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Abstract

In response to the challenges of insufficient
accuracy in face detection and missed small
targets under low-light conditions, this paper
proposes a detection scheme that combines image
preprocessing and detection model optimization.
Firstly, Zero-DCE low-light enhancement is
introduced to adaptively restore image details
and contrast, providing high-quality inputs for
subsequent detection. Secondly, YOLOvlln is
enhanced through the following improvements:
a P2 small-target detection layer is added while
the P5 layer is removed, addressing the original
model’s deficiency in detecting small targets and
streamlining the computational process to balance
model complexity and efficiency; the P2 upsampling
is replaced with DySample dynamic upsampling,
which adaptively adjusts the sampling strategy
based on features to improve the accuracy of feature
fusion; a lightweight adaptive extraction module
(LAE) is incorporated to reduce the number
of parameters and computational costs; finally,
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the detection head is replaced with GSDetect to
maintain accuracy while reducing computational
overhead. Experimental results show that the
improved model reaches an mAP50 of 58.7%, which
is a 10.2% increase compared with the original
model. Although the computational complexity
increases to 7.5 GFLOPs, the parameter count is
reduced by 45%, offering a more optimal solution
for face detection in low-light environments.

Keywords: low-light, face detection, image enhancement,
lightweight, deep learning.

1 Introduction

With the swift advancement of intelligent surveillance,
autonomous driving [1], face recognition [2], and
other fields, face detection technology—as core
support for human-computer interaction and
security protection—is increasingly applied in
complex environments and has garnered significant
attention [3, 4]. However, in low-light scenarios such
as night surveillance and outdoor darkness, captured
images often suffer from low visibility, blurred details,
dense noise, and color distortion. These issues not
only impair human visual perception but also severely
degrade the performance of machine vision tasks,
which makes it difficult for traditional face detection
models to accurately capture facial features. This often
results in missed detections of small targets and an
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increased false detection rate, substantially limiting
the technology’s reliability in practical applications.

To address the aforementioned challenges in low-light
face detection, existing studies have explored
two primary technical approaches: independent
enhancement optimization and direct detection model
adaptation. On one hand, some studies focus solely
on improving the quality of low-light images. For
instance, traditional methods such as Retinex-based
algorithms [5] and histogram equalization attempt
to restore details by adjusting pixel intensity, yet they
often struggle to balance noise suppression and feature
preservation—either resulting in over-smoothed facial
edges or amplified background clutter.  Even
advanced deep learning-based enhancement methods
like EnlightenGAN [6] and Zero-DCE [7] (the baseline
method adopted in this study) prioritize global visual
naturalness, lacking targeted optimization for facial
key regions (e.g., eyes, nose, and mouth) that are
crucial for detection. Consequently, the enhanced
images may still suffer from blurred local features,
failing to provide effective input for subsequent face
detection tasks.

On the other hand, other studies aim to enhance
the robustness of detection models to low-light
conditions without relying on pre-enhancement steps.
For instance, some methods introduce multi-scale
feature fusion modules to capture weak facial signals.
However, these model-only optimizations have
inherent limitations: in extreme low-light scenarios
where image information is severely degraded, even
the most advanced detection architectures struggle
to extract discriminative features from raw low-light
images. This results in persistently low recall rates for
small faces and high false detection rates.

Inspired by these advances, this paper focuses on
the face detection task in low-light scenarios and
proposes a collaborative optimization method of
"enhancement-detection".  Firstly, the Zero-DCE
algorithm is adopted to adaptively enhance
low-light images, which preserves facial details
while suppressing noise and improving image
contrast. Secondly, aiming at the enhanced images,
the YOLOv1ln [8] model is improved and optimized:
by integrating a dedicated detection layer for small
targets, introducing dynamic upsampling and
lightweight feature extraction modules, and replacing
the detection head, the model’s ability to capture
tiny faces and distinguish features in low-light
environments is strengthened. Experiments are

conducted based on the DarkFace [9] dataset to
verify the comprehensive advantages of the proposed
method in terms of accuracy, recall and inference
efficiency. This study aims to provide a more
practical solution for low-light face detection and
promote the application of this technology in complex
environments.

