of which corresponse to the time step t.
Our goal objective is to recursively estimate the state
xt+1 from the observed process yt ∈ Rp . If the
functions f(·) and h(·) are linear, the estimation
problem admits a well-established solution via the
Kalman filter, conversely, if either function is nonlinear,
the extended Kalman filter (EKF) is employed to
address the estimation task.

argminE
[
∥xt+1 − gt (yt)∥2 | Yt−1

]
(8)

where Yt−1 = {ys, 0 ≤ s ≤ t− 1}.The filter uses the
nominal model (7) at each step, linearized around the
previous estimate. It is well known that the evolution
of the estimate for this problem is:

x̂t|t = x̂t + Lt (yt − h (x̂t, ut)) (9)

x̂t+1 = f
(
x̂t|t, ut

) (10)

where x̂t|t and x̂t represent the estimated values of x̂t
given Yt and Yt−1, and Lt is the filter gain.
Since the Extended Kalman Filter (EKF) is being
used, the model must be linearized. However, this
linearization introduces extra model discrepancy. To
address this, a robust approach is introduced to
enhance the estimation performance, taking into
account the errors introduced by the linearization
process. The method starts by considering the model
in equation (7), where the state equation is linearized
with respect to x̂t|t, and the measurement equation is
linearized with respect to x̂t:{

xt+1 = Atxt −Atx̂t|t + f
(
x̂t|t, ut

)
+Bvt

yt = Ctxt − Ctx̂t + h (x̂t, ut) +Dvt
(11)

where,
At = ∂f (x, ut) / ∂x|x=x̂t|t

Ct = ∂h (x, ut) / ∂x|x=x̂t

Let zt =
[
xTt+1 yTt

]T . We assume that the noise vt
affects all components of the dynamic observations in
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equations (7) and (11), and therefore the covariance
matrix is given as:

Kz|x =

[
B
D

] [
BTDT

] (12)

The covariancematrix is ensured to be positive definite.
To develop the robust filter, a minimax approach is
utilized on the linearized model (11), as proposed in
recent studies [15, 16]. Let ϕt (zt | xt) denote the actual
transition probability density of xt given zt. Here, ϕ̃t is
not necessarily Gaussian. The mismatch between the
probability densities ϕt and ϕ̃t is measured using the
Kullback-Leibler (KL) divergence:

D
(
ϕ̃t, ϕt

)
=

∫∫
ϕ̃t (zt | xt) pt (xt | Yt−1)

× ln

(
ϕt (zt | xt)
ϕ̃t (zt | xt)

)
dztdxt (13)

Next, we assume that ϕ̃t belongs to Bt, that is,
approximately a ball of the nominal density.

Bt =
{
ϕ̃t (zt | xt) s.t.D

(
ϕ̃t, ϕi ≤ ct

)}
(14)

where ct > 0 represents the tolerance specified for
each time step. The tolerance is measured by the KL
divergence, quantifying the model mismatch budget
between the nominal model and the actual model
at time t. By considering a max-min optimization
problem, the gain in Equation (9) is computed robustly
Lt :

x̂t+1 = arg min
g1=G1

max
ϕ1∈B1

Ẽ
[
∥xt+1 − gt (yt)∥2 | Yt−1

]
(15)

whereGt is the set of all ϕ̃t ∈ Bt bounded estimators in
(15) Therefore, the gain calculation here refers to the
worst-case description. Assuming the prior probability
density of xt conditioned on the observations Yt−1:

pt (xt | Yt−1) ∼ N (x̂t, Vt) (16)

The worst-case solution to (15) follows a Gaussian
distribution [5],while its variance changes. Given that
the worst-case (linearized) model is Gaussian and the
estimator solution of (15) is Bayesian, the estimator
for the original model is provided by (9), where the
filtering gain is now:

