
ICCK Transactions on Sensing, Communication, and Control
http://dx.doi.org/10.62762/TSCC.2025.143677

RESEARCH ARTICLE

Fixed-Time Adaptive Optimal Parameter Estimation
Subject to Dead-Zone and Control of Servo Systems

Shubo Wang 1 and Xue Wang2,*

1 Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2Faculty of Automation, Qingdao University, Qingdao 266071, China

Abstract
A fixed-time adaptive optimal parameter estimation
(FxT-AOPE) scheme is proposed to address the
difficulties in estimating dead zone parameters
and slow convergence speed of tracking errors in
permanent magnet synchronous motor systems.
First, the continuous piecewise linear neural
network is used to model the nonlinear dead zone
dynamics. Second, an auxiliary filter is constructed
to extract estimation errors, and this filter is
used to drive an adaptive law with time-varying
gain, minimizing the cost function of estimation
errors and achieving adaptive optimal parameter
estimation (AOPE). Then, the AOPE method
is introduced into the fixed-time non-singular
terminal sliding mode control (FxT-NTSMC) of
the permanent magnet synchronous motor system,
and the FxT-AOPE strategy is proposed to ensure
the fixed time convergence of estimation error and
tracking error. The stability of the closed-loop
system is analyzed using Lyapunov stability
theory. Finally, the feasibility of the proposed
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control strategy is verified through comparative
simulations and experiments.

Keywords: servo system, adaptive optimal parameter
estimation, fixed-time convergence, dead-zone, sliding
mode control.

1 Introduction
Permanent magnet synchronous motors (PMSMs)
have been more significant in various industrial
applications during the past few decades [1–3].
However, non-smooth nonlinear characteristics
including dead zone and friction occur during
the actual production process by the mechanical
connection between servo motors and mechanical
devices [4]. In servo systems, the dead zone is
a crucial non-smooth nonlinearity that can cause
significant disruptions to system functionality or even
instability [5].

Scholars have conducted extensive research to reduce
the impact of nonlinear dead zones. Reference [6]
used the Neural Network (NN) control method to
solve the tracking problem of nonlinear systems with
uncertain dead zone inputs. Reference [7] reconstructs
the dead zone nonlinearity into a linear function with
boundary disturbances and establishes an estimation
strategy based on an observer scheme to estimate
the dead zone parameters. Recently, reference [8]
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proposed a sandwich system identification strategy
with a dead zone, which uses CPLNN to represent
the dead zone and effectively solves the problem of
unmeasurable intermediate variables. However, for
the above methods, they can only satisfy asymptotic
convergence or exponential convergence of the control
system, and their transient convergence response may
be very slow.

In order to achieve faster convergence response,
researchers have made various attempts at parameter
estimation techniques. Reference [9] proposes an
adaptive finite time parameter estimation method for
nonlinear systems under persistent excitation (PE)
conditions, which can directly estimate unknown
time-varying parameters. The adaptive law is
driven by the derived information of parameter
estimation errors and has a faster convergence speed
than traditional gradient descent algorithms. In
reference [10], the author established a fixed time
parameter estimation law for adaptive neural network
control using similar concepts. However, the adaptive
law proposed in the above study cannot achieve
optimal convergence, that is, it cannot minimize the
predetermined cost function related to estimation
error.

Furthermore, from the perspective of PMSM servo
system control design, SMC has been proven to be
a successful method for adapting to uncertain and
bounded dynamics [11]. Introducing nonlinear terms
into TSMC design can achieve finite time stability [12].
However, the inherent singularity problem of TSMC
can lead to a decrease in system performance and affect
the control accuracy of the system. In response to this
issue, experts in related fields have innovated multiple
technological paths [13, 14]. However, achieving
high-precision modeling and speed tracking control
of PMSM systems remains a challenge. In recent years,
many research results on fixed time TSMC have been
widely applied in nonlinear systems.

Inspired by the above discussion, this chapter designs
a fixed time adaptive optimal parameter estimation
scheme for PMSM systems with dead zones, and
applies it to the control system to achieve fixed
time convergence of estimation error and tracking
error simultaneously. Firstly, apply CPLNN to
reconstruct the asymmetric dead zone model to solve
the nonlinearity of the dead zone, and compensate
for the dead zone based on online updated CPLNN
weights. Secondly, introducing filtering operations
to reduce the order of the original system and

avoid the presence of acceleration variables in the
regression matrix. Then, by designing auxiliary
variables to construct parameter estimation errors, the
cost function of estimation errors is obtained. Finally,
the proposed adaptive estimation scheme will be
combined with the improved FxT NTSMC method
to simultaneously achieve parameter estimation and
tracking control.

The main contributions of this article are summarized
as follows:

1) To further improve the estimation accuracy of
PMSMdead zonemodel parameters, anAOPEmethod
is proposed, which includes time-varying gain in
the adaptive law to improve the transient estimation
response of the system.

2) Introduce the AOPE method into FxT-NTSMC to
ensure that both estimation error and tracking error
can achieve fixed time convergence simultaneously.

The remaining sections of this paper are organized
as follows. The problem formulation is given in
Section 2. Section 3 provides the Preliminaries.
Section 4 describes the adaptive optimal FxT parameter
estimation. The controller design and stability
are shown in Section 5. Section 6 introduces the
experiment verification. Finally, Section 7 draws the
conclusion.

2 Problem Formulation
2.1 Dynamic Model
As Figure 1 shown, the following can describe the
PMSMmathematical model.

i̇d = −Rid
Ld

+ npωiq + Ud
Ld

i̇q = −Riq
Lq
− npωid −

npωΨf
Lq

+
Uq
Lq

Jω̇ = 3
2npΨf iq − TL −Bω

(1)

where id and iq denote the d-axis and q-axis stator
currents; ud and uq represent the corresponding d-axis
and q-axis stator voltages; Ld and Lq are the stator
inductances along each axis, satisfying Ld = Lq; Ψf

is the rotor flux linkage; np indicates the number of
pole pairs; ω defines the angular velocity; B and J are
the viscous friction coefficient and moment of inertia,
respectively; TL signifies the load torque.