This paper adopts the "original Zero-DCE + improved
YOLOv11n" scheme, whose core advantage lies in
balancing "practicality" and "deployability": on one
hand, the original Zero-DCE algorithm requires
no reference images and has low computational
overhead, enabling fast processing of low-light
images and avoiding delays caused by complex
enhancement algorithms; on the other hand, the
lightweight optimization for the detection model
(YOLOv11n) does not significantly increase model
parameters, allowing the overall workflow to maintain
high-efficiency inference characteristics. This scheme
not only addresses the insufficient detection accuracy
of the traditional "original Zero-DCE + basic model"
pipeline but also avoids the pain points of end-to-end
models (such as high complexity and difficult
deployment), thereby providing a practical solution
that is "easy to implement, highly adaptable, and
real-time capable" for the application of low-light face
detection technology on edge devices with limited
resources.

2 Related Work

Low light Enhancement: Low-light images may be
caused by insufficient ambient light during shooting
or limitations of the camera’s own exposure system.
In the field of low-light image enhancement, a
large number of relevant research results have been
accumulated. Histogram equalization and its various
variants are capable of expanding the dynamic range
of images. The Retinex theory posits that an image can
be decomposed into an illumination component and a
reflectance component. Rooted in Retinex theory, most
relevant studies [10] usually begin by estimating the
illumination and reflectance components of low-light
images, and then handle these two components
in either a separate or concurrent way. In recent
years, the advancement of such methods has largely
depended on deep learning techniques. Jiang et
al. [6] developed the EnlightenGAN approach, a
solution built on a generative adversarial network
(GAN) framework that enables low-light image
enhancement without the need for paired supervised
data. It not only alleviates the problem of insufficient
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training data but also improves the visual quality
of low-light images. Ma et al. [11] focused on
creating a rapid, adaptable, and reliable low-light
image enhancement method called SCI, aiming to
address issues of subpar image quality and low
clarity in low-light scenarios, while also satisfying the
demands for processing speed, adaptability across
different scenes, and stable performance in various
low-light environments during practical applications.
Guo et al. [7] introduced Zero-DCE, a method for
low-light image enhancement to support detection
tasks, demonstrating robust performance in various
low-light environments practically.

Face Detection: Over the past few years, deep
learning has attained significant achievements across
various domains, such as object detection [12]. As
an important branch of general object detection,
face detection has also seen substantial progress. In
addition to general object detection algorithms like
RCNN [12], Faster R-CNN [13], and YOLO [14],
specialized face detection algorithms such as
DSFD [15], PyramidBox [16], and RetinaFace [17]
have been developed, all demonstrating notable
success.

Low-light Face Detection: Based on the DARK FACE
dataset, Wang et al. [18] proposed a combined
high-low adaptation (HLA-Face) framework
specifically designed for low-light face detection
tasks. Through bidirectional low-tier adaptation
and multi-task high-tier adaptation, this framework
enables the adaptation of normal-light face detection
models to low-light scenarios without low-light
face annotations, achieving performance superior
to traditional methods and close to that of fully
supervised models using DARK FACE annotations.
Yu et al. [19] proposed a single-phase face detection
technique for extremely low-light scenarios, whose
core lies in the collaboration of three modules—"image
enhancement, detection optimization, and result
fusion"—to achieve high-performance detection on
the DARK FACE dataset.

3 Image Enhancement Method

In practical scenarios such as night monitoring and
intelligent driving, low-light images often suffer
from quality degradation issues including insufficient
brightness, low contrast, and strong noise: dim
frames mask key facial features, grayscale confusion
blurs target boundaries, and noise amplification
damages details. These problems ultimately cause
detection models to fail in feature extraction, increase
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miss rates, and restrict the practical value of the
system. As a preprocessing step, image enhancement
technology can improve brightness and contrast while
suppressing noise, providing clear and stable input
for subsequent detection tasks. This paper compares
three mainstream low-light enhancement methods,
with visualization results shown in Figure 1.