Lt = VtC
T
t

(
CtVtC

T
t +DDT

)−1 (17)

here,
Vt+1 =

(
P−1
t+1 − θtI

)−1 (18)

Pt+1 = AtVtA
T
t

−AtVtC
T
t

(
CtVtC

T
t +DDT

)−1
CtVtA

T
t +BBT

(19)

where θt > 0 is the unique solution to γ (Pt+1, θt) =
ct and γ(P, θ) = 1

2 logdet(I − θP ) + tr[(I − θP )−1 − I].
However, since the variance of ϕt differs from that of
ϕ̃t, the filtering gain is not the same as the standard
gain. Therefore, this robust approach must be used
to determine the gain for the linearized version of the
model in (7). The overall process is similar to the
EKF, except for the presence of Vt, which requires the
computation of θt . This computation must be carried
out numerically, as no closed-form solution exists.

4 Experiments
Real-time hybrid simulation technology is employed to
evaluate the Tuned Liquid Damper (TLD) system. As
illustrated in Figure 1, when a seismic signal is applied
to the structure, the relative displacement between
the structure’s top and the TLD system is transmitted
as input to the shaking table, thereby enabling the
measurement of the relative acceleration at the tank’s
bottom via an accelerometer.

Figure 1. Real-time hybrid simulation technology schematic
diagram.

Figure 2 depicts the test configuration, which
comprises a water tank mounted on a shaking
table with dimensions of 0.8 × 0.8 × 0.268 m
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Figure 2. Laboratory water tank unit.

(length × width × height). The seismic inputs
include two classic earthquake records—the El
Centro and Hachinohe waves. To elucidate the
impact of seismic excitation characteristics on TLD
parameter estimation, a comparative analysis was
conducted using the El Centro wave and Hachinohe
wave, two representative ground motions with
distinct spectral and non-stationary features. Key
differences are summarized as follows, El Centro
waves dominant low-frequency components (0.5–5
Hz), peak ground acceleration (PGA) of 0.35g, and
energy concentrated within the initial 10 seconds,
exhibiting weak non-stationarity. Hachinohe waves
broadband frequency content (0.2–10 Hz), PGA of
0.25g, prolonged duration with evenly distributed
energy, and trong non-stationarity due to multiple
high-frequency pulses.
The relative acceleration and reaction force signals
collected during the test are filtered to reduce noise
and subsequently compiled into a dataset for model
parameter estimation, with a sampling interval of
Ts = 0.01s corresponding to the variables u and y
introduced in Section 2.
Initially, the experimental data were processed
using both the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF), two widely
used methods for nonlinear state estimation. The
UKF, which more accurately approximates the state
distribution, is particularly effective in handling
pronounced nonlinearity and serves as a useful
benchmark in this study.
The constant model parameters were set as ξ = 0.005
andmt = 171.51 kg, while the reference values derived
from the Housner model were β = 0.613 and ω = 5.479
rad/s.
Two datasets were evaluated under different

conditions: one assuming approximate prior
knowledge of the initial values for β and ω, and the
other initializing these parameters at their lower
bounds. Root Mean Square Error (RMSE) was used as
the primary metric for assessing estimation accuracy.
For the prediction frameworks, the initial state
conditions were specified as:

x0(1) = diag(0.01,−0.01, 0.1, 1)

x0(2) = diag(0.01,−0.01, 0.5, 5)

with the initial covariance matrix defined as v0 =
diag(1, 1, 0.001, 0.1). The results are shown in Figures
3, 4, 5 and 6.

Figure 3. Comparison of Beta estimates for the El Centro
wave dataset using EKF and UKF at x0(1) .

Figure 4. Comparison of Beta estimates for the El Centro
wave dataset using EKF and UKF at x0(2).

For the Hachinohe wave dataset, v0 was set to
diag(1, 1, 0.002, 0.15). Adjustments to the process
variance matrix for β and ω were made depending
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Figure 5. Comparison of Omega estimates for the El Centro
wave dataset using EKF and UKF at x0(1).