To approximate the elimination of the coupling
between the angular velocity and the stator current, id
is generally designed as id = 0 to achieve approximate
decoupling [15]. By selecting the state variable x1 = ω,
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Figure 1. PMSM schematic diagram.

the system model can be expressed as:

ω̇ =
Ktiq
J
− Bω

J
+ F (u) = a0(t) + F (u) + b0i

∗
q (2)

where Kt = 1.5npΨf is the torque constant. a0(t) =
−(Bω/J) + (Kt/J)(iq − i∗q) + ((Kt/J) − b0)i∗q is a
measurable quantity. b0 denotes an estimate ofKt/J ,
and i∗q = u.

Select the state variable as x = [x1, x2]T = [ω, a(t)]T ,
the system model can be expressed as

ẋ1 = x2 + F (u) + b0i
∗
q (3)

Assumption 1 [16]: The system states x and inputs u
are both measurable and bounded.

2.2 Non-symmetric Dead-zone
Figure 2 shows a PMSM system with non-symmetric
dead-zone input nonlinearity. The input u(t) and
unmeasurable internal signal v(t) are related by the
mapping F (·) : u(t) 7→ v(t), which operates within
the domain U = (u1, u2) and defines the nonlinear
behavior [11]. It is a piecewise linear mapping and can
be precisely described by four unknown parameters
l1, D1, l2, D2.

The dynamics of the asymmetric dead-zone can be
illustrated as

v(t) = F (u(t)) =


l1(u(t)−D1), u1 < u(t) ≤ D1

0 , D1 ≤ u(t) ≤ D2

l2(u(t)−D2), D2 < u(t) ≤ u2

(4)

y(t) = G(v(t)) + ε(t) (5)

where l1 and l2 represent the slopes of the linear area,
D1 and D2 represent the threshold of the dead-zone
area. ε(t) denotes a sequence of independent and
identically distributed random variables. Note that
the upper and lower bounds of the dead-zone input
are constrained by the given parameters u1 and u2.

Figure 2. PMSM system with asymmetric dead-zone.

3 Preliminaries
3.1 Continuous Piecewise Linear Function
Nonlinear, nonsmooth dynamics involving dead zones
cannot generally be well modeled by linear continuous
functions. By leveraging the parameter-linear
representation and piecewise-continuous
characteristics of the CPLNN, one can construct
an augmented model to approximate the dead-zone
dynamics.

Definition 1 [17]: A continuous piecewise linear (CPL)
function I : S → R defined on a domain S ⊆
Rp satisfies the following necessary and sufficient
conditions.

1) The domain S admits a finite partition into
convex subregions {Sr}qr=1 separated by boundaries
satisfying: - Each boundary is a (p − 1)-dimensional
hyperplane - No boundary lies within any (p −
2)-dimensional hyperplane⋃

Sr = S, S̊r1
⋂
S̊r2 = φ,∀r1 6= r2, r1, r2 = 1, · · · , q

(6)
For each subregion Sr, let S̊r denote its interior.

2)The CPL function I(x) is expressible as
a composition of q local linear functions ℵr
corresponding to S̊r, with the general form:

=(x) = max
1≤i≤q

max
r∈si
ℵr(x), ∀x ∈ S (7)

where each index i, let si denote a nonempty subset of
{1, 2, . . . , q}.

Definition 2 [18]: LetS ⊂ Rp be compact andϕ : S → R
be continuous. A continuous piecewise linear (CPL)
function I : S → R exists such that for any δ > 0,

sup
x∈S
|I(x)− ϕ(x)| < δ.

3.2 Fixed-time Stability
Consider the following time-dependent dynamic
system:

ẋ(t) = f(t, x(t)), x(0) = x0 (8)
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where x ∈ Rp denote the state, and f : Rp+1 → Rp a
continuous functionwith a unique solution. The origin
is taken as the equilibrium point, i.e., f(t, 0) = 0.

Definition 3 [18]:A system is globally fixed-time stable
(FxTS) if it is globally finite-time stable (FxTS) and
its settling-time function T (x0) is uniformly bounded,
i.e.,

∃Tmax > 0 such that T (x0) < Tmax, ∀x0 ∈ Rp.

Lemma 1 [19]: Suppose there exists a continuous
radially unbounded function V : <n → <+

0 for system
(8) such that

1)V (x(t)) = 0⇔ x(t) = 0;

2)Any solution x(t) of system () satisfies

V̇ (x) = −γ1V
µ1 − γ2V

µ2 (9)

where γ1, γ2 > 0, 0 < µ1 > 1, µ2 > 1.

Then, the origin of system (8) is FxTS, and the setting
time T (x0) is bounded by

Tmax =
γ

1−µ2
µ2−µ1
1 γ

µ1−1
µ2−µ1
2 π

(µ2 − µ1) sin
(

1−µ2
µ2−µ1π

) (10)

Lemma 2 [20]: If γ > 1, z1, z2, . . . , zn ≥ 0, 0 < β ≤ 1,
then the two following inequalities are valid.

n∑
i=1

zβi ≥

(
n∑
i=1

zi

)β
(11)

n∑
i=1

zγi ≥ n
1−γ

(
n∑
i=1

zi

)γ
(12)

Lemma 3 [18]: Given the specified nonlinear
continuous system

ẏ = −c1sig
χy (13)

where y(0) = y0, sigχy = |y|χsign(y), χ = m+n
2 +

m−n
2 sign(|y| − 1), c1,2 > 0,m > 1, 0 < n < 1.