Figure 1 demonstrates the differences between the
methods from the perspectives of visual effect and
task adaptability: EnlightenGAN improves brightness
but tends to introduce color deviation due to training
bias, which disrupts scene consistency and interferes
with target discrimination; SCI achieves balanced
brightness enhancement but has insufficient detail
restoration, leading to blurring of facial edges and
background textures; Zero-DCE uses pixel-level
curve mapping to reasonably brighten images while
accurately preserving details and color consistency,
featuring clear facial contours, rich background details,
and natural colors. Therefore, Zero-DCE is selected as
the low-light image enhancement scheme in this paper
due to its advantage of balancing brightness, details,
and color.

4 Improved YOLOv1In Object
Algorithm

Detection

4.1 Overall Framework of the Improved Model

To address the challenges of detecting small faces,
insufficient feature fusion, and high computational
cost in low-light environments, this paper proposes
an optimized YOLOv1ln architecture with four
key improvements.  First, the feature pyramid
structure is adjusted: a P2 feature layer dedicated
to small-scale faces is added, while the P5 layer
is removed. This balances model complexity and
computational efficiency, enabling the model to better
capture fine-grained details of small faces and avoid
unnecessary computations from the less relevant
P5 layer. Second, the conventional upsampling
method in the P2 layer is replaced with the dynamic
upsampling operator DySample [20], which generates
content-aware sampling kernels to enhance feature
fusion accuracy and retain precise spatial information
for face detection. Third, some ordinary convolutions
in the network are substituted with the lightweight
adaptive extraction module (LAE) [21], significantly
reducing parameters and computational load while
preserving strong feature representation capabilities
by focusing on discriminative facial features.
Finally, the original detection head is replaced with
the lightweight GSDetect head, which reduces
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(a) Original picture

(c) SCI

(d) Zero-DCE

Figure 1. Visualization results of the original image and various image enhancement methods.

computational overhead via efficient parameter
sharing while maintaining accuracy, rendering it
applicable to real-time low-light face detection. The
improved YOLOv1ln’s architecture is shown in
Figure 2. Experiments on multiple low-light face
datasets demonstrate that the optimized model
outperforms the baseline YOLOv1ln in small face
detection accuracy and inference speed, verifying the
improvements’ effectiveness.

4.2 Adding a Small-Target Layer

In low-light face detection tasks, affected by insufficient
lighting and environmental occlusion, small-sized
faces under low-light conditions constitute a high
proportion in the dataset. Even though the standard
YOLOv1ln multi-scale detection system is able to
process targets of diverse sizes, it shows limitations in

detecting small-sized faces under low-light conditions.

Its P3, P4, and P5 output layers correspond to the
detection of targets at different scales, with the P5
layer focusing on large targets, making it suitable

for scenarios with large objects in the background.

However, due to the high downsampling factor of
the P5 layer, it struggles to retain sufficient detail

when processing small-sized faces under low light, and
also suffers from computational redundancy, resulting
in suboptimal performance in detection tasks where
low-light, small-sized faces are the core focus.

To address this, this paper optimizes the detection layer
structure by adding a P2 detection layer specifically
designed for small-sized faces under low-light
conditions and eliminating the P5 large-target
detection layer. The P2 layer increases the spatial
definition, generating a 160x160 resolution feature
map. As opposed to the 20x20 feature map from the
P5 layer, it preserves more detailed information of
small-sized faces under low light, thereby improving
detection accuracy. Meanwhile, the P2 layer undergoes
feature fusion with the P3 and P4 layers, enhancing
the model’s multi-scale feature extraction capability.
This ensures precise capture of details for small-sized
faces under low light while avoiding redundant
computations. The structure is illustrated in Figure 3.

4.3 Lightweight Dynamic Upsampling Operator
In low-light small target processing, static upsampling

often struggles to accurately adapt to the irregular
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Figure 2. Architecture of the improved YOLOv11n network.

Figure 3. Schematic diagram of the improved detection
layers.

distribution of facial edges due to its fixed sampling
patterns, leading to detail loss. In contrast, DySample
employs dynamic point sampling, which can
adaptively adjust the positions and weights of
sampling points based on the actual distribution of
edge details in the feature map, thereby enhancing the
utilization efficiency of subtle contours and textures
of faces under low-light conditions. To improve the
capability of capturing edge details of small-sized
faces in low-light scenarios, the dynamic upsampling
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operator DySample is introduced to replace the
original static upsampling structure in the P2 layer.
The dynamic upsampling based on sampling and the
module design in DySample are illustrated in Figure 4.