Figure 6. Comparison of Omega estimates for the El Centro
wave dataset using EKF and UKF at x0(2).

on whether the initial state estimates were assumed to
be close to the reference values.
The results presented in Figures 7, 8, 9 and 10 indicate
that the EKF yields stable estimates with lower errors
compared to the UKF, prompting further refinement of
the EKF approach. All simulations assume an output
noise variance of R = 1 , and the tolerance parameter
is initiated at c0 = 0.001.
During the initial phase, limited knowledge of the true
values for x3 and x4 can lead to inaccuracies in the
linearization process. The initial state error covariance
matrix V0, the process covariance matrix Q, and the
estimation results for both datasets are provided below,
with RMSE serving as the primary error metric.
Figures 11, 12, 13, 14, 15, 16, 17 and 18 demonstrate that
the robust extended Kalman filter (REKF) accurately
identifies the parameters β and ω for both datasets.
Moreover, the REKF outperforms the standard EKF:

Figure 7. Comparison of Beta estimates for the Hachinohe
wave dataset using EKF and UKF at x0(1).

Figure 8. Comparison of Beta estimates for the Hachinohe
wave dataset using EKF and UKF at x0(2).

Figure 9. Comparison of Omega estimates for the
Hachinohe wave dataset using EKF and UKF at x0(1).

in 40 out of 100 trials, the REKF results converge
to the reference values. Once the true values are
attained, the estimates remain close to these references.
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Figure 10. Comparison of Omega estimates for the
Hachinohe wave dataset using EKF and UKF at x0(2).

Figure 11. Comparison of Beta estimates for the El Centro
wave dataset using EKF and REKF at x0(1).

Figure 12. Comparison of Beta estimates for the El Centro
wave dataset using EKF and REKF at x0(2).

Specifically, using the REKF method, the relative error
for β remains below 1percent and for ω below 3
percent, whereas the standard EKF exhibits relative

Figure 13. Comparison of Omega estimates for the El
Centro wave dataset using EKF and UKF at x0(1).

Figure 14. Comparison of Omega estimates for the El
Centro wave dataset using EKF and UKF at x0(2).

Figure 15. Comparison of Beta estimates for the Hachinohe
wave dataset using EKF and REKF at x0(1).

errors of 4 percent for β and 19 percent for ω. These
results substantiate that the REKF provides superior
performance over the standard EKF under both sets of
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Figure 16. Comparison of Beta estimates for the Hachinohe
wave dataset using EKF and REKF at x0(2).

Figure 17. Comparison of Omega estimates for the
Hachinohe wave dataset using EKF and UKF at x0(1).

Figure 18. Comparison of Omega estimates for the
Hachinohe wave dataset using EKF and UKF at x0(2).

initial conditions.

5 Conclusion
This paper addresses the nonlinear modeling of Tuned
Liquid Dampers (TLD) and presents a parameter
estimation approach based on a Robust Extended
Kalman Filter (REKF). The proposedmethodmitigates
uncertainties arising from model discretization errors
and limited knowledge of noise processes. By
incrementally representing these uncertainties, the
REKF effectively captures the dynamic behavior of
TLD systems, as demonstrated through experimental
validation. Experiments employing classical seismic
records, namely the El Centro and Hachinohe
waves, were conducted under two distinct initial
conditions. The results indicate that, although the
REKF requires slightly more computational time
than the standard Extended Kalman Filter (EKF), it
substantially enhances parameter estimation accuracy
and robustness. Furthermore, the REKF exhibits
stability and adaptability under varied experimental
conditions, thereby providing reliable technical
support for future TLD dynamic modeling and
seismic design. By introducing an improved robust
nonlinear estimation technique, this study offers a
novel approach to parameter estimation and vibration
response analysis for TLD models, laying a critical
foundation for optimizing the seismic performance of
complex building structures.
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