Next, the systemdescribed by the Eq. (30) converges to
0with a fixed time, and define themaximum estimated
convergence time as

T ≤ Tmax 1 :=
1

l1

m− n
(m− 1)(1− n)

(14)

Lemma 4 [18]: Given the specified nonlinear
continuous system

ẏ = −c1sig
γ1y − c2sig

γ2y (15)

where y(0) = y0, sigχiy = |y|χisign(y), i = 1, 2, χi =
mi+ni

2 + mi−ni
2 sign(|y| − 1), mi > 1, 0 < ni < 1,

c1,2 > 0.

Next, the system described by the Eq. (8) converges to
0with a fixed time, and define themaximum estimated
convergence time as

T ≤ Tmax 2 := 2
m−1

2

c
2

m+1
1 (m−1)

(
c

2
m+1

1 + c
2

m+1

2

) 1−m
2

+ 1
c2(1−n) ln

(
c1+c2
c1

) (16)

3.3 Excitation Condition
Definition 4 [21]: A bounded signal α satisfies the
persistent excitation (PE) condition if

∫ Tp

Tp−t
αT (s)α(s)ds ≥ CpI (17)

holds for some Cp, Tp ∈ <+, and all t ∈ <+
0 .

4 Adaptive Optimal Fxt Parameter Estimation
This section develops an innovative fixed-time optimal
(FxT) adaptive scheme for system (3) to identify
unknown parameters σ.

4.1 Dead-Zone Parametrization
To estimate unknown parameters in PMSM systems
with dead-zone nonlinearity using exclusively
input/output data, the dead-zone model requires
reparameterization into an identifiable input/output
structure.

By passing reliance on the unmeasurable intermediate
signal v(t), the dead-zone function (4) is reformulated
as a continuous piecewise linear (CPL) function. Per
Definition 2, a continuous piecewise linear neural
network (CPLNN) models the dead-zone dynamics.
Following Definition 1, the dead-zone input u(t) is
segmented into s non-overlapping subregions defined
by boundaries αr (lower) and βr (upper), where each
basis function σr(·) corresponds to the r-th subregion.

v(t) = F (u(t)) = ρ0 +
s∑
r=1

ρrσr(0, u(t)− αr, βr − αr)

(18)
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where βr denotes the upper boundary of the subregion,
and αr denotes the lower boundary of the subregion.
The basis function that is utilized in the construction
of the CPLNNmodel is σr(0, u(t)−αr, βr−αr), which
can be described as

v(t) = F (u(t)) =

s∑
r=0

ρrσr(0, u(t)− αr, βr − αr)

= Φσ (u(t), αr, βr)
(19)

where Φ = [ρ0, · · · , ρs] ∈ <s+1, σ = [σ0, · · · , σs]T ∈
<s+1, G(•) represents the linear transfer function in
formG(q−1) = B(q−1)/A(q−1), the scalar polynomials
A(q−1) and b(q−1) are represented by

A(q−1) = 1 + a1q
−1 + · · ·+ amq

−m (20)
B(q−1) = b1q

−1 + · · ·+ bnq
−n (21)

Based on this, one can derive:

y(t) =
n∑
i=1

biF (u(t)− i)−
m∑
j=1

ajy(t− j) + ε(t)

= G(ΦT
1 σ1) + ε(t)

(22)

According to the characteristics of dead-zone function,
the estimation of dead-zone parameters can be
calculated as [19]:

D̂1 = αr1, D̂2 = βr2, l̂1
= (

∑
r<r1

ρr) /(r1 − 1), l̂2 = (
∑
r>r2

ρr) /(s− r2)

(23)
where r1 = min

ρr=0
r, r2 = max

ρr=0
r.

4.2 Adaptive Parameter Estimation
For the convenience of designing the adaptive law,
define Φ =

[
Φ1, i

∗
q

]
, σ = [σ1, b0]T . Then, equation

(3) can be rewritten as:

ẋ1 = x2 + Φσ (24)

The filtered variables x1f and Φf corresponding to x1

and Φ are defined as:

{
κẋ1f + x1f = x1, x1f (0) = 0

κΦ̇f + Φf = Φ,Φf (0) = 0
(25)

The auxiliary matrix D and vector H are defined as
Ḋ(t) = −mD(t) + nΦT (t)Φ(t),
D(0) = 0

Ḣ(t) = −mH(t) + nΦT (t)G−1 (y(t)− ε(t)) ,
H(0) = 0

(26)

with n ∈ <+ being a constant used to adjust the
excitation level, and m ∈ <+ is set to ensure the
boundedness of D, H . It is noted that l plays the
role of forgetting factor, which can be set as a small
constant. Ifm is smaller, more historical information
of Φ is contained in matrix H , and vice versa. Then,
the solution of (26) are derived as follows:

{
D(t) = n ∫ t0 e−m(t−τ)ΦT (τ)Φ(τ)dτ

H(t) = n ∫ t0 e−m(t−τ)ΦT (τ)G−1 [y(τ)− ε(τ)] dτ
(27)

with D(t) and H(t) defined in (27), we can calculate
another auxiliary variable L as

L = H −Dσ̂ (28)

where σ̂ denotes the estimation of σ. Based on (28), we
can verify the following fact for the auxiliary variable
L and estimation error σ̃ = σ − σ̂.

L = Dσ̃ (29)

where, Υ = n
∫ t

0 e
−m (t−τ) ΦT (τ)x2(τ) dτ is the

residual, and it satisfies ‖Υ‖ ≤ ‖Φf‖ ‖x2‖m .