As shown in Figure 4 (a), it resamples the given input
feature map X of size C' x H x W and computes a
new upsampled feature map via bilinear interpolation,
resulting in an output size of C' x SH x SW. The
network upsampling can be defined as:

X" = grid_sample(X, 5) (1)

Figure 4 (b) illustrates two versions: the “static factor
scope” and the “dynamic factor scope”. Considering
that facial image features under low light are prone to
blurring, suffer from significant noise interference, and
exhibit complex and variable lighting distributions,
the dynamic factor version can adaptively adjust
processing strategies to capture facial information
more accurately. Therefore, the dynamic factor version
is selected.

The input feature map X with dimensions H x W x C
is first processed through two parallel linear layers,
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Figure 4. Dynamic upsampling and module architectures in DySample based on sampling. (a) Sampling based dynamic
upsampling. (b) Sampling point generator in DySample.

yielding branch features X; and X5, both of size
H x W x 2¢s®. The intermediate feature from the
upper branch is passed through a sigmoid function
o and then scaled by 0.5 to produce a dynamic
range factor 0.50. This factor is subsequently fused
with the intermediate feature from the lower branch
via element-wise multiplication, thereby adaptively
modulating the features in the lower branch. The fused
features then undergo a pixel rearrangement operation
to generate the dynamic offset O. Finally, the offset O is
added element-wise to the grid position G to form the
final sampling set S. The fundamental implementation
of this process can be defined as follows:

O = linear(X) (2)

S=G+0 (3)

Compared with other dynamic upsamplers, DySample
is designed from the perspective of point sampling,
requiring no additional CUDA packages. It leverages
highly optimized PyTorch operations to perform fast
backpropagation, adding almost no extra training time
or computational cost. As a result, DySample offers
significant advantages in terms of inference speed,
memory usage, and accuracy.

4.4 Lightweight Adaptive Extraction Module

To address the issues of excessive parameters and
high computational cost resulting from stacked
standard convolutional layers, this paper introduces
the Lightweight Adaptive Extraction (LAE) module
as a replacement for some standard convolutions in
the YOLOv11ln model, aiming to maintain detection
accuracy while improving efficiency.
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Pooling

As illustrated in Figure 5, the LAE module employs Through rearrangement and Softmax normalization,

a dual-branch parallel architecture that elegantly
integrates the principles of parameter sharing and
group convolution for efficient feature extraction and
channel-wise information weighting. One branch
is designed to transform spatial information (from
height and width dimensions) into channel-wise
representations. By utilizing group convolution, this
branch reduces the number of parameters to 1/N of
that in standard convolution, thereby substantially
reducing computational complexity. The other branch
extracts global features via average pooling and
employs a lightweight convolutional layer to generate
dynamic weights, which recalibrate the importance
of different feature channels. This mechanism
effectively mitigates the loss of edge details during
downsampling. Finally, the module performs a
weighted fusion of the outputs from both branches
to form a comprehensive feature representation. The
computational procedure is as follows:

First, the input feature map is of size X € B x C x
H x W,where B denotes the batch size, C' represents
the number of channels, and H and W stand for the
height and width of the input feature map, respectively,
is processed through average pooling and a 1 x 1
convolution to generate the attention feature M 4.

M4 = Convy 1 [AvgPool(X)] (4)
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the attention weights Z are obtained:

Z = Softmax|Rearrange(M4)] (5)
where X is downsampled via grouped convolution to

generate the downsampled feature X, which is then
rearranged into X:

X4 = GConv(X) (6)

Xar = Rearrange(My) (7)

Finally, the downsampled features are combined with
the corresponding attention weights via a weighted
summation to generate the output feature Y:

4

=1

(8)

4.5 Improved Detection Head

4.5.1 Grouped Separable Convolution

GSConv [22] (Grouped Separable Convolution)
cleverly adopts a dual-branch architecture. It first splits
the input channels into two parts: one branch uses
standard convolution to extract channel-correlated
features, while the other branch employs depthwise
separable convolution to capture spatial details.
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The features from the two branches are then
fused via concatenation, followed by a shuffle
operation to break the channel isolation problem often
caused by depthwise separable convolution. This
allows full interaction between different channels,
significantly reducing computational cost while
effectively preserving feature representation capability.
As a result, GSConv achieves a balance between
lightweight design and accuracy, offering an innovative
approach for efficient neural network design. The
structure of GSConv is illustrated in Figure 6.