Remark 1: The derived variable L depends on the
unknown estimation error σ̃, enabling the design
of adaptive laws to acquire σ̂ with guaranteed
convergence. Nevertheless, constant learning gains
fail to compensate for the regressor D’s influence,
potentially causing sluggish transient convergence. To
address this limitation, we develop a novel adaptive
law leveraging the extracted error L to achieve
optimal parameter estimation (OPE). Specifically,
a cost function incorporating L is introduced; its
minimization yields a time-varying gain that enhances
estimation response.

4.3 Adaptive Optimal Parameter Estimation
This section develops a novel adaptive optimal
parameter estimation (AOPE) method by minimizing
a cost function of the extracted error σ̃. The
minimization process yields a time-varying adaptive
gain that counteracts the regressor D’s influence and
enhances estimation performance. Leveraging [22],
the cost function is defined as:

J(σ̂, t)=
1

2

∫ t

0
e−ι(t−τ)

× [H(τ)−D(τ)σ̂(t)]T [H(τ)−D(τ)σ̂(t)]

z2(τ)
dτ

+
1

2
e−ιt(σ̂(t)− σ̂(0))TR0(σ̂(t)− σ̂(0))

(30)
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where z2 = I +
∥∥DTD

∥∥ is utilized for the
normalization of F , R0 = RT0 > 0 and ι > 0
are constants. The cost function J(σ̂, t) includes
the discounts of the past estimation error based on
the current parameter estimate σ̂ and penalties the
parameter change in [0, t] weighted by e−ιtR0. The
constant ι serves as a forgetting factor, which implies
that the effect of old data and the initial error σ̂(0) are
discarded exponentially as time t increases.

Unlike the cost function employed in least-squares
algorithm derivation [22]—which depends on
observer error—the proposed cost function J(σ̂, t)
specifically incorporates the estimation error σ̃. At
each time t, J(σ̂, t) exhibits strict convexity with
respect to σ̂, enabling parameter estimation updates
that minimize the cost function to yield optimal
parameter estimates (OPE). The resulting σ̂(t)
satisfies:

∂J(σ̂, t)

∂σ̂
= 0 ∀t ≥ 0

Given that ∂J(σ̂,t)
∂σ̂ represents the partial derivative of

the cost function J with respect to σ̂, the solution
derived from (31) yields:

∂J(σ̂, t)

∂σ̂
=

∫ t

0
e−ι(t−τ)−DT (τ)H(τ) +DT (τ)D(τ)σ̂(t)

z2
dτ

+ e−ιtR0(σ̂(t)− σ̂(0)) = 0
(31)

Solving this equation yields:

σ̂(t) =

(∫ t

0
e−ι(t−τ)D

T (τ)D(τ)

z2
dτ + e−ιtR0

)−1

×
(∫ t

0
e−ι(t−τ)D

T (τ)H(τ)

z2
dτ + e−ιtR0σ̂(0)

)
(32)

For the convenience of online parameter identification,
based on the n non-recursive algorithms derived from
equation (33), we further take the time derivative of
the σ̂ given in (33). For notational simplicity, define

M(t)=

(∫ t

0
e−ι(t−τ)D

T (τ)D(τ)

z2
dτ + e−ιtR0

)−1

(33)

N(t) =

(∫ t

0
e−ι(t−τ)D

T (τ)H(τ)

z2
dτ + e−ιtR0σ̂(0)

)
(34)

Then, (33) can be rewritten as σ̂(t) = M(t)N(t).

Considering the following matrix equality:

d

dt
MM−1 = ṀM

−1
+ M

d

dt
M−1 = 0 (35)

The following can obtain

Ṁ = −M

(
d

dt
M−1

)
M (36)

Then, according to definition of M(t) as given above,
the following can obtain

d

dt
M−1 =

d

dt

(∫ t

0
e−ι(t−τ)D

T (τ)D(τ)

z2
dτ + e−ιtR0

)
= −ι

∫ t

0
e−ι(t−τ)D

T (τ)D(τ)

z2
dτ − ιe−ιtR0

+
DTD

z2
= −ιM−1 +

DTD

z2

(37)

Substituting (38) into (37) will yield

Ṁ = ρM−M
DTD

z2
M, M−1(0) = R0 > 0 (38)

Analogous to (38), (34) and (35) yield

dN

dt
= −ιN +

DTH

z2
(39)

Now by differentiating (34), we can obtain the
following adaptive law for online parameter
estimation:

˙̂σ = M
DTL

z2
(40)

The preceding adaptive law derives from the following
mathematical operations:

˙̂σ = ṀN + MṄ

=
(
ιM−MDTD

z2
M
)

N + M(−ιN + DTH
z2

)

= MDTH−DTDσ̂
z2

= MDTL
z2

(41)

In the proposed adaptive law (41), the extracted
estimation error σ̃ is used to drive the L-term
parameter update. Consequently, the estimation-error
dynamics of adaptive law (41) can be written
as ˙̃σ = − M DTD σ̃

z2
.. Previous studies

have established exponential—and in some cases
finite-time—convergence properties for adaptive laws
governing estimation error. Compared with those
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works, the introduction of the time-varying gain M ,
updated via (39), eliminates the influence of the
filtered regression vector D in the L-term on the
transient convergence behavior of σ̃. Specifically, the
gain M defined in (5-39) converges exponentially
to the weighted average of MTM as characterized
in (34) and (35). Moreover, since R0 = RT0 >
0 and the matrix D (defined in (26)) is positive
semidefinite, M remains well-defined for all t > 0.
Unlike classical gradient-based adaptive laws, this
law is directly driven by the estimation error σ̃ and
attains optimal parameter estimates by minimizing the
carefully constructed cost function.

Lemma 5 [23]: If the regressor Φ is persistently exciting
(PE), then the matrixD is positive definite; there exists
a constant η1 > 0 such that λmin(D) > η1 > 0.