N
M- AN

output

C, channels

C,/2 channels

0=

input
p DWConv Concat

C, channels
.¢ 4 j‘

C,/2 channels

. v

Figure 6. Schematic diagram of the GSConv structure.

4.5.2 Detection Head Improvements

In the optimization of the YOLOv11n detection head,
replacing the first two conventional convolutions
with GSConv yields multiple notable advantages.
Unlike traditional convolutions that often incur
high computational costs, GSConv features an
innovative dual-branch architecture: one branch
retains standard convolution to ensure robust core
feature extraction, while the other employs depthwise
separable convolution to drastically cut down on
redundant calculations. This balanced design not
only preserves the model’s detection accuracy
but also significantly lightens its computational
burden, enabling more efficient real-time detection on
edge devices or mobile platforms with constrained
hardware resources—critical for computationally
sensitive applications like multi-channel video
surveillance and real-time autonomous driving
perception.Moreover, GSConv integrates a unique
channel shuffle mechanism, which effectively
addresses the channel isolation limitation inherent
in depthwise separable convolution. By facilitating
sufficient cross-channel feature interaction, it
overcomes the drawback of single-branch convolutions
that struggle to capture inter-channel correlations.
Compared with a single convolution mode, this
mechanism allows the model to extract richer
discriminative features, ranging from fine-grained

details to global context, thereby enhancing its
adaptability to complex scenarios such as crowded
public spaces or variable lighting environments. The
structural design of the improved detection head after
this optimization is visually illustrated in Figure 7.

Detect

-—> Conv —> Conv —> Conv2d

Ciou
—> DWConv — Convn —> DWConv —> Conv —> Convad
Ciou

-—> DWConv — Conv —> DWConv —> Conv —> Conv2d

Figure 7. Schematic diagram of the improved detection
head.

GSDetect

> GSConv —> GSConv —> Conv2d

5 Experimental Results and Analysis

5.1 Dataset and Experimental Environment

The DARK FACE dataset is a widely employed
benchmark for low-light face detection; therefore, this
paper adopts it as the test dataset. This dataset
provides 6,000 real-world low-light images captured
in various settings such as at night, near teaching
buildings, on streets, around bridges, over overpasses,
and in parks. All these images are annotated with
bounding boxes for faces and serve as the primary
training and/or validation set. Additionally, it contains
9,000 unlabeled low-light images collected under
the same conditions. It also features a unique set
of 789 low-light/normal-light image pairs, captured
under controlled real lighting conditions (though not
necessarily containing faces), which can be utilized as
part of the training data for participant discretization.
A held-out test set comprising 4,000 low-light images
with bounding box annotations for faces is also
provided. Since the original test set labels are not
publicly available, this paper randomly splits the
provided 6,000 images into training, validation, and
test sets in a 6:2:2 ratio.

Figure 8 presents the statistical analysis of face
count and resolution conducted on the 6,000
images provided by the DARK FACE dataset.
The experimental statistics on the distribution
characteristics of the face dataset reveal that
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low-resolution faces (with dimensions below
300 pixels) overwhelmingly dominate the dataset, as
shown in Figure 8 (a), indicating that small-resolution
faces (small targets) constitute the majority. Figure 8
(b) demonstrates that the number of images containing
6 to 10 faces per image is the highest, while the count

drops sharply when the number of faces exceeds 20.

This reflects that most images contain a concentrated
number of faces, with extreme multi-face scenarios
being rare. Given that small-resolution faces (small
targets) form the primary composition of the dataset,
subsequent algorithms need to prioritize adaptation
for small target detection. The detection performance
will be evaluated using the mean Average Precision
(mAP) metric.
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Figure 8. Distribution of face resolution and count in the
DARK FACE dataset.

The experimental environment was configured as
follows: the operating system was Ubuntu 22.04; the
deep learning framework used was PyTorch 1.8.1; the
programming language was Python 3.9; and the CUDA
version was 11.8. Model training was accelerated using
an NVIDIA GeForce RTX 4090 GPU. The training batch
size was set to 8, the SGD optimizer was utilized with
an initial learning rate of 0.01, and the training process
was conducted for 300 epochs.
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5.2 Evaluation Metrics

The performance of the network is evaluated using
precision (P), recall (R), mean average precision
(mAP), number of parameters (Params), and giga
floating-point operations (GFLOPs). The relevant
formulas are as follows:

1 n
mAP =~ Z; AP, 9)
1
AP = / P(r)dr (10)
0
TP
P= TP + FP (11)
TP
R= TP+ FN (12)

where TP refers to the count of correctly predicted
positive samples, FN denotes the number of positive
samples incorrectly predicted as negative, FP
represents the number of negative samples mistakenly
predicted as positive, and n is the total number of
samples.

Table 1. Accuracy comparison of different image
enhancement methods.

Enhancement method mAP50(%)

— 45.7
EnlightenGAN 46.8
SCI 47.2
Zero-DCE 48.5

5.3 Comparison of Various Image Enhancement
Approaches

In the third chapter, the visualization results of
various image enhancement methods are presented.
To further investigate the impact of different image
enhancement techniques on model accuracy, we
designed corresponding experiments, using the
YOLOv11ln model without any image enhancement
method as the benchmark for comparative analysis.
The experimental results are shown in Table 1, where
the "—" entry indicates that no image enhancement
method was used. According to the data in Table 1,
all three enhancement methods-EnlightenGAN,
SCI, and Zero-DCE-improved the accuracy. Among
them, Zero-DCE achieved the most significant
optimization because it can accurately correct
illumination and suppress noise, thereby providing
clearer features for detection. SCI ranked second,
demonstrating advantages in detail restoration.
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Figure 9. Detection performance comparison between YOLOv11n and the improved mode.

Although EnlightenGAN also brought improvements,
the enhanced images tended to retain shadows, which
to some extent interfered with detection. In summary,
Zero-DCE shows better adaptability for low-light
face detection tasks. Future work could focus on
in-depth research into the collaborative optimization
of Zero-DCE with detection models to further enhance
performance.

5.4 Ablation Experiments

To validate the impact of different improvement
modules on model performance, an ablation study
was conducted on the experimental dataset, and the
results are shown in Table 2. Here, “Params” denotes
the number of parameters, and “FLOPs” represents
the computational complexity. When no improvement

modules were introduced, the baseline model achieved
an mAP50 of 48.5%, with parameters and FLOPs
reaching 2.58x10° and 6.3x10%, respectively. After
adding the detection layer, mAP50 increased to
58.7%, while parameters decreased to 1.93x10° due
to structural simplification; however, FLOPs increased
t0 9.6x10 as a result of the additional computations
introduced by this layer. When only the LAE module
was utilized, mAP50 slightly dropped to 48.3%,
parameters became 2.09 x 109, and FLOPs reduced to
6.0x10%. When only the detection head was modified,
mAP50 was 48.2%, parameters were 2.40%10%, and
FLOPs were 5.6x10°. In the fifth experimental setup,
on the basis of adding the detection layer, replacing
the upsampling in the P2 layer with DySample led to
more refined feature processing, improving mAP50

Table 2. Ablation experiments.