To establish theoretical foundations, the boundedness
of M is verified preceding the presentation of key
results.

Lemma 6 [23]: The time-varying gainM specified in
(39), subject to the PE condition of Φ, implies:

λ1I ≤ M(t) ≤ λ2I (42)

where λ1 = 1/(υmin(R0) + 1/ι) and λ2 = eιT z2/η2
1 .

Proof: The solution to (38) yields:

M−1(t) = e−ιtM−1(0) +

∫ t

0
e−ι(t−τ)D

TD

z2
dτ (43)

Considering the facts DTD
z2
≤ I and ∫ t0 e−ι(t−τ)dτ ≤ 1/ι,

we can further obtain

M−1(t) ≤ M−1(0) + I

∫ t

0
e−ι(t−τ)dτ ≤ R0 + I/ι (44)

On the other hand, when the PE condition of Φ holds,
the fact υmin(F ) > η1 > 0 is true. Hence, one can
further verify from (44) that

M−1(t) ≥ ∫ t0 e−ι(t−τ)DTD
z2

dτ ≥ ∫ tt−T e−ι(t−τ)DFTD
z2

dτ

≥ υ21
z2
e−ιT I

(45)

The time-varying gain M defined by (43) exhibits
boundedness for all t > T > 0.

Convergence properties are characterized by Theorem
1:

Theorem 1: For system (24) satisfying the PE condition,
the adaptive law (41) governed by variables D, H , L

in (26), (28) and gain (39) drives the estimation error
σ̃ to zero exponentially.

Proof: Consider a Lyapunov function as follows:

V1 =
1

2
σ̃TM−1σ̃ (46)

The time derivative of V1 is

V̇1 = σ̃TΓ−1 ˙̃σ +
1

2
σ̃T Ṁ−1σ̃

= −σ̃T DTD

z2
σ̃ +

1

2
σ̃T
(
−ιM−1 +

DTD

z2

)
σ̃

≤ −1

2
(η2/z2 + ι/λ2)‖σ̃‖2

≤ −µV1

(47)

whereµ = λ1(η2/z2+ι/λ2) is a positive constant. Then,
from the Lyapunov theorem, we can conclude that the
estimation error σ̃ can converge to zero exponentially.

Remark 2: Lemma 5 demonstrates that the minimum
eigenvalue condition λmin(D) > η > 0 is achievable
under the conventional PE condition of Φ. This
positive definiteness property will further support the
convergence proof of adaptive law (41). Rather than
directly validating the challenging online PE condition,
Lemma 5 offers an alternative approach: verifying
the excitation requirement by online computation of
λmin(D) to test λmin(D) > η > 0.

Remark 3: When ρ = 0 in (39), the gainM defined by
d
dtM

−1 = D>D
z2
≥ 0 converges to zero—a phenomenon

known as gain wind-up in adaptive estimation. To
resolve this issue, we introduce the forgetting factor
ι, inspired by least squares algorithms, ensuring
boundedness ofM as established in Lemma 6.

5 Controller Design and Stability Analysis
In this section, a modified FxT-NTSMC without the
singularity issue will be presented. The proposed
adaptive law will be incorporated into the controller
to achieve tracking control and parameter estimation
simultaneously.

5.1 Fixed-time sliding-mode controller design
To construct the sliding surface, the tracking error is
defined as:

e = x1 − xd (48)

Where xd denotes the desired angular velocity.

To enhance the anti-interference of the system, and
enable the PMSM system to achieve fast and accurate
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control performance. The sliding mode surface is
designed as

s = e+
1

N(e)
(k1ξ1(e) + k2ξ2(e)) (49)

with

ξ1(e) =

{
sigα (e) , |e| > ε

l1e+ g1e2sign (e) , |e| ≤ ε (50)

and

ξ2 (e) =

{
sigβ (e) , |e| > ε

l2e+ g2e2sign (e) , |e| ≤ ε (51)

whereN(e) = τ+(1−τ) exp(−a|e|b), 0 < τ < 1, a > 0;
b is an even integer; α = ν

sign(|e|−1)
1 , β = ν

sign(1−|e|)
2 ,

ν1 > 1, 0 < ν2 < 1, k1, k2 > 0, ε is a small positive
constant; l1 = (2− k3) εk3−1; g1 = (k3 − 1) εk3−2; l2 =
(2− k4) εk4−1; g2 = (k4 − 1) εk4−2.

Lemma 1 establishes the continuity of the slidingmode
surface s and its time derivative ṡ.

ξ̇1(e) =

{
α|e|α−1, |e| > ε

l1 + 2g1 |e| , |e| ≤ ε (52)

and
ξ̇2(e) =

{
β|e|β−1, |e| > ε

l2 + 2g2 |e| , |e| ≤ ε (53)

Remark 4: Based on Lemma 1, the following equalities
holds:{

sign(|e| − 1) = 1 sign(1− |e|) = −1, |e| ≥ 1
sign(|e| − 1) = −1 sign(1− |e|) = 1, |e| < 1

(54)

that is {
α = v1 β = 1

v2
, |e| ≥ 1

α = 1
v1

β = v2, |e| < 1
(55)

Therefore, the parameters α and β can be seen as two
positive constants in the process of derivation.

Then, the derivative of s is calculated based on (7) as

ṡ = x2 + F (u) + b0i
∗
q − ẋd + ϑ1 + ϑ2 (56)

with ϑ1 =
[k1ξ̇1(e)+k2ξ̇2(e)]

N(e) , ϑ2 = − Ṅ(e)[k1ξ1(e)+k2ξ2(e)]
N2(e)

,
Ṅ(e) = (1− γ) exp(−a|e|b)

(
−ab|e|b−1sign(e)ė

)
.

with the optical adaptive law ˙̂σ obtained in (41) by
minimizing a cost function of the extracted error

information σ̃, a further tailored FxT adaptive law for
updating ˙̂σ is designed as

˙̂σ = Γ
(
DTK1sig

γ1(L) +DTK2sig
γ2(L)

)
+ M

DTL

z2

(57)

where Γ > 0 is a positive constant, K1,K2 > 0, γ1 ∈
(0, 1), γ2 ∈ (1,∞).

Subsequently, an adaptive nonsingular terminal
sliding mode controller is formulated:

u = − 1

b0

[
x2 + ΦT σ̂ − ẋd + ϑ1 + ϑ2 + c1sigγ1s+ c2sigγ2s

]
(58)

5.2 Analysis of Stability and Convergence
Theorem 2: For the adaptive law (58) and controller
(59), if the PE condition Φ(Tp) ≤ CpI defined in
Definition 4 is satisfiedwith constantCp, Tp ∈ <+, then
the stability is summarized as follows

1) The estimation parameter θ̂ → θ is true with t→ Tb
by employing the adaptive law.

2) The system can converge from any initial position
to s in a fixed time without triggering singularity
problem.

Proof: First, the candidate Lyapunov function is given
as

V =
1

2
s2 +

1

2
σ̃TΓ−1σ̃ (59)

Based on the Lemma 3 and the system (3),
differentiating V yields

V̇ = sṡ+ σ̃TΓ−1 ˙̃σ

= s
(
x2 + F (u) + b0i

∗
q − ẋd + ϑ1 + ϑ2

)
− σ̃TΓ−1 ˙̂σ

= s
(
ΦT σ̃ − c1sigγ1s− c2sigγ2s

)
− σ̃T [ΦT s

+DTK1sigγ1(L) +DTK2sigγ2(L) + Γ−1MDTL
z2

]
≤ −c1sigγ1s− c2sigγ2s−DTK1sigγ1(L)σ̃T

−DTK2sigγ2(L)σ̃T

(60)

Then we have

−DTK1sigγ1(L)θ̃T −DTK2sigγ2(L)θ̃T

= −K1L
T sigγ1(L)−K2L

T sigγ2(L)
−K1ΥT sigγ1(L)−K2ΥT sigγ2(L)

(61)

Based on (62), we rewrite the equality (61) as

V̇ ≤ −c1sig
γ1s−c2sig

γ2s+K1L
T sigγ1(L)+K2L

T sigγ2(L)
(62)
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Due to the Lemma 1, we can get

V̇ ≤ −c1(s2)
1+γ1

2 − c2(s2)
1+γ2

2 −K1(LTL)
1+γ1

2 −K2(LTL)
1+γ2

2

(63)

Then, we consider the control problem on t ∈ [TP ,∞].
By submitting (29) into the last two terms of (64), the
following inequality is proposed

−K1(LTL)
1+γ1

2 −K2(LTL)
1+γ2

2 ≤ −–K1(θ̃T θ̃)
1+γ1

2 − –K2(θ̃T θ̃)
1+γ2

2

(64)

where –K1 = K1 · η1+γ1 , –K2 = K2 · η1+γ1 .Considering
the Lemma 1 and submitting (65) into (64), we finally
obtain

V̇ ≤ −~1V
1+γ1

2 − ~2V
1+γ2

2 (65)

with ~1 = 2
1+γ1

2 min

{
c1/λ

1+γ1
2

max (L),K1/λ
1+γ1

2
max (Γ−1)

}
;

~2 = 2
1+γ1

2 min

{
c2/λ

1+γ1
2

max (L),K2/λ
1+γ1

2
max (Γ−1)

}
.

According to the Definition 1 and Lemma 1, the
sliding mode variable and estimation error can achieve
convergence in T , where T = Tb + Tp, and Tb can be
calculated from the above inequality as follows

Tb =
2

~1 (1− γ1)
+

2

~2 (γ2 − 1)
(66)

6 Simulation and Experimental Verification
The dead-zone model can be described by the
following expression:

v(t) = F (u(t)) =


l1(u(t)−D1), D1 < u(t) ≤ u2

0 , −D2 ≤ u(t) ≤ D1

l2(u(t) +D2), u1 ≤ u(t) < −D2

(67)

In both the simulation and experimental processes, the
dead-zone input range [u1, u2] = [−9, 9] is divided into
20 segments, with the partition points given as: (-9,
-7.757, -6.514, -5.271, -4.029, -2.786, -1.543, -0.3, 0.204,
-0.108, 0.012, 0.084, 0.18, 1.282, 2.385, 3.487, 4.59, 5.692,
6.795, 7.897, 9).

To evaluate the control and parameter estimation
performance of the system, a comparative analysis is
conducted under the target speed s1 = 1000 r/min,
between the proposed parameter estimation–based
improved fixed-time nonsingular terminal sliding

mode controller (PE-FxT-NTSMC), the conventional
PI control method, and the fixed-time nonsingular
terminal sliding mode controller (FxT-NTSMC).
Considering the viscous friction and high-frequency
disturbances in the permanent magnet synchronous
motor (PMSM), the load torque is configured as
follows:

TL =


0N ·m, 0 ≤ t < 5s
3N ·m, 5 ≤ t < 10s
0N ·m, 10 ≤ t < 14s

(68)

To further verify the accuracy of the proposed control
method, the target speed is set as follows:

s2 =

{
400 r/min, 0 ≤ t < 5s
800 r/min, 5 ≤ t < 10s

(69)

In engineering applications, it is essential to provide
guidelines for selecting the parameters of the proposed
control algorithm. The parameters are categorized into
two groups: 1) Controller parameters: k1, k2, c1, and
c2; 2) Fixed-time optimal adaptive law parameters for
the parameter estimation scheme: κ1, κ2, γ1, γ2, and Γ.
Based on this, the parameter tuning guidelines are as
follows:

1) Selecting appropriate controller parameters k1, k2,
c1, and c2 can enhance the tracking performance
of the system. Increasing the values of k1 and k2

can accelerate the response during the startup phase;
however, excessively large values may increase the
system’s computational burden and lead to larger
overshoots at the initial stage of the dynamic response.
Larger values of c1 and c2 can shorten the convergence
time and improve the convergence rate, but may also
intensify chattering to some extent.