No. Detection Layer Dysample LAE Detection Head mAP50/% Params/M FLOPs/G
1 X X X X 48.5 2.58 6.3
2 Vv X X X 58.7 1.93 9.6
3 X X Vv X 48.3 2.09 6.0
4 X X X Vv 48.2 2.40 5.6
5 Vv Vv X X 59.4 1.93 9.7
6 Vv Vv Vv X 59.2 1.54 9.4
7 Vv Vv Vv Vv 58.7 1.42 7.5

259



ICCK Transactions on Sensing, Communication, and Control

ICJK

by an additional 0.7 percentage points to 59.4%, with
FLOPs slightly rising to 9.7x10° and parameters
remaining unchanged at 1.93x10°. In the sixth setup,
replacing standard convolutional layers with the LAE
module on top of having the detection layer and
DySample further enhanced the model’s lightweight
characteristics, reducing parameters to 1.54x10° and
FLOPs to 9.4x10?, while mAP50 remained stable at
59.2% despite minor fluctuations. In the seventh
setup, replacing the detection head on the basis of
the previous modules resulted in a slight decrease
in mAP50 to 58.7%, but parameters and FLOPs
were significantly reduced to 1.42x10° and 7.5x107,
respectively. The optimized model demonstrates
greater suitability for deployment on edge computing
devices and effectively addresses the demands of
complex low-light scenarios.

5.5 Comparative Experiments

To validate the advancement of the improved
YOLOvlln model, it was compared with
mainstream object detection models—YOLOv9t [23],
YOLOV10n [24], the original YOLOv1ln, YOLOv11s,
and RT-DETR [25]—by training and conducting a
comparative analysis on the DARK FACE dataset. The
experimental results are shown in Table 3. As can be
seen from the table, the improved YOLOv11n achieved
a key mAP50 of 58.7%, demonstrating a significant
improvement in detection accuracy compared to
other models such as YOLOv9t, YOLOv10n, and
the original YOLOv11ln. Meanwhile, the improved
YOLOv11ln model has only 1.42M parameters and
a computational cost of 7.5 GFLOPs. Compared to
models like RT-DETR-1, which has 31.9M parameters
and a computational cost of 103.4 GFLOPs, the
improved YOLOv11ln maintains superior parameter
scale and computational overhead, effectively
balancing detection accuracy and computational
efficiency, thus exhibiting excellent performance
equilibrium.

Table 3. Comparative experimental results of different

models.

Model mAP50/% Params/M FLOPs/G
YOLOv9t 479 1.97 7.6
YOLOv10n 48.2 2.69 8.2
YOLOv1ln 48.5 2.58 6.3
YOLOv11s 53.4 9.41 21.3
RT-DERT-1 50.6 31.9 103.4
RT-DERT-r50 49.7 419 125.6
Improved YOLOv11ln 58.7 1.42 7.5
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5.6 Visualization of Improved Results

Figure 9 presents a visual comparison of the detection
results to intuitively demonstrate the performance
advantages of the improved model. As shown in the
Figure 9, compared to YOLOv11n, the improved model
exhibits superior performance in the face detection
task: the original YOLOv1ln had a high missed
detection rate, particularly for small, distant face
targets in the scene, where numerous detections were
missed. In contrast, the improved model detects
a greater number of faces, effectively reducing the
missed detection rate. For instance, in a street scenario,
YOLOv1ln detected only one face, whereas the
improved model successfully identified faces located
further in the distance. Similarly, in a basketball court
scenario, the number of faces detected by the improved
model is significantly higher than that detected by
YOLOv11n. This indicates that the improved model
can more comprehensively capture face targets within
the image, demonstrating an overall more outstanding
performance in the face detection task.

6 Conclusion

This paper addresses the challenges of low accuracy
and high miss rates for small targets in face detection
under low-light conditions by proposing a method
that integrates Zero-DCE enhancement with an
optimized YOLOv1ln model. First, Zero-DCE is
applied to low-light images to improve brightness
and contrast, enhancing facial feature visibility and
yielding a 2.8% accuracy improvement compared
with using the original images. Subsequently, the
YOLOvV11n architecture is enhanced with several key
modifications: a P2 layer dedicated to small-target
detection, the DySample dynamic upsampling
mechanism, a Lightweight Attention Enhancement
(LAE) module, and a GSDetect head. Evaluated on
the DarkFace dataset, the improved model achieves an
accuracy of 58.7%, a 10.2% increase over the original
YOLOv11n, while reducing parameters by 45% and
maintaining computational complexity at 7.5 GFLOPs.
This solution achieves an effective balance between
accuracy and efficiency, offering a practical and
efficient approach for face detection under low-light
conditions.
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