2) The adaptive law parameters κ1, κ2, γ1, γ2,
and Γ should not be set too large. Their values
should be chosen with a balanced consideration of
parameter estimation speed and accuracy, and should
be tuned reasonably during actual system operation
and adjustment.

6.1 Simulation verification
The key parameter configuration of the permanent
magnet synchronous motor (PMSM) is shown in
Table 1:

The simulation parameters of the controller are listed
as follows:

1) PI controller: kp = 15, ki = 800.
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(a) Speed tracking (b) Tracking error (c) Control input

Figure 3. The response curve at the constant speed s1.

(a) Speed tracking (b) Tracking error (c) Control input

Figure 4. The response curve at the constant speed s2.

Table 1. Parameters of the system.

Description Value Unit
Ψf 0.32 Wb

J 0.0027 Kg·m
R 1.84 Ω

L 6.65 mH

P 1.5 kW

np 4 /

2) FxT-NTSMC: k1 = 300, k2 = 320, c1 = 25, c2 = 50,
a = 20, b = 62, τ = 0.9, ν1 = 12, ν2 = 0.7, ε = 0.04.

3) PE-FxT-NTSMC: Γ = 20I , κ1 = κ2 = 10I , γ1 = 0.5,
γ2 = 250.

Figures 3(a), (b), and (c) respectively illustrate the
simulation results of speed tracking performance,
tracking error, and control input during startup at a
target speed of 1000r/min under the action of load
torque TL using different controllers. Figures 4(a), (b),
and (c) present the corresponding results for the target
speed s2. The simulation results shown in Figure 3
and Figure 4 demonstrate that, compared with the
conventional PI control and the FxT-NTSMC method,

the proposed PE-FxT-NTSMCapproach achieves faster
response, stronger disturbance rejection, and more
optimized control input.

Figure 5. The estimation results of l̂1 and l̂2.

Figures 5 and 6 present the simulation results of
parameters l1, l2, and D1, D2 under two parameter
estimation methods: FxT-AOPE and AOPE. The
simulation results indicate that the proposed
fixed-time optimal adaptive law significantly
accelerates the convergence of the estimated
parameters to their true values, while maintaining
high estimation accuracy. Experimental results further
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Figure 6. The estimation results of D̂1 and D̂2.

confirm that the fixed-time optimal adaptive law based
on parameter estimation error effectively enhances
the estimation speed and substantially improves the
accuracy of estimation performance.

6.2 Experimental Verification
Experimental tests were carried out using the
LINKS-RT real-time simulation platform to verify
the effectiveness of the control algorithm proposed
in this chapter. In the LINKS-RT platform, the
inverter switching frequency was set to 10kHz, and
the sampling period of the real-time simulator was
set to 100us. The experiments mainly evaluated the
following aspects: the speed overshoot and startup
time of the PMSM under different control strategies
during startup; the speed fluctuation and recovery
performance under external load variations; and the
estimation accuracy of AOPE and FxT-AOPE. Through
these experiments, the performance of the proposed
control method was comprehensively assessed in
terms of control accuracy, disturbance rejection
capability, and parameter estimation precision. To
ensure fairness in comparison, all experimental
parameterswere kept the same except for those specific
to each controller. The experimental tests were carried
out using the LINKS-RT real-time simulation platform,
as shown in Figure 9.

1) PI: kp = 0.05, ki = 0.5.

2) FxT-NTSMC: k1 = 20, k2 = 30, c1 = c2 = 5, a = 1.5,
b = 2, τ = 0.4, ν1 = 5, ν2 = 0.5, ε = 0.02.

3) PE-FxT-NTSMC: Γ = 0.3I , K1 = K2 = 5I , γ1 = 0.1,
γ2 = 25.

The corresponding experimental results are shown in
Figures 7 to 13. Tables 2 and 3 present the performance
metrics of the experiments, including Settling Time
(ST), Overshoot (OS), Overall Speed Fluctuation

(OSF), and Overall Recovery Time (ORT). Specifically,
ORT and OSF are defined as: ORT = t1 + t2, OSF =
|ω1|+|ω2|. where t1 and t2 represent the recovery times
when the load torque suddenly increases or decreases,
respectively, and ω1 and ω2 denote the corresponding
peak deviations in rotational speed.

Experiment 1: Results of Constant Speed Experiment

As shown in Figure 7(a), compared to the PI controller
and the traditional FxT-NTSMC control strategy, the
PE-FxT-NTSMC control scheme exhibits almost zero
overshoot during the initial phase of speed tracking.
This indicates that the PE-FxT-NTSMC control strategy
significantly improves the oscillation and overshoot
issues in the speed tracking process, resulting in a
smoother tracking curve during the speed regulation
process.

Additionally, as shown in Figure 7(a), in terms of
speed tracking, the PE-FxT-NTSMC control strategy
outperforms both the PI controller and the traditional
FxT-NTSMC control strategy. More specifically, the ST
of the PE-FxT-NTSMC control strategy is 0.26s, which
is the shortest among the three control methods. The
traditional FxT-NTSMC control strategy has an ST of
0.45s, and the PI strategy has an ST of 0.58s. Therefore,
the PE-FxT-NTSMC control strategy takes the least
amount of time to converge to the desired speed.

Table 2. The performance index of Experiment 1.

Index ST(s) OS(%) ORT(s) OSF(rpm)

PE-FxT-
NTSMC 0.26 0 0.28 72

FxT-
NTSMC 0.45 0.5 0.31 62

PI 0.58 4.6 0.39 86

The results shown in Table 2 and Figures 7(a) and
(b) indicate that under the PE-FxT-NTSMC scheme,
the PMSM system recovers from the disturbance load
impact within 0.14 seconds with minimal fluctuation
(i.e., 36 rpm). By comparison, the PE-FxT-NTSMC
scheme outperforms the traditional FxT-NTSMC
control strategy and the PI method, effectively guiding
the system state to approach the sliding mode surface
more smoothly, achieving faster convergence speed,
and significantly shortening the system’s response
time. The introduction of the parameter estimation
strategy allows the unknown and varying parameters
in the motor model to be updated in real-time. This
enables the controller to dynamically adjust the control
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(a) Speed tracking (b) Tracking error

Figure 7. The response curve of Experiment 1.

(a) Speed tracking (b) Tracking error

Figure 8. The response curve of Experiment 2.

Figure 9. LINKS-RT Semi-Physical Simulation Experiment
Platform.

strategy based on the updated motor parameters,
thereby reducing the negative impact of parameter
changes on system performance. This not only
enhances the system’s disturbance rejection capability
but also improves its ability to track the desired signal
quickly and accurately, further boosting the system’s
robustness and control precision.

Experiment 2: Results of Variable Speed Experiment

This experiment tests the system response at different
speeds, where the motor starts at a speed of
400r/min and adjusts to 800r/min at 5 seconds. As
shown in Figure 8, during the acceleration from
low speed 400r/min to high speed 800r/min, the
overshoot of the PE-FxT-NTSMC scheme is nearly
zero, much lower than that of the PI controller and
the FxT-NTSMC strategy. Particularly during the
acceleration phase, the PE-FxT-NTSMC controller
maintains a low overshoot and steadily tracks the
desired speed. In contrast, during the transient
response phase, the PI controller exhibits significant
dynamic overshoot and high-frequency oscillations,
while the FxT-NTSMC strategy only shows slight
dynamic overshoot and jitter. Once the speed stabilizes,
the PE-FxT-NTSMC scheme demonstrates a smaller
steady-state error and higher accuracy, especially in the
stable state after speed regulation is completed, where
the error is close to zero. Both the PI controller and
FxT-NTSMC scheme show some steady-state errors,
which affect the system’s stability.

The results shown in Table 3 and Figures 8 (a) and (b)
demonstrate that the PE-FxT-NTSMC control scheme
exhibits exceptional system response time during
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Table 3. The performance index of Experiment 2.

Index ST(s)
400r/min

OS(%)
400r/min

ORT(s)
800r/min

OSF(rpm)
800r/min

PE-FxT-
NTSMC 0.198 0 0.32 1.75

FxT-
NTSMC 0.245 5.75 0.65 5

PI 0.322 13.5 0.68 8.5

the variable speed process, with a convergence time
significantly shorter than that of the other two control
strategies. More specifically, at speeds of 400r/min
and 800r/min, the ST of the PE-FxT-NTSMC control
strategy is 0.198s and 0.32s, respectively, the lowest
among the three control methods. The traditional
FxT-NTSMC control strategy are 0.245s and 0.65s,
while the PI strategy are 0.322s and 0.68s. Therefore,
the PE-FxT-NTSMC control strategy takes the least
amount of time to converge to the desired speed. Based
on the variable speed experimental results, it is clear
that the PE-FxT-NTSMC control scheme outperforms
the PI controller and FxT-NTSMC strategy in terms of
speed tracking accuracy, system response time, and
robustness.

Experiment 3: Results of Parameter Estimation
Experiment

Figure 10. The estimation results of l1.

Due to the ability of FxT-AOPE to quickly respond
to changes in system parameters under fixed-time
conditions, it ensures faster convergence speed
and higher estimation accuracy. As shown in
Figures 10 to 13, AOPE exhibits larger estimation
errors and longer response times under the same
operating conditions, whereas FxT-AOPE can rapidly
track parameter changes in a very short time.
This indicates that FxT-AOPE effectively reduces
estimation errors when dealing with rapidly changing

Figure 11. The estimation results of l2.

Figure 12. The estimation results of D1.

Figure 13. The estimation results of D2.

system parameters, enhancing the adaptability to
environmental changes of system. Compared to AOPE,
FxT-AOPE not only achieves accurate estimation of
unknown parameters in a shorter time, leading to
faster parameter convergence, but also outperforms
AOPE in estimation accuracy, maintaining high
estimation precision under conditions of system
parameter variations. Additionally, FxT-AOPE
demonstrates stronger robustness when dealing with
parameter fluctuations and faster transient response,
which can significantly improve system performance.
In practical control systems, using adaptive laws
with time-varying gains and fixed-time conditions
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can significantly enhance system robustness and
estimation performance. The use of FxT-AOPE allows
for better handling of unknown parameter changes
and environmental disturbances, thereby improving
the system’s adaptability and control precision.

7 Conclusion
This chapter proposes a cost function based FxT
AOPE method and its related control scheme for servo
systemswith asymmetric dead zone input nonlinearity.
Firstly, design an approximate asymmetric dead zone
for CPLNN, construct a cost function for estimation
error, derive time-varying gain in adaptive law, and
achieve AOPE. Then, the terminal sliding mode
manifold was combined with the proposed learning
algorithm to propose FxT-NTSMC, ensuring fixed time
convergence of estimation error and tracking error
simultaneously. The simulation and experimental
results on the permanent magnet synchronous motor
platform have verified the effectiveness of this method.
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